
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

Introductory Chapter: Addressing 
Past Claims and Oncoming 
Challenges for Irrigation Systems
Sandra Ricart, Jorge Olcina and Antonio M. Rico

1. Introduction

Water-agriculture nexus is context dependent (water availability and water use 
depend on spatial and temporal issues), socially constructed (multiple stakehold-
ers’ perceptions and interests interact), and technically uncertain (benefits from 
new technologies are difficult to be estimated and duly evaluated). This means 
that irrigation systems should be analyzed as hydrosocial cycles [1], which likewise 
takes into account all of these issues including how water management and water 
governance are conceived and how climate change impacts could be addressed 
through a “nexus” approach [2]. In few words, irrigation systems are under pressure 
to produce more food with lower supplies of water [3]. According to this, water 
availability and water consumption [4], food productivity and food security [5], 
environmental awareness [6], population growth [7], rural development [8], and 
climate change [9] are issues to be considered when irrigation systems are pro-
moted, developed, and managed both globally and locally.

2. Irrigation water consumption: calling for concerted effort

Globally, irrigation was by far the largest water consumer with a share ranging 
over time about 90% of global water consumption [10]. In addition, agriculture 
is the sector most affected by water scarcity, as it accounts for 70% of global 
freshwater withdrawals [11]. In fact, agriculture is both a cause and victim of 
water scarcity, as the excessive use and degradation of water resources is threat-
ening the sustainability of livelihoods dependent on water and agriculture [12]. 
Furthermore, as the largest water user globally and a major source of water pol-
lution, agriculture plays a key role in tackling the looming water crises. What 
can agriculture do to address water scarcity in the context of climate change, 
while ensuring food and nutrition security? What can irrigation offer to allevi-
ate the impacts and reduce the risks of water scarcity? Both questions have been 
directly addressed through the achievement of the 2030 Agenda for Sustainable 
Development and the promotion of Sustainable Development Goals (SDG) [13]. 
These include the adoption of SDG-6 (“Ensure availability and sustainable manage-
ment of water and sanitation for all”) and SDG-2 (“End hunger, achieve food security 
and improved nutrition, and promote sustainable agriculture”). Both goals are an 
opportunity to be engaged with key water-scarce countries to inform and orient 
national policies toward effective, sustainable models, and technologies of water 
management and food security [14]. Furthermore, both are in line with the Paris 
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Agreement of the United Nations Framework Convention on Climate Change 
(UNFCCC)—entered into force on 2016 with the aim of, among others, recogniz-
ing the fundamental priority of safeguarding food security and ending hunger and 
reducing the particular vulnerabilities of food production systems to the adverse 
impacts of climate change. Furthermore, the Paris Agreement promotes better 
resilience of socioeconomic and ecological systems through economic diversifica-
tion and sustainable management of natural resources [15].

3. Irrigation operation: the need for being climate smart

Observed climate change impacts are already affecting food security through 
increasing temperatures, changing precipitation patterns, and greater frequency 
of some extreme events [16]. Increasing temperatures are affecting agricultural 
productivity in higher latitudes, raising yields of some crops (maize, cotton, and 
wheat), while yields of others are declining in lower-latitude regions [17]. Changes 
in land use and an increasing demand for water resources have affected the capac-
ity of ecosystems to sustain food production, ensure freshwater resources supply, 
provide ecosystem services, and promote rural multifunctionality [18]. According 
to the special report “Climate Change and Land: an IPCC special report on climate 
change, desertification, land degradation, sustainable land management, food secu-
rity, and governance gas fluxes in terrestrial ecosystems”—recently published by the 
Intergovernmental Panel on Climate Change (IPCC)—agriculture, forestry, and 
other land use (AFOLU) activities accounted for 23% of total net anthropogenic 
greenhouse gas emissions (GHGs) by the period 2007–2016. However, agriculture is 
not only a contributor to climate change, it will also be severely affected by climate 
change [19]. Moreover, some effects of warming on crop yields, increased pest 
occurrences, and the effects of extreme events (e.g., floods, storms, and droughts) 
on agricultural production are already observed [20]. Although farmers have 
long adapted to environmental conditions, the severity of the predicted climate 
changes may be beyond many farmers’ current ability to adapt and improve their 
agricultural production systems and livelihoods [21]. While increased food produc-
tion will have to be done in the face of a changing climate and climate variability 
[22], agricultural and irrigation systems should reduce their carbon cost and its 
contribution to GHG [23]. In order to address this gap, increasing interest has been 
focused on ensuring that both agriculture and irrigation become climate smart 
as a driven factor to ensure food security, improve rural livelihoods, and alleviate 
environmental risks for small-scale farmers [24]. The multi-dimensional aspects 
of agricultural production under climate change are captured by the climate-smart 
agriculture (CSA), an approach in which agriculture is transformed and reoriented 
under the projected scenarios of climate change [25]. The CSA has three concurrent 
objectives: (i) sustainably increasing farm productivity and income, (ii) increasing 
adaptive capacity to climate change, and (iii) reducing GHG emissions [26]. In fact, 
CSA seeks to enhance productivity, water conservation, livelihoods, biodiversity, 
resilience to climate stress, and environmental quality [27]. Despite the recognized 
importance of CSA by the Global Alliance for Climate Smart Agriculture (GASCA) 
and a range of international and national initiatives focused on climate-smart 
technologies (CST), the dissemination and uptake of climate smart technologies, 
tools, and practices is still largely an ongoing, challenging process [28]. At this 
point, some questions should be addressed:

• To what extent is irrigation an enabler of other CSA technologies and under 
what conditions (soil/market/demography/crop/water management, etc.)?
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• Which type of irrigation technology is more climate resilient to extremes 
and long-term change (watershed management, small-scale pumping, small 
reservoirs, etc.)?

• Who benefits and what are the implications for food security and food sover-
eignty if irrigation becomes an integral part of CSA technologies?

According to the FAO-IPCC Expert Meeting on “Climate Change, Land Use 
and Food Security” celebrated in 2017 [29], to secure a resilient food system under 
climate change requires a range of appropriate sustainability metrics to better sup-
port integrated and multidisciplinary scenario analyses combining socio-economic 
and ecological dimensions. Among other measures, experts highlighted (1) the 
need to integrate technical and economic assessments when measuring the impact 
of improved water use efficiency (maximizing “crop per drop”) vs sustainable water 
use (optimized renewable use of water within a river basin) and (2) the promotion 
of participatory research to develop frameworks to manage water, land, agrofor-
estry, and crops under different water demand, supply, and pricing conditions.

4. Irrigation impacts and risks: fixing the environmental limits

According to the Organization for Economic Co-operation and Development 
(OECD), a key challenge for the agriculture sector is to feed an increasing global 
population, while at the same time reducing the environmental impact and preserv-
ing natural resources for future generations. Agriculture can have significant impacts 
on the environment [30]. While negative impacts are serious and can include 
pollution and degradation of soil, water, and air [31], agriculture can also positively 
affect the environment, for instance by trapping GHG within crops and soils [32], 
or mitigating flood risks through the adoption of certain farming practices [33]. In 
recent years, there have been some encouraging signs that the agriculture sector and 
irrigation activities are capable of meeting its environmental challenges. In particu-
lar, farmers have made improvements in the use and management of nutrients [34], 
pesticides [35], energy [36], and water [37], using less of these inputs per unit of 
land and adopting more environmentally beneficial practices, such as conservation 
tillage [38] or soil nutrient testing [39]. Taking into account the urgent challenge of 
matching demand for food for a larger population using the same land footprint, 
the Global Water Forum (an initiative of the UNESCO Chair in Water Economics 
and Transboundary Water Governance) discussed the expansion of irrigated areas 
and their affection to agroecosystems and sustainability [40]. To mitigate that risk 
while responding to increased global water needs, agricultural management options 
could include blending different qualities of water sources [41], matching irrigation 
methods or promoting deficit irrigation [42], and selecting salt tolerant crops [43]. 
Whatever methods and strategies are used to increase food production, they must 
also preserve soil ecological functionality and minimize environmental risks.

5.  Irrigation adaptation: water management and alternative water 
sources

As freshwater resources are under increasing stress in several world regions, 
with a mismatch between availability and demand and temporal and geographi-
cal scales [44], new approaches have been promoted in order to guarantee the 
agricultural activity (by considering social and economic issues) and irrigation 
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sustainability (by addressing environmental issues) in an integrated way. The first 
approach is focused on putting more attention to understanding current water 
management and promoting transition to more adaptive water regimes that take 
into account environmental, technological, economic, institutional, and cultural 
characteristics of river basins. This implies a paradigm shift in water management 
from a prediction and control to a management as a social-learning approach [45]. 
The second approach has been focused on water availability. That is, the general 
decreasing trend in water availability and the need for sustainable use of available 
water resources have led regional and national governments worldwide to seek 
alternative water sources [46], putting special attention to wastewater reuse and 
water desalination. The first one is not a “new” water source, but rather a way to 
waste able to be used for a new water demand. It differs to increase water supply 
measures such as seawater desalination, which in effect includes a new input to 
the water cycle [47]. Both concepts, water reuse and seawater desalination, are 
limited by different key barriers. The first barrier is that their management is more 
complex than the management of conventional water resources, but also their cost 
is more expensive than the cost of “environmental” water sources—rivers—due to 
its conveyance, storage, and distribution in dedicated network infrastructure [48]. 
The second barrier is that both the public and farmers negatively percept alternative 
water sources by highlighting their environmental and health risks instead of their 
benefits (especially in the case of wastewater resources) [49–52]. Furthermore, 
although there are rules and regulations clearly focused on ensuring standards on 
food security, yuck factor currently justify the negative to use alternative water 
resources [53]. It should be noted that addressing the last two barriers are not solely 
related to technical issues, but to social issues. According to this and irrespective 
of scientific and engineering based considerations, farmers’ opposition and public 
rejection has the potential to cause water reuse and water desalination projects to 
fail, before, during, or after their execution [54]. In fact, reuse and desalinated 
water schemes may face public opposition resulting from a combination of preju-
diced beliefs, fear, attitudes, lack of knowledge, and general distrust, which, on 
the whole, is often not unjustified, judging by the frequent (and highly publicized) 
failures of wastewater treatment facilities worldwide.

6. Irrigation challenge: welcome to the Anthropocene

The need for capturing, storing, cleaning, and redirecting freshwater resources 
in efforts to increase water availability even with irregular river flows and unpre-
dictable rainfall has been one of the main challenges of humanity [55]. Resulting 
impacts on water productivity and security schemes (which requires waterworks 
from storage and distribution such as dams, pipelines, canals, and water transfers) 
[56] means that the water cycle has been increasingly controlled by human activities 
and this was the hallmark of the new geological epoch called the “Anthropocene” 
[57]. This term is currently used (and discussed) to encompass different geological, 
ecological, sociological, and behavioral dynamics in recent earth history. The origins 
of the concept, its terminology, and its socio-political implications have also been 
widely discussed across the scientific community [58]. In fact, for some authors, 
the commitment to define a new geological period responds to the hydrocentric 
approach that emerged over the past two decades [59, 60], which focused on manag-
ing water resources as a natural water environment duly protected. Some evidences 
suggest, however, that what are needed are rather hydrosupportive approaches in 
which water management is performed to achieve social goals, which may include, 
among other factors, the ability to sustain environmental functions [61]. The 
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concept, popularized by the Dutch atmospheric chemist and Nobel Prize-winning 
Paul Crutzen, is defined to describe a new geologic era caused by the drastic effect 
of human action on the earth. Taking into account the transdisciplinary nature of 
the concept, the analysis of human-water interactions requires the collaboration 
between natural sciences and the humanities, which must simultaneously explore 
the geophysical, social, and economic forces that shape an increasingly human 
dominated global hydrologic (and hydrosocial) system [62].

According to the report “Adapt Now: A global call for leadership on climate resil-
ience” published on 2019 by the Global Commission on Adaptation, adapting the 
planet’s water resources and systems to the Anthropocene and the new climate reality 
is a formidable task. Furthermore, it is the main opportunity to improve ecosystems 
management, grow eco-friendly economies, boost agricultural efficiencies, and 
planning for natural risks (floods and droughts) from nature-based solutions [63]. In 
fact, 10 years ago, a report from the Food and Agriculture Organization of the United 
Nations (FAO) untitled “Climate change, water and food security” clearly promoted the 
applicability of different adaptation measures that deal with climate variability and 
build upon improved land and water management practices. These measures imply a 
good understanding of the impact of climate change on available water resources and 
on agricultural systems, and a set of policy choices, and investments and manage-
rial changes to address them. Some year later and in order to respond to water-food 
nexus challenges in a coordinated and effective manner, the FAO has developed the 
Global Framework for Action to Cope with Water Scarcity in Agriculture in the Context 
of Climate Change. It calls for urgent action to cope with water scarcity in agriculture 
in the context of climate change and growing competition for water resources. The 
Global Framework for Action recognizes the intricate links between climate change, 
water scarcity, sustainable agriculture, and food security and the importance of 
addressing these holistically. Its objective is to strengthen the capacity to adapt 
agriculture to the impacts of climate change and water scarcity and thereby to reduce 
water-related constraints to achieving the food security and sustainable development 
goals. This framework is based on the premise that a sustainable pathway to food 
security in the context of water scarcity lies in maximizing benefits that cut across 
multiple dimensions of the food-water-climate nexus [64]. This means enabling 
sustainable agricultural production while reducing vulnerability to water scarcity and 
optimizing the climate change adaptation and mitigation benefits [65].

Taking into account both the adaptation capacity of irrigation systems from its 
socio-ecological nature and the requirements for addressing oncoming climate chal-
lenges, this book is the first attempt at bringing several fields together to analyze 
irrigation by combining technical, social, and management approaches.
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