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Chapter

Ecology, Biology and Genetics of
Millepora Hydrocorals on Coral
Reefs
Caroline E. Dubé, Chloé A.F. Bourmaud, Alexandre Mercière,

Serge Planes and Emilie Boissin

Abstract

Coral reefs are one of the most productive and diverse ecosystems on Earth.
However, climate warming is occurring at an unprecedented rate and has nega-
tively affected coral reefs worldwide. Evaluating the life history of reef-building
species carries important implications for coral reef conservation. This chapter
examines the taxonomy, biogeography, ecology, symbiosis, morphology and repro-
ductive biology of Millepora hydrocorals, an important but relatively unstudied
component of coral reefs. An emphasis is also placed on the influence of variable
reef environments on Millepora life history traits, providing a fascinating opportu-
nity to study the interplay between ecology and evolution. Special attention is given
to ecological and evolutionary benefits of asexual versus sexual reproduction in the
maintenance of genetic and phenotypic diversity. Lastly, this chapter discusses
whether life-history strategies of Millepora hydrocorals and tolerance to different
stressors can influence their ability to adapt and survive to future climate change,
and other natural and anthropogenic disturbances.

Keywords: Millepora, coral reefs, taxonomy, biogeography, symbiosis,
morphology, reproduction, population genetics

1. Introduction

1.1 Coral reefs: biodiversity and threats

Coral reefs were formed only 230 million years ago and are largely limited to
warm shallow waters [1], yet they are among the most biologically diverse and
economically important marine ecosystems. Coral reefs do not only shelter thou-
sands of species; they also provide critical services to humans, including fisheries,
coastal protection, medicines and tourism activities [2–4]. The economic value of
coral reefs worldwide has been estimated to be around 30 billion US$ of net benefit
per year [5]. Often called the rainforest of the sea due to their outstanding biodi-
versity, coral reefs only cover less than 0.1% of the ocean seafloor [6, 7] or approx-
imately 5% that of rainforest areas [8]. Coral reefs thrive under nutrient-poor and
oligotrophic waters [9–11], but yet harbour more than 25% of all known marine
species [12, 13]. This ecosystem is sustained through efficient nutrient recycling
strategies developed by corals [14] and algae [15], the primary reef producers, and
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other key organisms, i.e., microbes [16] and sponges [17]. In coral reef ecosystems,
many calcifying benthic organisms contribute to reef accretion and build the com-
plex and massive three-dimensional structure of reefs, including scleractinian
corals, the major habitat architects, and hydrocorals [18]. These reef-builders are
key components of coral reef health and biodiversity as they offer food, shelter and
nurseries for thousands of reef-dwelling organisms and fishes [19].

Reefs are dynamic systems that are frequently punctuated by perturbations
[20]. For instance, human activities can alter both global (climate change associated
with CO2 emissions) and local reef health (e.g. coastal habitat loss, pollution, sew-
age, overfishing and invasive species) [21, 22]. As a consequence, several reports of
coral reef declines have been recorded, averaging 30–50% reductions in reef cover
globally [4, 23, 24], including recent losses of coral cover following the multiple
global bleaching events that occurred between 2014 and 2017 [25–27]. Since coral
reefs are integrated ecosystems, declines in reef-building corals are often accompa-
nied with declines of other species, such as many coral reef fishes [28], further
hampering their capacity to deliver important ecosystem services to more than
500 million people [23, 29]. Yet, reef corals and the ecosystem they create can
recover and a key factor underpinning such recovery is the ability of coral species to
grow back, to maintain or renew their populations. Such an ability to respond to
acute and chronic stressors in coral species is often linked to morphological traits,
reproductive strategies and symbiont partners (among others). As we progress
further into the Anthropocene, understanding and predicting these stress responses
require prior knowledge on the life history traits of keystone reef corals, and some
assessment of the influence that environmental changes may have on those traits.

1.2 Millepora hydrocorals

To date, the vast majority of studies on species’ life history traits in coral reefs
have mainly focused on scleractinian corals due to their key role in providing much
of the habitat framework and structural complexity of reefs [30–34]. The extent to
which other non-scleractinian reef-building organisms might rescue reef
populations in response to environmental change is largely unknown. More infor-
mation on such organisms is therefore needed.Millepora hydrocorals, known as fire
corals because of their painful sting via toxic nematocysts [35, 36], are important
components of reef communities where they, similar to scleractinian corals, con-
tribute to reef accretion and community dynamics [37, 38]. Millepora species are
Hydrozoans (Medusozoans), and together with hermatypic corals (Anthozoans),
belong to the phylum Cnidaria [39]. Millepora spp. are members of the
monogeneric family Milleporidae, the sub-order Capitata and the order
Anthomedusae [40–42]. Milleporidae and Stylasteridae are the only two Hydrozoan
families producing skeletons of calcium carbonate. The first scientific report of
Millepora spp. was from Linnaeus in 1758 [43], with subsequent species reports and
descriptions by several authors (e.g. [44, 45]), and the seminal work of Boschma
[46, 47]. There has been a surge of interest in fire corals over the last two decades
(Figure 1), and especially in the last 7 years. These recent studies focused on
genetics and coincided with the development of new molecular markers [48–50].
While there is much known now about fire corals (reviewed in [51]), the literature
is scattered, particularly that of biogeography and population genetic research, and
needs to be summarized. In this chapter, we will document what is known about
taxonomy, biogeography, ecology, symbiosis, morphology and reproductive biol-
ogy of Millepora hydrocorals, using both published and unpublished information,
and will highlight areas where knowledge is especially lacking.
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2. Biodiversity and biogeography

2.1 Fossil records

Hydrocorals have a relatively long evolutionary history since many fossils from
Tertiary deposits have been assigned to Millepora. However, Boschma [52] recog-
nized only two species, Millepora tornquisti from Eocene rocks (56–33 mA) of
Madagascar and M. alcicornis in Pleistocene deposits (2.58 mA–11,700 ya) from the
Panama Canal zone [53]. Other branching milleporids were also reported from the
Upper Cretaceous (100–66 mA) in northern Spain [54]. Recently, fossils of M.
alcicornis have been recorded in deposits from the Early Miocene (�23 mA) [55].M.
exaesa fossils were also recorded in more recent deposits in the Seychelles, dating
from the last interglacial sea-level high-stand, �129,000–116,000 ya [56].

2.2 Species delimitation

As in many corals, the morphological species concept was traditionally applied
to the species delimitation of Millepora, which is based on colony growth forms.
Millepora species have a great diversity of growth forms and can be encrusting,
branching, plate-like, massive or even columnar (Figure 2). Interestingly, the typ-
ical growth forms of Millepora species are broadly the same in the Red Sea and the
Indo-Pacific. Arrigoni and colleagues [57] hypothesized a morphological conver-
gence for these species. Similarly, in the Atlantic, there is also one plate-like and one
branching species, as well as other massive/encrusting forms. As these growth
forms do not form monophyletic groups on the phylogenetic reconstructions [57],

Figure 1.
The literature search in web of science identified 326 publications referring to Millepora hydrocorals, wherein
only 29 were using genetic approaches.
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they seem to have appeared independently and likely evolved in relation to the
hydrodynamic conditions of their environment.

This group is also known for its great phenotypic plasticity [46], and environ-
mental factors are known to greatly influence the morphology ofMillepora colonies.
Recently, Dubé and colleagues [58] demonstrated phenotypic plasticity among
clonal colonies distributed in habitats with different hydrodynamic characteristics
(see Section 4). To further complicate the matter, fire corals have been shown to
overgrow stony corals, hydrocorals and gorgonians, which gives them additional
peculiar growth forms (Figure 3) [59, 60]. Consequently, about 100 nominal
species were described [61]. While Duchassaing and Michelotti [44, 62] identified
24 Millepora species based on trivial morphological differences, Hickson [45, 63]
reckoned that there was only one Millepora species, M. alcicornis, and that all other
morphological growth forms were only ecological variations. There is a true ‘species
boundary problem’withinMillepora and it has been subject to much debate for over
150 years [45–47, 64, 65].

Apart from colony growth forms, pore traits are the most widely used characters
in Millepora species delimitation. The pores in Millepora are like the corallites for
the scleractinian corals, accommodating the polyps. There are two types of polyps
in Millepora species: feeding polyps (gastrozoids) which are provided with a gas-
trovascular cavity opening by a mouth, and defensive polyps (dactylozoids) with-
out a mouth. The gastropores and the dactylopores, from which the gastrozoids and
the dactylozoids are able to extend outside to catch food, are organized in
cyclosystems formed by a circle of dactylopores surrounding a single gastropore
(Figure 2). While Boschma [46] concluded that the colony growth form was the
most important character for the distinction of species, and that the other charac-
ters were not sufficient delimiting criteria, subsequent studies have used pore

Figure 2.
Growth forms, pores and polyps of three Millepora species. (A–C) M. cf. exaesa encrusting growth form, pores
and polyps, respectively; (D–F) for the massive M. cf. platyphylla and (G–I) for the branching M. cf. tenera. D
photograph is courtesy of Gilles Siu.
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characters. Using a more elaborate quantitative approach on pore characters,
Moschenko [66] considered 11 traits (e.g. numbers and diameters of gastropores
and dactylopores, distances between dactylopores and gastropores, number of
dactylopores per gastropore) in one plate-like (M. platyphylla Hemprich and
Ehrenberg 1834) and five branching Millepora species (M. cruzi Nemenzo 1975,
M. dichotoma Forskal 1775, M. intricata Milne Edwards 1860, M. murrayi Quelch
1884 and M. tenera Boschma 1949). His results distinguished only M. platyphylla,
while all branching species shared important overlap in trait values with gradual
transition from one species to another [66]. However,M. cruzi andM. murrayi have
been subsequently synonymized (with M. tenera andM. intricata, respectively) and
this could explain some of the trait overlaps between species. More recently, Razak
and Hoeksema [65], based on colony growth forms and pore characters, revised the
Indonesian Millepora species and synonymized 6 of the 13 recognized Indo-Pacific
species. In particular, the gastropore and dactylopore diameters were shown to be
discriminant among many Millepora species [57, 67, 68]. Boissin and colleagues
(submitted) analyzed 13 pore characters and could distinguish the three species
present in Reunion Island. This latest study showed that gastropore and dactylopore
numbers, as well as diameters, were informative and should be used as standard
traits in future Millepora studies. This study also showed that polyp features were
discriminant, such as the presence or absence of capitate tentacles or capitations,
and the presence, absence or abundance of Symbiodiniaceae. Additional biological
traits seem to be helpful to delineate milleporid species, such as reproductive
periods, medusoid features and nematocyst morphology [36, 57, 69, 70].

Figure 3.
Millepora hydrocorals overgrowing living reef corals at Europa Island (Indian Ocean), including massive Porites
(A, C and D), Distichopora sp. (B) and Astrea sp. (D). M. cf. platyphylla can overgrow giant clam shells (C).
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The advent of DNA barcoding greatly helped delimiting species of many marine
invertebrates [71–74]. Consequently, the more recent works on Millepora spp. used
a combination of morpho and molecular characterization. Mitochondrial sequence
data were successfully used to delineate milleporid species from the Caribbean,
revealing two genetic entities: M. squarrosa Lamarck 1816 and a species complex
composed of M. alcicornis Linnaeus 1758–M. complanata Lamarck 1816 [67]. Simi-
larly, the four Millepora species from the Brazilian province were discriminated
using the 16S mitochondrial gene coupled with morphological characters [68].
Recently, a study on milleporids from the Red Sea successfully distinguished three
species M. platyphylla, M. dichotoma and M. exaesa Forskal 1775, using both mor-
phological and molecular characterization [57]. Similarly, Boissin and colleagues
(submitted) successfully used 16S sequences to delineate the threeMillepora species
from Reunion Island.

2.3 Biogeography

Fire corals are found in tropical/subtropical regions around the globe, nearly
ubiquitous on reefs in the Atlantic, Indian and Pacific Oceans (Figure 4). Cur-
rently, 10 species are considered valid in the Indo-Pacific and 6 in the Atlantic
Ocean [57, 61, 65, 68, 75]. The species status of two other Indo-Pacific species,
M. nodulosa Nemenzo 1984 and M. latifolia Boschma 1948, are still unclear [65].
Several Indo-Pacific species show an extensive geographic distribution from west of
the Indian Ocean to west (M. dichotoma, M. tenera), centre (M. platyphylla) or east
of the Pacific Ocean (M. exaesa, M. intricata), whileM. foveolata Crossland 1952 and
M. boschmai de Weerdt and Glynn 1991 have restricted distributions (Philippines
and Indonesia, respectively, Figure 4). In the Atlantic, two species are endemic to
the Caribbean province (M. complanata, M. squarrosa) and three species are
endemic to the Brazilian province (M. braziliensis Verrill 1868, M. nitida Verrill
1868, M. laboreli Amaral 2008), while M. alcicornis is present in both provinces as
well as in the Canary Islands, Cape Verde and Ascension Island (Figure 4) [46, 76].

However, with recent morpho-molecular re-evaluations of species boundaries in
this group, our understanding of the biogeographic patterns is still evolving. The
recent highlight of cryptic species between the Red Sea and the rest of the Indo-
Pacific provinces [57] pointed out that M. platyphylla, M. dichotoma and M. exaesa
in the Indo-Pacific need taxonomic re-description. The number of Indo-Pacific
species was thus raised from 7 to 10 in the last few months. This number is likely to
grow in future years, as M. cf. exaesa for instance includes several lineages over its
Indo-Pacific range and likely represents another case of species complex (Boissin
et al., unpublished).

Additionally, the range of M. platyphylla (now M. cf. platyphylla) was recently
extended back to the eastern Pacific [77] from where it was documented as extir-
pated decades ago [78]. In the Atlantic, M. alcicornis has recently established in the
Canary Islands (Macaronesia), far north of its tropical distribution [79], possibly by
means of drifting material from the Caribbean Sea or transportation through ballast
waters of large vessels and fouling of hulls [79–81]. Long-distance dispersals in
milleporids have also been demonstrated in the Pacific, with Millepora colonies
recorded on drifting pumice [80]. This alternative mode of dispersal can explain
such a wide geographic distribution for a species with a short pelagic stage (see
Section 5.3). However, as noticed by Lewis [51], it is surely remarkable that a family
of worldwide distribution, with a long geological history and apparent ecological
success, is represented by less than 20 species.
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3. Ecology and symbiosis

3.1 Distribution, abundance and ecological roles

Fire corals occur worldwide in tropical seas and are limited in distribution from
the intertidal zone to depths of approximately 50 m [51, 82, 83]. Although fire corals
can be abundant locally [84–86] and dominate shallow water communities in some
coral reef ecosystems [87–90], they usually cover less than 10% of the overall reef

Figure 4.
Geographic distribution of the 16 recognized species of Millepora in the Atlantic and Indo-Pacific Oceans.
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substratum [51, 91]. Millepora spp. are also found in many environments and
waves, water movement, light intensity and habitat depth were identified as key
factors influencing their distribution and growth forms [51, 82, 91–93]. On barrier
reefs, the amount of wave energy is highest on the reef crest, where wave breaking
first occurs and subsequently attenuates towards fore reef and lagoonal environ-
ments (Figure 5) [94, 95]. This gradient in wave energy, combined withMillepora’s
sensitivity to wave-induced breakage, were showed to strongly influence colony
and size distributions of M. cf. platyphylla at Moorea (French Polynesia), with
highest densities recorded on the fore reef and larger colonies on nearshore reefs
[91].M. cf. platyphylla colonies occurred in a contagious pattern of distribution (i.e.
colonies close to one another), as described for other Caribbean species [96], and
colony breakage and subsequent fragment re-attachment were suggested as expla-
nations for such colony aggregations [58]. Three Millepora species were also identi-
fied on the reefs of Reunion Island [97], where each species is distributed according
to their proximity with the shore and reef crest, mostly related to the wave energy
dispersal. M. cf. exaesa is the first species encountered close to shore on the shallow
reef flat (2 m depth), replaced by M. tenera when approaching the reef crest, and
M. cf. platyphylla colonies live from the crest to 35 m depth on the outer slope.

Millepores are important reef framework builders, second only after
scleractinian hard corals [51, 82]. Their complex structure is a habitat for other
species adapted to stinging cells, including scavenger crustaceans (e.g. crabs,
shrimps and barnacles, [51, 98–100]), as well as fish [38, 101–103], serpulids
[104, 105], spionid polychaetes [51] and scleractinian corals [106]. Interestingly,
high fire coral cover on Caribbean reefs was associated with increased fish richness
species [86]. Many studies have described hydrocorals as opportunistic species that
show rapid growth rates with high fecundity [51] and the ability for clonal propa-
gation through fragmentation [58]. Fire corals are capable of colonizing both natu-
ral and artificial substrates, including dead gorgonians, rocks and ships [107, 108],
as well as living seagrass stems, hydrocorals, gorgonians, scleractinian corals and
other reef invertebrates (e.g. giant clams) through pursuit, contact and overgrowth

Figure 5.
Wave energy dispersal on a barrier reef (modified from [94, 95]). The fore reef experiences strong wave action
from incoming waves that break on the reef crest, near the upper slope, with a significant decrease in swell
exposure towards deeper waters. The reef crest dissipates �70% of the incident swell wave energy with gradual
wave attenuation from the back reef to nearshore fringing reefs.
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(Figure 3) [59, 60]. This ability to inhabit different substrates and its rapid coloni-
zation rates [79] provide a competitive advantage for potential habitat expansions.
Although fire corals compete with other corals, they also contribute to coral survival
during Acanthaster outbreaks [106], highlighting their key ecological role in reef
resilience. In fact, the corallivorous predator Acanthaster planci tends to avoid
Millepora species [109], thus providing predator-free sanctuaries to nearby
scleractinian corals.

3.2 Endosymbiosis with photosynthetic dinoflagellates (Symbiodiniaceae)

Many members of the phylum Cnidaria, including corals, octocorals, sea anem-
ones and hydrocorals, host unicellular dinoflagellate endosymbionts (i.e. zooxan-
thellae) belonging to the family Symbiodiniaceae [110]. These associations are often
obligatory and of fundamental importance to coral reef ecosystems as they enhance
the growth of calcifying corals that form the reef. For instance, the zooxanthellae
contribute to host nutrition (up to 95% of the energy requirements in scleractinian
corals [111]) and skeletogenesis by providing photosynthetically fixed carbon, while
the cnidarian host provides inorganic nutrients and refuge from herbivory to its
symbionts [112–114]. Previous studies have demonstrated that the association of
Cnidaria–Symbiodiniaceae is not stochastic, but mostly determined by host phy-
logeny and geography [115, 116]. Like scleractinian corals, hydrocorals feed hetero-
trophically on a variety of resources (mostly planktonic feeders [51, 117]) and rely
on a mutualistic symbiosis with Symbiodiniaceae algae for autotrophic nutrition
and calcification [118, 119]. While coral-Symbiodiniaceae associations have been
extensively studied over the last decades (reviewed in [120]), only two studies have
recently investigated hydrocoral-Symbiodiniaceae associations on Caribbean reefs
[121, 122]. Rodriguez and colleagues [122] showed that Symbiodiniaceae species
that associate with M. alcicornis vary as a function of its geography, with
Symbiodinium sp. (formerly clade A) found in samples from Mexico and Breviolum
sp. (formerly clade B) in the eastern Atlantic, with the exception of samples from
the Canary Island and Cape Verde Islands that comprised Cladocopium sp. (for-
merly clade C). Unpublished data collected across M. cf. platyphylla Indo-Pacific
range showed that this species can associate with the genera Symbiodinium (domi-
nant symbiont), Cladocopium and more rarely with Brevolium in French Polynesia,
Papua New Guinea and the south-western Indian Ocean (Dubé et al. in prep.;
Boissin et al. in prep.). The other Indo-Pacific species (M. cf. dichotoma and M. cf.
exaesa) investigated so far show the same Symbiodiniaceae associations (Boissin
et al. in prep.).

3.3 Bleaching susceptibility

One of the most devastating consequences of global warming is coral bleaching.
Bleaching occurs when scleractinian corals, hydrocorals and octocorals lose their
photosynthetic symbiotic algae or pigments [21, 111, 123–125], which leads to the
white calcium carbonate skeleton being visible through the transparent host tissue.
The frequency and severity with which coral bleaching occurs have increased in
recent years [126]. Numerous investigations have demonstrated that coral
bleaching events are a serious threat to coral reefs worldwide, where they have
caused a severe deterioration in reef health (e.g. increase in coral disease, decrease
in reef calcification and loss of habitat for related reef organisms [25, 123,
127–129]. The severity of coral bleaching depends on several factors, including
specific coral species impacted [130], symbiotic algae assemblages [131] and
thermal history [132].
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Zooxanthellate hydrocorals are thought to be extremely sensitive to bleaching
[130, 133] and can be threatened by future climate change.Millepora spp. have been
reported to be among the first cnidarians to lose their zooxanthellae symbionts
during widespread bleaching events [134] and they have suffered local or regional
extinctions from bleaching in the Pacific [78, 85, 135]. Numerous investigations of
bleaching events on Caribbean and Florida Keys reefs have reported bleaching of
Millepora colonies [133, 136–139], with M. alcicornis, a finely branched species,
being the most severely affected reef corals. Such coral morphology has been
described to be more susceptible to bleaching than encrusting and massive species
[140]. Yet, bleached colonies of M. alcicornis remained alive during a bleaching
event affecting a north-eastern Brazilian reef [133], which is in accordance with
previous reports that Millepora species are also the first to recover from short-term
bleaching [136, 137]. In the Maldives Archipelago (Indian Ocean), Millepora was
reported to be the major reef-building coral in shallow reefs (7 m depth), producing
some ‘Millepora zones’ [141]. Three species were well documented, the massive
speciesM. cf. platyphylla [46, 142] and two branching ones,M. tenera [51, 143, 144]
and M. latifolia [143]. However, many recent surveys of the Maldivian reefs have
identified another pattern of distribution, where none to low abundances of
Millepora species were recorded (1–2 depending on the species) [145–148]. Gravier-
Bonnet and Bourmaud [148] suggested that milleporids were extirpated from sev-
eral Maldives atolls, following the 1997–1998 El-Nino Southern Oscillation event
(ENSO). ENSO has induced a strong bleaching and massive coral mortality (of up to
90%) in the tropical Indian Ocean, including the Maldives [145, 149]. On the Great
Barrier Reef, Millepora spp. were also the most susceptible taxa to the mass
bleaching event of 1998, with 85% of mortality [130], while they showed no evi-
dence of bleaching at Moorea, although scleractinian corals were severely bleached
at this location [150]. During 2014–2017, the worst documented bleaching event
observed [26, 27], M. cf. platyphylla showed no sign of bleaching at Moorea,
although about 60% of scleractinian corals were bleached on the fore reefs
(Figure 6A). Since February 2019, Moorea’s reefs are suffering from another mass
bleaching event, with colonies of M. cf. platyphylla showing sign of bleaching and
mortality (Figure 6B). Differential susceptibilities to this bleaching event were also
observed between M. cf. platyphylla colonies (Figure 6C). Ongoing surveys will
help quantifying bleaching susceptibility and mortality among coral taxa and loca-
tions, as well as between fire coral growth forms and genotypes (Dubé et al. in
prep). Nevertheless, a previous study has shown that temperature is the primary
factor related to bleaching inM. alcicornis, but that synergism with exposure to solar
radiation may play a key role in hydrocoral bleaching [151]. Also, multifocal
bleaching in hydrocorals, consisting of numerous scattered bleached spots, has been
first described as a syndrome caused by an infectious disease affecting several
colonies of M. dichotoma in the Red Sea [152]. 16S rRNA gene sequencing showed
that affected tissues match sequences of bacteria belonging to Alphaproteobacteria
and Bacteroidetes members previously associated with various diseases in
scleractinian corals [153]. Yet the mechanisms of multifocal bleaching, its aetiology
and mode of transmission remain unknown. Nevertheless, many studies have
addressed the aetiology and effects of bleaching in Anthozoan species, wherein
changes in the expression of genes and proteins were observed, and particularly
heat shock proteins and transcription factors [154–159]. A recent study demon-
strated that bleached specimens of M. alcicornis in Mexican Caribbean undergo a
moderate decrease in symbiont’s density and photosynthetic pigments, in addition
to differential expression of 17 key proteins, such as calmodulin, actin and collagen
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often coupled with calcium homeostasis, exocytosis and cytoskeleton organization
in Anthozoan species [139].

Coral reefs are also threatened by ocean acidification associated with the increas-
ing CO2 partial pressure, which depresses net calcification of corals and hydrocorals
[160, 161]. Physiological responses of reef organisms to ocean acidification are
relatively well known [162, 163]. Examples include changes in gene expression
consistent with metabolic suppression, increased oxidative stress, antioxidant sys-
tem, apoptosis and symbiont loss [164, 165]. Yet little information on the effects of
ocean acidification on the physiology of fire corals is available in the current litera-
ture. Luz and colleagues [166] demonstrated that the antioxidant defense system of
M. alcicornis is capable of coping with acidic conditions for a short period of time,
while long-term exposure induces oxidative stress with consequent oxidative dam-
age to lipids and proteins, which could compromise hydrocoral health and influence
negatively the zooxanthellae-coral symbiosis and ultimately lead to bleaching [167].

Figure 6.
Bleaching susceptibility of M. cf. platyphylla during massive bleaching events occurring on the fore reefs at
Moorea Island (French Polynesia). (A) View of the fore reef at Moorea during the bleaching event of 2016,
showing healthy colonies of M. cf. platyphylla and bleached colonies of scleractinian corals, mostly of the
Pocillopora genus. M. cf. platyphylla was sensitive to the recent bleaching event of 2019 at Moorea, where
colonies bleached and died (B) from the rise in temperature, while other colonies showed sign of resistance to
bleaching on the same reef (C). Photographs are courtesy of Yannick Chancerelle (A) and Yann Lacube
(B and C).
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4. Morphology and phenotypic plasticity

In coral reefs, some calcifying species, such as corals and hydrocorals, are
known to have a high degree of morphological plasticity in response to hydrody-
namic changes and light availability, which strongly influences their performance,
including resource acquisition and light capture, thereby benefiting colony growth,
reproduction and survival [168]. Branching and plating growth forms grow quickly
into large arborescent colonies in shallow reef environments, where irradiance is
high and water flow is low, which makes them effective competitors for space
[169, 170], light and food [171]. However, this growth strategy renders them
extremely vulnerable to breakage when large waves and storm events occur, often
resulting in fragmentation or coral mortality [172, 173]. Intraspecific morphological
variation has been reported in many colonial reef organisms in response to envi-
ronmental gradients, which ultimately affect their survival and growth [174–177].
Such plastic developmental responses are often induced during ontogeny of
modular organisms with persistent effect on adult phenotypes [178]. These pheno-
typic responses can also change independently from the genetic background of reef
corals (acclimatization), but they often rely on a genetic basis (adaptation)
[179, 180].

Fire coral species are also known for their extensive morphological variability
and vulnerability to fragmentation varies greatly among their morphologies [51, 58,
91, 181]. Examples include variations in growth forms of M. cf. platyphylla colonies
that were found in distinct reef environments at Moorea; the fore reef at 15 and 6 m
depth (mid and upper slope, respectively), the back and fringing reefs [58, 91].
Colonies on the mid slope and back reef were mostly encrusting, while the massive
morphology was dominant in the fringing and patch reefs (Figure 7A, B). The sheet
tree morphology ofM. cf. platyphylla [182], the most vulnerable to wave-induced
breakage, was nearly exclusive to colonies encountered in the upper slope (Figure 7C),
where waves can break the blades, while the encrusting bases remain intact [181].

To date, the flexibility for a single genotype to produce a range of phenotypic
responses to distinct environmental conditions (i.e. phenotypic plasticity) has
rarely been documented in natural marine populations, mostly because of the diffi-
culty in identifying naturally occurring clonal genotypes across variable environ-
ments. Dubé and colleagues [58] have described the first example of phenotypic
plasticity among fire coral clones, where clones of the same genotype display dif-
ferent morphologies across distinct reef habitats (Figure 8). The fire coral M. cf.
platyphylla seems to invest in a vulnerable morphology that increases the contribu-
tion of asexual reproduction through fragmentation in high-energy reef habitats.
This is a unique example of phenotypic plasticity as corals typically have wave-
tolerant growth forms in such dynamic reefs. Such phenotypic responses suggest

Figure 7.
Morphologies of M. cf. platyphylla colonies in habitats experiencing contrasting hydrodynamic regimes. (A)
Massive wave-tolerant morphology in the patch reef, a lagoonal habitat (photograph is courtesy of Gilles Siu);
(B) encrusting wave-tolerant morphology in the back reef, a lagoonal habitat at <1 m depth and (C) sheet tree
morphology vulnerable to wave-induced breakage in the upper slope, a fore reef habitat at 6 m.
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that fire corals being susceptible to wave-induced breakage have benefits in terms
of reproduction outweighing the costs of getting injured.

5. Reproduction

5.1 Reproductive strategies

Although only a few species are exclusively reproducing asexually, clonality has
evolved repeatedly in many reef organisms (e.g. [183–186]). In coral reef ecosys-
tems, there are many organisms that can reproduce through both sexual and asexual
reproduction, including scleractinian corals [187], hydrocorals [58], hydroids [188],
coralline algae [189], sea anemones [190], sea cucumbers [191], gorgonians [192]
and sponges [193]. Asexual reproduction produces genetically identical offspring,
often leading in local populations dominated by few adapted clones [194–196]. In
the contrary, sexual reproduction enables genetic recombination and production of
genetically diverse propagules, thus generating the genotypic variation required for
adaptation [197] and colonization of new habitats [198]. In many colonial reef
organisms, asexual reproduction can occur through fragmentation, fission, bud-
ding, polyp expulsion or polyp bail-out [187, 199–201], while sexual reproduction
often involves a wide range of reproductive strategies, i.e. gonochorism, hermaph-
roditism, internal (brooders) and external (spawners) fertilization [187, 202].

Despite their ecological importance to the ecosystem functioning of coral reefs,
Millepora hydrocorals have been relatively understudied and information regarding
their reproduction and dispersal patterns remain scarce. Fire corals are gonochoric
broadcast spawners that reproduce sexually by producing medusoids and planula
larvae (Figure 9). They also rely on asexual reproduction through fragmentation
[58, 181], but the production of asexual larvae has never been documented within
this genus though described for some Pocillopora species [203, 204].

Figure 8.
Graphical abstract showing the occurrence of phenotypic plasticity among fire coral clones, where clones of the
same genotype display different morphologies across distinct reef habitats [58]. Geographic coordinates of each
georeferenced colony collected in the three reef habitats are shown in meters on the x and y axes. On the left side:
each genotype is represented by a unique color; on the right side: colonies with encrusting morphology are shown
in orange, massive in green and the vulnerable sheet tree morphology in grey.
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5.2 Spawning, medusoids and larval development

Milleporid sexual reproduction is seasonal [69]. Millepora colonies become
mature during the spring or summer (or austral summer for the southern hemi-
sphere). Sexual reproduction period is usually correlated with the increase of the sea
water temperature [69, 70, 205, 206], but some studies based on ampullae observa-
tions suggest a reproduction throughout the year [207–209]. Spawning occurs at
different dates according to species, preventing hybridization [69, 70, 206]. The
empty ampullae are visible during 1–2 months on the colonies (Figure 10D) before
the skeleton reconstruction.

The sexual reproduction process begins with the growing of special cavities,
called ampullae, developed in tissues and designing densely packed white dots on
the coenosteum of the gonochoric colonies. These ampullae were first described by
Quelch [210, 211] and further studied by Boschma [46, 207, 208, 212] and
Moschencko [66]. Each ampulla contains one developing medusoid, i.e. a
‘regressed’ short-lived medusa, shed with mature gametes. Male and female medu-
soids are liberated after the disintegration of the dense network of the trabeculae
covering the ampullae (Figure 10A–C). They have marginal bulbs but no tentacle,
no circular or radial canal, no manubrium, no statocyst or any sense organ
(Figures 10C and 11A), and they are not able to feed on zooplankton. On the
contrary, as true medusae, they are able to actively swim with their muscle fibres
distributed in the bell and display a velum. Gonads are attached to the short
spadix and fill entirely the subumbrellar cavity. Female medusoids contain 2–5
zooxanthellate oocytes (Figure 11A) and male medusoids contain a spermatic mass
(Figure 10C). The medusoids detach themselves from the fertile colonies by active
bell pulsations in a few minutes and their swimming activity leads to the release of

Figure 9.
Millepora life cycle. Millepora hydrocorals are gonochoric broadcast spawners that reproduce sexually by
producing medusoids and planula larvae. The medusoids release the gametes in the water column for external
fertilization. The ciliate larvae sink and crawl on the reef substratum and metamorphose in a new calcifying
polyp, founder of a new colony. Millepora also relies on clonal propagation through fragmentation and grow
via asexual budding.
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the ripe gametes in the water column. The spawning of gametes is therefore almost
synchronous with the release of medusoids. Spawning always begins before dark,
but is not correlated with the lunar or tidal cycles [69, 70, 206]. In shallow water of
Reunion Island, Indian Ocean (reef flat), a unique massive spawning event was
observed in situ for M. cf. exaesa and M. cf. platyphylla during the reproductive
period, in December for the former species and in January for the later one [69].
Conversely, M. tenera seems to spawn regularly but not massively during 2 months
of the austral summer, resulting in the observation of both closed and open
ampullae on fertile colonies during the reproduction season. Likewise, Nomura
[205] and Soong and Cho [206] described several medusoid batches in different
Millepora species in controlled conditions during the reproductive season in
Japan and Taiwan, respectively. Recently, Shlesinger and Loya [70] described
massive spawning events in the Red Sea (Gulf of Eilat/Aqaba) for three species,
M. dichotoma, M. exaesa and M. platyphylla. Their field observations during the
reproductive period (from June to September 2016–2018) also showed one or two
spawning events per year for M. exaesa and M. platyphylla, while M. dichotoma
colonies released their medusae massively, 4–6 times during the reproductive
season. The higher reproductive output ofM. dichotomamight be in relation with its

Figure 10.
Before, during and after medusoid release in M. cf. exaesa in Reunion Island (modified from [69]).
(A) Ampullae showing a small opening resulting in skeleton dissolution few days before the medusoid release.
Notice that the cyclosystems have disappeared because of the high ampulla density; (B) medusoids protruding
through the open ampullae and (C) male medusoid release with the umbrella opening towards the surface.
Notice the big tentacular bulbs with refringent nematocyst and the sperm sac filling the subumbrellar cavity;
(D) empty ampullae visible during 1–2 months after the massive medusoid release event. A, B and C
photographs were taken using a stereomicroscope; photograph D was taken underwater.
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higher abundance in the Gulf of Eilat/Aqaba (i.e.M. dichotoma is the most abundant
milleporid in the Gulf [70]).

The empty medusoids continue to swim for 1–3 h and die quickly while sinking
and shrinking. Male and female medusoids are released synchronously (for a giving
species), the spawning of the oocytes and spermatozoids is also simultaneous, and
fertilization occurs rapidly. Embryogenesis and planula larvae formation occur in
less than 12 h in aquarium [69]. Because of the presence of algal symbionts in
oocytes, the planula larvae are zooxanthellate and have the potential to live for
several weeks before settlement (more than 1 month in controlled conditions forM.
cf. exaesa from Reunion Island). This feature is certainly a character to keep in mind
to explain the large distribution of Millepora species in all oceans. M. cf. exaesa
planula has been described as a bipolar ciliated larva with a wide anterior and
tapered posterior, without a mouth and gastrovascular cavity (Figure 11B) [69].
The larva endoderm is full of lipid droplets and zooxanthellae. The larva sinks and
crawls until it finds a sustainable substrate to fix and metamorphose (Figure 11C).
This process leads to the formation of a calcareous structure surrounding the pri-
mary polyp, founder of a new colony by asexual budding (Figure 11D).

The reproductive output (ampulla density) is variable according to species
and within species. Amaral and colleagues [75] found an average of 10 ampullae/
cm2 for Millepora species occurring on Brazilian reefs, while the highest density
was observed by Soong and Cho [206] in Taiwan with 84–120 ampullae/cm2.

Figure 11.
Gamete spawning, planula larva formation and settlement inMillepora spp. in Reunion Island (modified from
[69]). (A) M. cf. platyphylla female medusoid releasing an oocyte through the velum while swimming. Notice
the numerous zooxanthellae in the oocyte and spadix tissues; (B) M. cf. exaesa zooxanthellate (orange dots in
endoderm) planula larva; (C) M. cf. exaesa larva finding a sustainable substrate to fix by the tapered pole
before metamorphosis; (D) M. cf. exaesa recruit with the first pore. All photographs were taken using a
stereomicroscope.
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In Hydrozoans, the reproductive output can vary between and within species, and
can often depend on the colony size and environmental conditions [213, 214]. In
Reunion Island, the ampulla density ofM. cf. exaesa is positively correlated with the
size of colonies, indicating that the reproductive output varies with the colony size.
Global change also seems to influence the reproductive output of milleporids as the
rate of fertile colonies have decreased considerably in the last 10 years at two
contrasting reef sites in Reunion Island (Bourmaud et al. in prep).

5.3 Dispersal and recruitment

For most colonial reef species whose adults are sessile, their early life history
includes a pelagic stage. These propagules represent the first step for successful
recruitment and have profound implications for population dynamics and renewal,
which ultimately affect their evolutionary history [215, 216]. Dispersal in colonial
organisms is mostly mediated by the release of gametes and/or larvae during sexual
reproduction events, together with the continuous supply in asexual propagules. In
many reef species, the extent of dispersal is largely governed by the reproductive
biology and early life history ecology. Molecular studies and oceanographic models
have uncovered a wide range of dispersal patterns (i.e. dispersal kernels) in coral
reefs, from populations primarily sustained by self-recruitment due to limited dis-
persal potential or retention, to ecologically significant gene flow and connectivity
among adult populations [217]. In corals for instance, brooded larvae settle and
metamorphose rapidly after being released, which is most likely to enhance local
dispersal patterns, while broadcast larvae require a planktonic development phase
and settle further away from the parental source [187]. On the other hand, clonal
propagation can allow populations to expand locally under unfavorable conditions.
Such conditions include fragmented [218], marginal [196] and highly disturbed
habitats [186], where clonal reproduction reinforce local adaptation processes and
population genetic heterogeneity due to restricted dispersal potential of asexual
offspring [58, 219, 220].

Although local demography and self-recruitment have been shown to have
major consequences on the genetic diversity and adaptive ability of reef organ-
isms, empirical data of dispersal patterns in reef-building species remain scarce.
Dubé and colleagues [221] documented the first genetic estimates of local dispersal
and self-recruitment in a marine broadcasting species, the hydrocoral M. cf.
platyphylla. They performed a parentage analysis that revealed a significant contri-
bution from self-recruitment in addition to limited dispersal of sexual propagules
on Moorea’s reefs. Sexual propagules often settled at less than 10 m from their
parents and dispersal events decreased with increasing geographic distances.
Sibship analysis showed that full siblings recruit together on the reef, resulting in
sibling aggregations. Such limited dispersal abilities in fire corals can be related to
their early life history traits. Dispersion during the medusoid stage may not be as
effective due to the short pre-competency period time of the hydromedusae in the
water column [51, 181]. Other means of dispersal can occur through the propagation
of asexual offspring, e.g. fragments that have broken and re-attached to the reef
framework. Asexual reproduction through fragmentation in branching hydrocoral
can be substantial during disturbances [51, 181] and may therefore contribute to
dispersal. However, clonal fragments of the plate-like M. cf. platyphylla were found
to be dispersed close to one another on a barrier reef (mean = 18 m), with clone
distribution being perfectly aligned with wave energy dispersal [58]. The maximal
distance between fragments of the same genotype in this plate-like species at
Moorea Island was about 450 m.

17

Ecology, Biology and Genetics of Millepora Hydrocorals on Coral Reefs
DOI: http://dx.doi.org/10.5772/intechopen.89103



6. Modularity and growth

Modularity is a well-established life history strategy among colonial reef inver-
tebrates, i.e. corals, gorgonians, sea anemones, hydroids, hydrocorals, bryozoans
and sponges [222]. Modular organisms grow in size via the repeated, vegetative
formation of genetically identical modules, referred to as asexual budding, whereby
all modules are derived from the same initial zygote to form a colony [223, 224].
Colony size often correlates with many fitness advantages in response to both
physical and biological stressors. For instance, larger colonies can survive better
towards predation [225] and competition [226], and their fecundity is often
increased due to the large number of polyps that contributes to sexual reproduction
[227]. Modules usually remain physiologically interconnected, but may also sepa-
rate from the colony through fission or fragmentation and persist as discrete units
[228], thereafter reducing colony size. There are only few reports of growth rates in
Millepora species [79, 92, 229–232] that are within the range reported in
Acroporidae corals from western Atlantic region [233].

Some marine modular organisms, e.g. corals and ascidians, can also grow larger
and quicker via the fusion of distinct colonies [178], which results in genetically
heterogeneous colony, also referred to chimera. In addition to chimerism, somatic
mutations may arise within a colony, which also results in intracolonial genotypic
variability. Both chimerism (fusion) and mosaicism (somatic mutation) were iden-
tified in fire corals [234, 235]. At Moorea, for instance, fusion between siblings is
likely to occur as fire corals have limited dispersal abilities and are often aggregated
due to the co-settlement of their larvae [221]. Puill-Stephan and colleagues [236]
demonstrated that high levels of relatedness between juvenile corals correlated with
late maturation of allorecognition. The fusion of siblings could thus be related to a
low conspecific acceptance threshold and/or a delay in allorecognition maturation
for Millepora hydrocorals, as described in some hermatypic corals [237, 238]. Con-
sidering the common occurrence of somatic mutations in fire coral species, modu-
larity might be a promising strategy to increase genotypic variability in populations
that are predominantly sustained through asexual reproduction [235].

7. Population genetics: a case study of Millepora cf. platyphylla at
Moorea, French Polynesia

Recent genetic studies have uncovered that geographically isolated populations,
such as those of Moorea, appear to be more dependent on self-recruitment for local
replenishment and sustainability [239, 240], highlighting the importance of study-
ing local patterns of life history traits in keystone species. Moorea is a high volcanic
island surrounded by a barrier reef with extensive fringing reefs and lagoon systems
[241]. Lagoons and deep interrupted channels separate the fore reefs from the
island, and the lagoon is connected to the oceanic waters via deep passes through
the barrier reef. Furthermore, coral reefs surrounding Moorea Island have under-
gone a massive decline in coral cover from a recent outbreak of Acanthaster planci
and cyclone Oli [242, 243], which provides a unique perspective from which to
comprehend how fire corals can survive and recover from such disturbances.

By gathering genotypic and phenotypic data, Dubé and colleagues [58, 221, 235]
were able to produce a complete picture of ecological and evolutionary strategies
involved in the population persistence of Millepora hydrocorals. On Moorea’s reefs,
M. cf. platyphylla displays a wide range of strategies that ensure its survival by
maximizing the acquisition of local resources. Self-recruitment and mosaicism suc-
cessfully established diverse genotypes within M. cf. platyphylla population, while
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colony fragmentation contributed effectively to population growth (Figure 12),
where a high number of clonal genotypes have the potential for phenotypic plastic-
ity in response to environmental changes. Genetic data indicated that fragmentation
is the dominant reproductive process generating the high abundance of fire corals at
Moorea (80% of colonies were clones). Even small recruits were having multilocus
genotypes identical to adults and were often positioned below the reef substratum,
i.e. frequently on branches of dead coral colonies or side of crevices. These obser-
vations suggest that the successful recruitment of clones may be the result of clonal
reproduction processes other than fragmentation, such as asexual planula larvae,
because asexual fragments are less likely to re-attach on such inclined substrate. The
release of ameiotic planula larvae was reported in a number of coral species [187],
where larval behaviour allows the settlement of a new individual characterized by
its mother genotype (clone mates). However, such clonal reproductive strategy has
never been described for theMillepora genus, and requires further investigations. In
Moorea, fire corals are sustained by a moderate degree of self-recruitment [221]
suggesting that despite low gene flow, genetically diverse and locally adapted
recruits can successfully establish high local population abundance via their subse-
quent growth, survival and fragmentation (as described in [244]). However, such
populations are predicted to be vulnerable to severe disturbances owing to their
isolation from potential source reefs and are often associated with increased extinc-
tion risks [245, 246]. A high potential for gene flow and connectivity has been
revealed among islands of the Society Archipelago in French Polynesia for some
scleractinian species (i.e. Moorea, Raiatea, Taha’a and Tahiti) [218]. Preliminary
results from samples of M. cf. platyphylla collected in several islands from French
Polynesia revealed significant genetic differentiation among archipelagos
(Marquesas, Austral, Gambier, Society and Tuamotu, Boissin et al. unpublished),
highlighting the importance of self-recruitment processes in population sustain-
ability.

Figure 12.
Summary of life history strategies in M. cf. platyphylla at Moorea, French Polynesia. M. cf. platyphylla heavily
relies on asexual reproduction through fragmentation for local replenishment (80% of the colonies are clones),
allowing population growth and the persistence of a genotype over time. M. cf. platyphylla population is
sustained via a significant contribution from self-recruitment (8–36% of juveniles are self-recruits). Mosaicism
and chimerism also contribute in creating novel genotypic diversity at the population and individual levels.
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Overall, the evaluation of the life history of M. cf. platyphylla suggests a com-
petitive strategy, based on few locally produced sexual recruits and their ability of
reaching large sizes (fusion [235] and stolonal spreading [59]), which allows them
to pre-empt space on coral reefs, but also brought evidence of high susceptibility to
fragmentation. This life strategy is well suited for population persistence in the
absence of sexual recruitment, but can be risky in unstable environments [247].
Yet M. cf. platyphylla populations in Moorea have withstood severe disturbances,
e.g. Acanthaster outbreaks, cyclones and mass bleaching events. Their recovery is
foremost sustained by the rapid growth of remnant colonies, mostly those
encrusting, and the subsequent local recruitment via both sexual and asexual
reproduction. There is evidence that under pressure from environmental changes
fire corals might be among the reef coral ‘winners’, joining some scleractinian
species that have already been described as such [32, 85, 140]. Yet more informa-
tion on how they respond to bleaching events is needed, as Millepora species have
been reported to be highly vulnerable to thermal stress in other reefs [4, 130, 133].
Nevertheless, the life history of M. cf. platyphylla is most likely contributing to its
colonization success in various reef environments in French Polynesia. AlthoughM.
cf. platyphylla is the only fire coral species reported in this geographic region [50],
this species is also characterized by one of the widest ranges of distribution in the
entire Indo-Pacific region within the Millepora genus [248], but similar to the
branching species M. intricata. Evaluating the life history of other Millepora species
with different growth forms will enable to determine whether these strategies are
unique to M. cf. platyphylla or spread within the Millepora genus.

8. Conclusions

In recent decades, declines in scleractinian coral cover have challenged their role
as key ecosystem engineers of coral reefs [25–27, 249–251]. Assuming rising sea
temperatures and increased ocean acidification, climate change can interfere with a
range of key processes in the life history of reef corals, including growth, calcifica-
tion, development, reproduction and behavior [162, 252]. Despite the acclimatiza-
tion and genetic adaptation of reef corals [2], such persistent physical and chemical
conditions can lead to shifts in reef community composition. This phenomenon has
already been reported in many reefs, where alternative organisms are dominating
reef assemblages (reviewed in [253]). Only few studies have considered hydrocorals
in ecological monitoring of coral reefs [130, 254, 255]. For instance, M. cf.
platyphylla can dominate some reefs in the Indo-Pacific region [89] and also con-
tribute to the survival of corals during Acanthaster outbreaks [106]. Therefore, it is
crucial to gain insights into how populations of this keystone species can adapt and
survive in the face of climate change, and other natural or anthropogenic distur-
bances. In this chapter, we established that fire corals possess a great variety of life
history strategies that favor a high degree of genetic diversity and plasticity
enabling these organisms to persist throughout environmental variations. Conse-
quently, these Millepora species may become one of the major components in some
modern reefs and requires more consideration in ecological monitoring.
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