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Abstract

In this work, the normalized interference pattern produced by a coherence
interferometer system was represented as a complex function. The Laplace trans-
form was applied for the transformation. Poles and zeros were determined from this
complex function, and then, its pole-zero map and its Bode diagram were proposed.
Both graphical representations were implemented numerically. From our numerical
results, pole location and zero location depend on the optical path difference
(OPD), while the Bode diagram gives us information about the OPD parameter.
Based on the results obtained from the graphical representations, the coherence
interferometer systems, the low-coherence interferometer systems, the interfero-
metric sensing systems, and the fiber optic sensors can be analyze on the complex
s-plane.

Keywords: coherence interferometer system, Laplace transform, complex
function, pole-zero map, Bode diagram, graphical representations

1. Introduction

Many coherence interferometers systems find practical applications for the
physical parameter measurement, such as are temperature, strain, humidity, pres-
sure, level, current, voltage, and vibration [1–10]. Physical implementation and
signal demodulation are very important for the good measurement. Many
implementations are based on the Bragg gratings, fiber optics, vacuum, mirrors,
crystals, polarizer, and their combinations [11–15]; whereas in the signal demodu-
lation, has been applied commonly the Fourier transform [16–20]. This transform
permits us to know all frequency components of any interference pattern, doing
possible the signal demodulation for the interferometer systems.

The Laplace transform has many practical applications in topics such as control
systems, electronic circuit analysis, mechanic systems, electric circuit system,
pure mathematics, and communications. The linear transformation permits us to
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transform any time function into a complex function whose variable is s ¼ iωþ σ,
where i is the complex operator, ω is the angular frequency, and σ is a real value.
The complex function can represent in the complex s-plane, where their axes
represent the real and imaginary parts of the complex variable s. This complex plane
does feasible the study of dynamic systems, and some applications are the tuning
closed-loop, stability, mathematical methods, fault detection, optimization, and
filter design [21–23]. In addition, the s-plane permits graphical methods such as
pole-zero map, Bode diagrams, root locus, polar plots, gain margin and phase
margin, Nichols charts, and N circles [24].

In dynamic system analysis, pole-zero map and Bode diagrams are two graphical
methods which have many practical applications. Both methods require a complex
function, where the frequency response plays a very important role. In the pole-
zero map, poles and zeros have been calculated from the complex function, and
then, their locations are represented on the complex s-plane. It is usual to mark a
zero location by a circle ⋄ð Þ and a pole location a cross �ð Þ [24]. In the Bode
diagram, the magnitude and phase are calculated from the complex function, and
then, both parameters are graphed. The graphic is logarithmic, and it shows the
frequency response of our system under study.

Under our knowledge, the coherence interferometer system was not studied on
the s-plane, and as a consequence, its interference pattern was not represented over
the pole-zero map or Bode diagrams. In this work, the complex s-plane was used to
represent the output signal of an interferometer system. Applying two graphical
methods, such as pole-zero plot and Bode plot, the optical signal was represented.
Numerically was verified that the pole location and the zero location depend
directly on the optical path difference, while a Bode diagram shows the stability/
instability of the interferometer.

2. Interference pattern

Figure 1 shows a schematic example of a Michelson interferometer [25]. The
interferometer consists of a coherent source, an oscilloscope, a generator function,
a beam splitter 50/50 and a PZT optical element. This interferometric system has

Figure 1.
Michelson interometer system.
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two ways and its difference produces the optical path difference. The first one will
be the reference. Its electrical field is

ER tð Þ ¼ ARe
i ωtþφRð Þ

: (1)

The second one is the signal measurement and its electrical field is

ED tð Þ ¼ ADe
i ωtþφDð Þ

: (2)

AR and AD are amplitudes, ω is the angular frequency, t is the time, and φR and
φD are given by

φR ¼ 2kxR, (3)

and

φD ¼ 2kxD: (4)

xR and xD are the distances traveled by both beams and k ¼ 2πn
λ
is the

wavenumber: λ is the wavelength and n is the refraction index.
From Figure 1, when the photodetector detects the total field, its signal is

ET tð Þ ¼ ARe
i ωtþφRð Þ þ ADe

i ωtþφDð Þ
: (5)

Following, the irradiance E2
T will be

E2
T ¼ ARe

i ωtþφRð Þ þ ADe
i ωtþφDð Þ

h i

ARe
�i ωtþφRð Þ þ ADe

�i ωtþφDð Þ
h i

: (6)

Developing, we will obtain

E2
T ¼ E2

R þ E2
D þ ERED ei ωtþφRð Þe�i ωtþφDð Þ þ ei ωtþφDð Þe�i ωtþφRð Þ

h i

(7)

or

E2
T ¼ E2

R þ E2
D þ ERED ei φR�φDð Þ þ e�i φR�φDð Þ

h i

: (8)

Using the identity cos θð Þ ¼ eiθþe�iθ

2 , Eq. (8) takes the form

E2
T ¼ E2

R þ E2
D þ 2ERED cos φR � φDð Þ: (9)

In terms of intensity, the interferometer system produces the next interference
pattern

IT ¼ IR þ ID þ 2
ffiffiffiffiffiffiffiffiffi

IRID
p

cos φR � φDð Þ: (10)

If both beams have the same intensity IR ¼ ID ¼ Io, the total intensity will take
the form

IT ¼ 2Io 1þ cos φR � φDð Þ½ �: (11)

As seen in Eq. (11), the phase difference is due to the optical path difference
between the two beams. Substituting Eqs. (3) and (4) into Eq. (11), the interference
pattern in terms of intensity can be written as
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IT tð Þ ¼ 2Io 1þ cos
4πn

λ
Δx tð Þ

� �� �

, (12)

where Δx ¼ xR � xD is the length difference between the distances xR and xD.
Basically, the irradiance is an interference pattern which is formed by two func-

tions: enveloped and modulate. The enveloped function is f env ¼ 2Io W
m2

� �

and this

function contains information from the optical source. The modulate function is
given by fmod ¼ 1þ cos 4πn

λ
Δx tð Þ

	 


and it contains information about the interfer-

ence pattern. The modulate function consist of a constant (direct component) and a
trigonometric function (cosine function) whose frequency depends on the optical
path difference.

3. Complex function

Observing Figure 1 and Eq. (11), the phase difference φR � φD is a time-varying
function, and as a consequence, the phase 4πn

λ
Δx tð Þ is also a time-varying function.

In this case, the instantaneous output voltage (or current) of our photodector is

proportional to the normalized optical intensity IT tð Þ
Io
, where Io is the LASER intensity

W
m2

� �

[25]. Mathematically, the normalized interference pattern can be written as

In tð Þ ¼ IT tð Þ
Io

¼ 2 1þ cos ωmtð Þ½ �: (13)

Here, the angular frequency ωm was proposed from the phase 4πn
λ
Δx tð Þ and the

interferometer system has not external perturbations.
To determinate the complex function In sð Þ, we calculate the unilateral Laplace

transform for our last expression

In sð Þ ¼
ð

∞

0

In tð Þe�stdt ¼ 2

ð

∞

0

e�stdtþ 2

ð

∞

0

cos ωmtð Þe�stdt: (14)

Substituting the trigonometric identity cos ωmtð Þ ¼ eiωmtþe�iωmt

2 into Eq. (14), the
complex function can be estimated through

In sð Þ ¼ 2

ð

∞

0

e�stdtþ 2

ð

∞

0

eiωmt þ e�iωmt

2

� �

e�stdt, (15)

or

In sð Þ ¼ 2

ð

∞

0

e�stdtþ
ð

∞

0

eiωmte�stdtþ
ð

∞

0

e�iωmte�stdt: (16)

Solving the integrals, the complex function will be

In sð Þ ¼ � 2

s
e�st

�

�

�

�

∞

0

þ e� �iωmtþsð Þt

� �iωmtþ sð Þ

�

�

�

�

∞

0

þ e� iωmþsð Þt

� iωm þ sð Þ

�

�

�

�

∞

0

: (17)

Evaluating the limits,
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In sð Þ ¼ 2

s
þ 1

s� iωm
þ 1

sþ iωm
: (18)

Using the algebraic procedure, we obtain

In sð Þ ¼ 2

s
þ sþ iωm þ s� iωm

s2 � i2ω2
m

¼ 2

s
þ 2s

s2 þ ω2
m

: (19)

As seen in Eq. (19), the first term was produced by the direct component and the
second term was produced by cosine function. Now, let us represent the complex
function as

In sð Þ ¼ 4s2 þ 2ω2
m

s s2 þ ω2
m

	 

: (20)

Because the Laplace transform was used for the transformation, the normalized
interference pattern can be studied in the time domain and on a complex s-plane.
It is possible since both Eqs. (13) and (20) contain the same information.

4. Graphical representation

In mathematics and engineering, the s-plane is the complex plane which Laplace
transform is graphed. It is a mathematical domain where, instead of view processes
in the time domain modeled with time-based functions, they are viewed as equa-
tions in the frequency domain. Then, the function In sð Þ can be graphed using the
pole-zero map and the Bode diagrams. These graphical representations provide a
basis for determining important system response characteristics.

4.1 Pole-zero plot

In general, the poles and zeros of a complex function may be complex, and the
system dynamics may be represented graphically by plotting their locations on the
complex s-plane, whose axes represent the real and imaginary parts of the complex
variable s. Such graphics are known as pole-zero plots. It is usual to mark a zero
location by a circle ⋄ð Þ and a pole location a cross �ð Þ: In this study, it is convenient
to factor the polynomials in the numerator and denominator and to write the
complex function in terms of those factors

In sð Þ ¼ PN sð Þ
PD sð Þ ¼

4s2 þ 2ω2
m

s s2 þ ω2
m

	 
 , (21)

where the numerator and denominator polynomials, PN sð Þ and PD sð Þ, have
real coefficient defined by the system’s characteristic. To calculate the zeros,
we require

PN sð Þ ¼ 0 ¼ 4s2 þ 2ω2
m: (22)

Solving last polynomial function, the roots (zeros) are localized at

s2 ¼ �ω2
m

2
! s ¼

ffiffiffiffiffiffiffiffiffiffiffi

�ω2
m

2

r

: (23)
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From our last results, the zeros are imaginary values

s1 ¼ i
ωm
ffiffiffi

2
p

s2 ¼ �i
ωm
ffiffiffi

2
p

: (24)

By the similar way,

PD sð Þ ¼ 0 ¼ s s2 þ ω2
m

	 


: (25)

To calculate the roots,

s1 ¼ 0

s2 ¼ iωm

s3 ¼ �iωm

: (26)

Using our previous results presented at Eq. (24) and Eq. (26), we represent a
pole-zero plot for the interference pattern, see Figure 2.

From Figure 2, the interference pattern produces two zeros and three poles.
Both zeros s1 and s2ð Þ and two poles s2 and s3ð Þ are over the imaginary axes and their
locations depend on the angular frequency. The pole s1ð Þ was obtained by the direct
component; our normalized interference pattern and the location are over the
origin.

4.2 Bode diagram

Based on the system theory and system graphic representation, the complex
interference pattern can be represented through the Bode diagram. The graphical
representation permits us to graph the frequency response of our interferometer
system. It combines a Bode magnitude plot, expressing the magnitude (decibels) of
the frequency response, and a Bode phase plot, expressing the phase shift.

Figure 2.
Polo-zero map obtained from the interference pattern.
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As was mentioned, the complex interference pattern can be represented through
the Bode diagram. To represent it, the term s is substituted by the term iω: i is the
complex number and ω is the angular frequency. Such that, Eq. (20) takes the form

In iωð Þ ¼ In ωð Þ ¼
2 2 iωð Þ2 þ ω2

m

h i

iω iωð Þ2 þ ω2
m

h i
: (27)

The magnitude (in decibels) of the transference function above is given by
decibels gain expression:

AvdB ¼ 20 log In iωð Þj j: (28)

Substituting Eq. (27) into Eq. (28), the magnitude will be

AvdB ¼ 20 log
2 2 iωð Þ2 þ ω2

m

h i

iω iωð Þ2 þ ω2
m

h i

�

�

�

�

�

�

�

�

�

�

�

�

: (29)

Applying the logarithm rules, Eq. (29) can express as

AvdB ¼ 20 log 2ð Þ þ 20 log 2 iωð Þ2 þ ω
2
m

�

�

�

�

� 


� 20 log iωj jð Þ

�20 log iωð Þ2 þ ω2
m

�

�

�

�

� 


: (30)

To determine the phase, Eq. (27) will express as

In iωð Þ ¼ �4ω2 þ 2ω2
m

i �ω3 þ ωω2
m

� �
: (31)

Here, i2 ¼ �1 was used. Last expression can be written as

In iωð Þ ¼ �i
�4ω2 þ 2ω2

m

�ω3 þ ωω2
m

� �
: (32)

From Eq. (32), the phase can also be determined.

5. In tð Þ retrieval

As the Laplace transform is a linear transformation, during the transformation:
In tð Þ ! In sð Þ and In sð Þ ! In tð Þ, the information is not lost and then the interference
pattern can be studied in the time domain and on the complex s-plane. In Section 2,
it was explained the transformation In tð Þ ! In sð Þ, and their poles and zeros were
graphed over the pole-zero map. In addition, we developed interference pattern on
the frequency plane, being possible to implement the Bode plot. Following, we
recover the time function from the complex function In sð Þ ! In tð Þ: This section is
didactic since the objective is to verify that the complex function’s information can
also be represented in the time domain.

To recover the time function, we calculate the inverse Laplace transform
through
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In tð Þ ¼ 1

2πi
lim
T!∞

ð

γþiT

γ�iT

In sð Þestds ¼ L�1 In sð Þf g: (33)

The integral complex is in the s-plane; their limits are γ � iT and γ þ iT; the

symbol L�1 �f g ¼ 1
2πi limT!∞

Ð

γþiT

γ�iT

�f gestds indicates the inverse Laplace transform.

Substituting Eq. (21) into Eq. (33), the normalized interference pattern can be
obtained by

In tð Þ ¼ 1

2πi
lim
T!∞

ð

γþiT

γ�iT

4s2 þ 2ω2
m

s s2 þ ω2
m

	 
 estds ¼ L�1 4s2 þ 2ω2
m

s s2 þ ω2
m

	 


( )

: (34)

Applying the partial fraction, Eq. (34) can be expressed as

In tð Þ ¼ 1

2πi
lim
T!∞

ð

γþiT

γ�iT

A

s
þ Bsþ C

s2 þ ω2
m

� �

estds ¼ L�1 A

s
þ Bsþ C

s2 þ ω2
m

� �

: (35)

Here, A, B, and C are constants. To calculate the constant, we use next equality

4s2 þ 2ω2
m

s s2 þ ω2
m

	 
 ¼ A

s
þ Bsþ C

s2 þ ω2
m

! 4s2 þ 2ω2
m ¼ As2 þ Aω2

m þ Bs2 þ Cs (36)

Using Eq. (36), we obtain the next equation system and their solutions as

Aþ Bð Þs2 ¼ 4s2

Cs ¼ 0

Aω2
m ¼ 2ω2

m

!
A ¼ 2

B ¼ 2

C ¼ 0

: (37)

Substituting all constants into Eq. (37), the time function will be

In tð Þ ¼ L�1 2

s

� �

þ L�1 2s

s2 þ ω2
m

� �

: (38)

Laplace transform Inverse Laplace transform

Time function Complex function Complex function Time function

f tð Þ ¼ ku tð Þ F sð Þ ¼ k
s F sð Þ ¼ k

s
f tð Þ ¼ ku tð Þ

f tð Þ ¼ tu tð Þ F sð Þ ¼ 1
s2 F sð Þ ¼ k

s
f tð Þ ¼ tu tð Þ

f tð Þ ¼ tnu tð Þ F sð Þ ¼ n!

sn þ 1 F sð Þ ¼ n!

sn þ 1 f tð Þ ¼ tnu tð Þ

f tð Þ ¼ cos ωtð Þu tð Þ F sð Þ ¼ s
s2 þ ω2 F sð Þ ¼ s

s2 þ ω2 f tð Þ ¼ cos ωð Þu tð Þ

f tð Þ ¼ sen ωtð Þu tð Þ F sð Þ ¼ ω
s2 þ ω2 F sð Þ ¼ ω

s2 þ ω2 f tð Þ ¼ sen ωtð Þu tð Þ

f tð Þ ¼ cosh ωtð Þu tð Þ F sð Þ ¼ s
s2 � ω2 F sð Þ ¼ s

s2 � ω2 f tð Þ ¼ cosh ωð Þu tð Þ

f tð Þ ¼ senh ωtð Þu tð Þ F sð Þ ¼ ω
s2 � ω2 F sð Þ ¼ ω

s2 � ω2 f tð Þ ¼ senh ωtð Þu tð Þ

Note: u tð Þ is the Heaviside function.

Table 1.
Fundamental Laplace transform [24].
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Applying Table 1, the solved inverse Laplace transform is

In tð Þ ¼ 2 1þ cos ωmtð Þ½ �: (39)

Observing both Eq. (13) and Eq. (39), we recover the time function from the
complex function. Thus, we confirm that the complex s-plane permits us to study
the interferometer system through the complex s-plane, using the pole-zero map
and Bode diagrams.

6. Numerical results and discussion

6.1 Results

To verify our proposal, we consider the next interference pattern

IT tð Þ ¼ 2et
2

1þ cos 10tð Þ½ �: (40)

From Eq. (40), the enveloped f env is a Gaussian function f env ¼ 2Io ¼ 2et
2

� 


and the modulate function is fmod ¼ 1þ cos 10tð Þ, where the angular

frequency is ωm ¼ 10 radians
se

� �

. If the interference pattern is normalized as Eq. (12),

we obtain

In tð Þ ¼ IT tð Þ
Io

¼ 2 1þ cos 10tð Þ½ �: (41)

Figure 3 shows the interference pattern and the modulate function.
Calculating the Laplace transform,

In sð Þ ¼ PN sð Þ
PD sð Þ ¼

4s2 þ 200

s s2 þ 100ð Þ : (42)

Using Expressions (24) and (42), the zeros are localized at the points

s1 ¼ i
10
ffiffiffi

2
p

s2 ¼ �i
10
ffiffiffi

2
p

: (43)

Now, using Eqs. (26) and (42), the poles are

s1 ¼ 0

s2 ¼ i10

s3 ¼ �i10:

(44)

Finally, its pole-zero map can observe in Figure 4.
As seen in Figure 4, the zeros s1 and s2ð Þ and the poles s2 and s3ð Þ are over the

imaginary axis. Their positions depend on the angular frequency, and therefore,
their positions change due to the variations of the optical path difference. The pole
s1 is over the origin (of the complex s-plane), and it was generated by the direct
component of our interference pattern.
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To generate the Bode diagram, we consider the next complex function

In sð Þ ¼ 4 iωð Þ2 þ 200

iω iωð Þ2 þ 100
h i

: (45)

Combining Eqs. (28) and (45), the magnitude (in decibels) is

AvdB ¼ 20 log
4 iωð Þ2 þ 200

iω iωð Þ2 þ 100
h i

�

�

�

�

�

�

�

�

�

�

�

�

, (46)

where s ¼ iω was used. Applying the logarithm rules, the magnitude can
calculate as

Figure 3.
(a) The simulated interference pattern. (b) The modulate function.
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AvdB ¼ 20 log 4 iωð Þ2 þ 200
�

�

�

�

� 


� 20 log iωj jð Þ � 20 log iωð Þ2 þ 100
�

�

�

�

� 


: (47)

Using the Scientific MatLab software, we represent its Bode plot, see Figure 5.
Observing Figure 5, the magnitude has a small variation between the intervals

of 100 to 100.7 and from 101 to 102 while the phase is �900. These results confirm
the integrative action indicated by Eq. (47). The interferometric system produces
two asymptotics for the magnitude. First asymptotic is negative, its location is at
the point 100.7 and the phase has transition from �90o to 900. Second asymptotic

Figure 4.
Pole-zero plot determined from the complex modulate function (42).

Figure 5.
Bode diagram obtained from the interference pattern.
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is positive, its location is 101 and the phase has transition from 900 to �90o.
Last interval is between 100.7 and 101. In this case, the magnitude has small varia-
tion again but the phase is constant to 90o. These results confirm that the interfer-
ometer system will have integrative action and derivative action.

6.2 Discussion

Here, a complex function was obtained from the interference pattern produced
by a coherence interferometer. Considering the pole-zero map, poles and zeros
depend directly on the optical path difference of an interferometer. The interfer-
ence pattern generates three poles and two zeros. A pole is over the origin and two
poles are over the points �iωm. The zeros are over the points �i ωm

ffiffi

2
p . Now, consider-

ing the Bode plot, the interferometer can act as an integrator and as a derivator since
the phase can take the value of �90o or 90o, see Figure 5. Both graphical represen-
tations permit to know the optical path difference through the angular frequency
and its dynamic response.

From our analysis and results, it is possible to infer a few key point of our novel
method.

• The complex s-plane permits us to study the interferometric systems.

• The interference pattern can represent as a complex function whose poles are
three and zeros are two.

• Pole-zero map gives information about the optical path difference.

• The pole s1 is over the origin and it was generated by the direct component of
the interference pattern.

• s2 and s3 poles are over the imaginary axis and their position are �iωm, where
ωm is the angular frequency.

• s1 and s2 zeros are over the imaginary axes and their locations depend on the
angular frequency, see Figure 4.

• Bode diagram gives us information about the dynamic response of any
interference pattern.

• Based on the Bode diagram (Phase information), the interferometer can act as
an integrative action and as a derivative action.

Based on our results, the interference pattern can be studied by both graphical
methods. Those graphical representations can be applied to low-coherence inter-
ferometric systems, optical fiber sensors, communication systems, and optical
source characterization.

7. Conclusion

In this work, applying the Laplace transform and inverse Laplace transform, we
confirm that the interference pattern produced by an Interferometer, can study in
the time domain and on the complex s-plane. The pole-zero plot and the Bode
diagram were obtained from the complex interference pattern. Both graphical
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representations give us information about the interferometer. The optical Path
Difference (OPD) information can measure through the pole-zero map and the
behavior of interferometer can understand through the Bode diagram. Therefore,
the interferometers can be studied on the complex s-plane, being possible measures
physical parameters when those interferometers were disturbed. Also, the signal
demodulation can be implemented for the quasi-distributed fiber sensor when the
local sensors are interferometers. Some measurable parameters are temperature,
string, displacement, voltage and pressure.

If a low-coherence interferometer is studied on the s-plane, then the fringe
visibility and the magnitude of coherence grade can be measured.
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