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Chapter

Combination of the CEEM
Decomposition with Adaptive
Noise and Periodogram Technique
for ECG Signals Analysis
Azzedine Dliou, Samir Elouaham, Rachid Latif and

Mostafa Laaboubi

Abstract

The electrocardiogram (ECG) signal is a fundamental tool for patient treatment,
especially in the cardiology domain, due to the high mortality rate of heart diseases.
The main objective of this paper is to present the most optimal techniques that
can link the processing and analysis of ECG signals. This work is divided into two
steps. In the first one, we propose a comparison between some denoising tech-
niques that can reduce noise affecting the ECG signals; these techniques are the
empirical mode decomposition (EMD), the ensemble empirical mode decomposi-
tion (EEMD), and the complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN). In the second one, we make a comparison of three
time-frequency techniques: the Choi-Williams (CW), the periodogram (PE), and
the smoothed pseudo Wigner-Ville (SPWV). Firstly, the obtained results illustrate
the effectiveness of the CEEMDAN in reducing noise that interferes with ECG
signals compared to other denoising methods. Secondly, they show that the
periodogram time-frequency technique gives a good detection and localization of
the main components in the time-frequency plan of ECG signals. This work proves
the utility of the combination of the periodogram and CEEMDAN techniques in
analyzing the ECG signals.

Keywords: ECG, CEEMDAN, periodogram, time-frequency, denoising

1. Introduction

The heart function can be obtained by storing the voltage variations which occur
on some parts of the human body surface [1–3]. The electrocardiogram (ECG) is the
record of those voltage variations over time. This biomedical signal presents a
fundamental tool used in cardiology to detect cardiac diseases. The normal ECG
signal is characterized by a sequence of some well-defined components as P wave,
QRS complex, and T wave [1–3]. ECG signals are most of the time contaminated
by different noise sources, like power-line interference, baseline wander, muscle
noise and motion artifact, and other noises, which in different cases make the
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identification of standard ECG features very difficult and lead to a misjudgment of
patient diagnostic [4]. Consequently, to deal with this problem, a task of removing
noise from ECG signal, as preprocessing step, has become very important.

To tackle this problem, the first part of the current work proposes a comparison
study of the following denoising methods, empirical mode decomposition (EMD),
ensemble empirical mode decomposition (EEMD), and complete ensemble empiri-
cal mode decomposition with adaptive noise (CEEMDAN), to define which one
gives the best results in the case of the normal and abnormal ECG signals.

Huang et al. [5] have introduced the empirical mode decomposition (EMD)
method to analyze nonstationary and nonlinear signals. The EMD major advantage
is that the basic functions are derived from the signal itself; however, the EMD
process presents a mode mixing. To surmount this problem, we resort to ensemble
empirical mode decomposition (EEMD); this denoising method employs EMD to
integrated signals with white Gaussian noise [6]. Even so, signals with added noise
can produce a large number of iterations in the EEMD process, and signal result
holds residual noise after decomposition. These downsides are resolved with a
variant denoising method, called CEEMDAN; this technique achieves an accurate
original signal reconstruction. The CEEMDAN iteration number is minus than half
of the EEMD iteration number [7].

Traditionally, ECG signal, are analyzed in the time domain by skilled physicians.
However, detecting pathological conditions in the time domain is not always evi-
dent [8]. The precision and the exactitude of the diagnosis are in relation with the
cardiologist experience and the concentration rate.

This fact has incentive applying the frequency domain techniques, such as
Fourier transform (FT) analysis [9]. The development of the Cooley-Tukey algo-
rithm made Fourier techniques widely available; this algorithm allows the use of the
computation more efficient [10]. However, the ECG signals are multicomponent
nonstationary signals [8]; accurate time-varying spectral estimates can be
extremely difficult to obtain with Fourier techniques which give only globally
averaged information.

To overcome this problem, time-frequency techniques can be a good solution.
These techniques can reveal the multicomponent nature of such signals and how the
signal spectrum evolves over time [11–13].

Time-frequency techniques can be classified into two major categories: parametric
and nonparametric techniques. Nonparametric time-frequency techniques present a
good solution for analyzing multicomponent nonstationary signal [13–15]. However,
these techniques suffer from the presence of cross-terms [16–18], which can hide the
interesting signal information. A lot of efforts have been made to select the best time-
frequency technique which provides a low degree of cross-term effect [13–18].

The second part of the this work is consecrated to compare three time-frequency
techniques, Choi-Williams (CW), periodogram (PE), and smoothed pseudo
Wigner-Ville (SPWV), to deliver which one furnishes the best results in analysis
terms of this type of biomedical signals.

The signals that will be the subject of this comparative study are extracted from
[19]. These signals are chosen with different pathologies and variant forms in order
to make the study more credible.

This paper is organized as follows: the “Theoretical background” section is
dedicated to present the chosen denoising methods, the three time-frequency tech-
niques, and the selected ECG signals. For a qualitative performance, comparison of
the denoising methods and the time-frequency techniques is performed in the
“Results and discussion” section, accompanied with a discussion of the obtained
results. Finally, this study is concluded with a “Conclusion” section.
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2. Theory background

2.1 Denoising techniques used

2.1.1 Empirical mode decomposition (EMD)

Huang et al. had defined a tool named EMD to decompose adaptively a signal in
a set of AM-FM components [5]. No mathematical foundations or analytical
expressions have been proposed for the technique theoretical study. In various
domains, such as biomedicine, acoustics, seismology, or study of climate phenom-
ena, the EMD has been used successfully in several works to treat real data [20, 21].
These studies had provided satisfaction and good results in signal processing,
especially for nonstationary ones. A nonstationary signal is decomposed
adaptively by the EMD technique into a sum of functions oscillatory band-limited
d(t). These functions, called intrinsic mode functions IMFJ(t), oscillate around
zero. The intrinsic mode functions can express the signal x(t) by the following
expression:

x tð Þ ¼ ∑
k

j¼1
dj tð Þ þ r tð Þ (1)

where r(t) is the low-frequency residue.
Two conditions must be satisfied by each IMFJ(t):

• The zero crossings and extreme signal numbers must be equal all over the
analyzed signal.

• The envelope average defined by signal local extreme must be equal to 0 at any
point. On the one hand, the low-oscillation components are represented by the
higher-order IMFJ(t), and on the other hand, the fast ones are presented by
lower-order IMFJ(t). The IMFJ(t) number is variable for different decomposed
signals and depends on the signal spectral content. The technical aspects of the
EMD implementation are decomposed on five steps given by the following
algorithm [5]:

Step 1: Extraction of the signal x(t) extreme.
Step 2: By the maximum interpolation (resp. minima), an upper envelope

emax(t) (resp. lower emin(t)) is deduced.
Step 3: The half envelope sum is defined as a local average m(t) by the following

expression:

m tð Þ ¼ emax tð Þ þ emin tð Þð Þ=2 (2)

Step 4: Deduction of dJ(t) = IMFJ(t), a local detail by

d tð Þ ¼ x tð Þ �m tð Þ (3)

Step 5: The expression (1) gives the iteration.
The high frequency terms are contained in the first IMF, which also involves the

following terms of decreasing frequency up to forwarding only a low-frequency
residue.
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2.1.2 Ensemble empirical mode decomposition (EEMD)

The ensemble empirical mode decomposition (EEMD) method was proposed to
surpass the mode mixing disadvantage which exists in EMD technique [22]. By
repeating the processes of decomposition, the EMD provides all solutions giving the
true IMF.

The following steps give the EEMD method algorithm:
Step 1: The analyzed signal is added with a predefined amplitude white noise.
Step 2: The resulted signal is decomposed by using the EMD method.
Step 3: The above signal decomposition is repeated with different fixed

amplitude white noises.
Step 4: Calculation of the final results is equal to the ensemble means of the

decomposition results.

As finite number of intrinsic mode functions (IMFs) and a residue, the signal x
(k) is decomposed:

x kð Þ ¼ ∑
n

i¼1
c
_

i
þ r

_
(4)

where n defines the IMF number, c
_

i
is the i-th IMF which is the corresponding

IMF ensemble mean resulted from all of the decomposition processes, and r
_
is the

residue mean obtained from all processes of the decomposition.

2.1.3 Complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN)

2.1.3.1 CEEMD algorithm

Although the mode mixing effect is mitigated by the EEMD method, if the
ensemble number is small, some noise will continue to exist in the corresponding
IMF(s). To deal with this problem and assure a noise-free IMF, a CEEMD algorithm
[7–23] is defined by the following steps:

Step 1: The target signal x(t) is added by positive and negative white noise
ε
+,�(t) in order to create two new signals x+(t) and x�(t):

xþ tð Þ ¼ x tð Þ þ εþ tð Þ

x� tð Þ ¼ x tð Þ þ ε� tð Þ (5)

Step 2: Step 1 is repeated, and by using the EMD algorithm, each of the new
signals x+(t) and x�(t) is decomposed.

Step 3: For the x+(t) and x�(t) data sets, two IMF sets are obtained; (4) by

averaging the IMFi
k in Eq. (11), the decomposed result is calculated, where IMFi

k

defines the i-th IMF of the k-th iteration;

IMF1 nð Þ ¼
1

I
∑
l

i¼1
IMFi

k nð Þ (6)

2.1.3.2 Complete ensemble empirical mode of decomposition with adaptive noise
(CEEMDAN)

On the one hand, using EEMD overcomes the EMD mode mixing problem, but
on the other hand, this technique presents a problem. The number of iterations
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required in EEMD process is higher, added to the residual noise remaining in the
reconstructed signal. So we have a new method called CEEMD; this technique
provides an exact reconstruction of the original signal and gives better separation

of modes with low computation cost. In this method the first mode IMF1 nð Þ is
obtained in the same way as in EEMD. It’s computed over an ensemble of r1(n)

plus different realizations of a given noise obtaining IMF2 nð Þ by averaging.
Here Ej [.] operator provides j

th mode obtained by EMD. wi is the white noise
[7–24].

The steps of CEEMDAN decomposition are as follows:
Step 1: Decompose x nð Þ þ ε0wi nð Þ to obtain the first mode by using:

IMF1 nð Þ ¼
1

I
∑
l

i¼1
IMFi

k nð Þ (7)

where w0 is the added white noise amplitude and ε tð Þ is the white noise with unit
variance.

Step 2: Compute the difference signal:

r1 nð Þ ¼ x nð Þ � IMF1 nð Þ (8)

Step 3: Decompose r1 nð Þ þw1E1 ε
i nð Þ

� �

, to obtain the first mode, and define the
second mode by

IMF2 nð Þ ¼
1

I
∑
l

i¼1
E1 r1 nð Þ þ w1E1 εi nð Þ

� �� �

(9)

For k = 2, …, K, calculate the k-th residue and obtain the first mode. Define the
(k + 1)-th mode as follows:

IMFkþ1 nð Þ ¼
1

I
∑
l

i¼1
E1 rk nð Þ þwkEk εi nð Þ

� �� �

(10)

where E1 is a function to extract the jth IMF decomposed by EMD.
Step 4: Continue this process until residue is no longer feasible. Final residue

R nð Þ ¼ x nð Þ � ∑
k

k¼1

IMFk (11)

So the given signal can be expressed as

x nð Þ ¼ R nð Þ þ ∑
k

k¼1

IMFk (12)

A quantitatively comparison of these three filtering methods’ performance will
be made based on two metrics: mean square error (MSE) and percent root mean
square difference (PRD). The MSE and PRD are used to evaluate the quality of the
information which is preserved in the denoised ECG signal. The MSE and the PRD
are computed as follows:

MSE ¼
1

N
∑
N

n¼1
x nð Þ � x nð Þð Þ2 (13)
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PRD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
n¼1 x nð Þ � x nð Þð Þ2

∑N
n¼1x

2 nð Þ

s

∗ 100 (14)

where x(n) is the original ECG signal, x nð Þ denotes the reconstruction of the
ECG signal, and N is the number of ECG samples used.

2.2 Time-frequency techniques

In time-varying spectral analysis, time-frequency techniques have found a large
number of application [8–15]. There is no single time-frequency representation due
to the signal energy distribution which joints time and frequency coordinates. There
are many time-frequency techniques and many ways to define them. The most
popular time-frequency representation class is called the quadratic or Cohen (1989)
class. The Choi-Williams (CW), the periodgram (PE), and the smoothed pseudo
Wigner-Ville (SPWV) techniques were chosen from the different time-frequency
techniques belonging to this representation time-frequency set, due to its interest-
ing properties.

2.2.1 Choi-Williams distribution (CWD)

The Choi-Williams distribution CWD(t, f) was a significant step in the field of
time-frequency analysis where it opened the way for optimizing resolution with
cross-term reduction [25]:

CWDx t; fð Þ ¼
1

4π2

ð

∞

�∞

ð ð

þ∞

�∞

exp�jθt�jτωþjθuϕ θ; τð ÞAududτdθ (15)

where

Au ¼ x uþ
τ

2

� �

x ∗ u�
τ

2

� �

(16)

and ϕ θ; τð Þ ¼ e
θ2τ2

σ .
The smoothing of the distribution is controlled by the constant σ. If σ ! ∞,

the Choi-Williams distribution (CWD) will simply converge to the Wigner-Ville
distribution, as the kernel goes to 1.

2.2.2 Periodogram technique

The minimum variance estimator, named Capon estimator (CA), does not fix
a model on the signal. At each frequency f, this method seeks a matched filter whose
response is 1 for the frequency f and 0 everywhere else [26]:

CA t; fð Þ ¼ a n; fð ÞHRxa t; fð Þ ¼
1

ZH
f :Rx t½ �

�1:Zf

(17)

where CA(n, f) means the filter Capon output power. By the discrete signal x(n)
sampled at the period te, this filter is excited; a(n, f) = (a0, …, ap) is the filter
impulse response at frequency n; Rx[n] = E{x[n]xT[n]} is the crossed x(n) autocor-
relation matrix of dimension (p + 1)*(p + 1); x[n] = (x(n � p), …, x(n)) is the
selected signal at time n; ZH

f (1, e
2iπft

e, …, e2iπfte
p) is the steering vector; (p + 1) is

6
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the number of filter coefficient and the exponent H for conjugate transpose and the
superscript T for transpose.

The periodogram (PE) is the derivate of the Capon (CA) technique. The spectral
estimator of this method is defined by the following equation [26]:

PE t; fð Þ ¼ ZH
f :Rx:Zf= pþ 1ð Þ2

� �

(18)

By sliding windows, the PE technique can be used. Theoretical criterion does not
exist for selecting window duration and filter order. The parametric technique
frequency response presents different properties according to the signal
characteristics. The time-frequency resolution depends principally of the window
choice. Usually, the PE estimator gives a better frequency resolution.

2.2.3 Smoothed pseudo Wigner-Ville technique (SPWV)

The Cohen class exhibits most nonparametric time-frequency techniques
[16, 17]. The smoothed pseudo Wigner-Ville technique belongs in particular to
this class [16, 17]. To overcome the major weakness of the Wigner-Ville
time-frequency representation, which is the covering of frequential
components, the SPWV has been proposed between the different existing nonpara-
metric time-frequency techniques; for that, the analytical signal xa(t) replaces the
real signal x(t). The following expression defines this signal:

xa tð Þ ¼ x tð Þ þ iH x tð Þf g (19)

where i2 = �1, H{x(t)} is the Hilbert transform of the signal with real
values, x(t).

Expression (20) defines the analytical signal xa(t) spectrum, Fa(k):

Fa kð Þ ¼

2X kð Þ if 0< k <N=2

X 0ð Þ if k ¼ 0, N=2

0 if N=2 < k <N

8

>

<

>

:

(20)

where X(k) represents the original signal x(t) Fourier transform and N is the
point number.

The function Wx(t, f) is the Wigner-Ville distribution related to a signal x(t), of
finished energy. This distribution depends on the temporal (t) and frequential (f)
parameters. The following expression defines this distribution [16, 17]:

Wxa t; fð Þ ¼

ð

þ∞

�∞

xa tþ
τ

2

� �

:x ∗
a t�

τ

2

� �

e�2iπf τdτ (21)

where x*a(t) indicates the complex conjugate of xa(t).
The SPWV is used principally to decrease the problem of the interference

terms happening between the inner components that existed in Wigner-Ville
image. The time-frequency image visibility is reduced by these terms [13, 14]. The
SPWV technique is applied by using two smoothing windows h(t) and g(t). The
utility of these smoothing windows entered into the definition of the
Wigner-Ville technique is to guarantee an interference separate control both in
time (g) and in frequency (h). This representation is defined by the following
expression [16, 17]:
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SPWVx t; fð Þ ¼

ð

þ∞

�∞

h
τ

2

� �2
�

�

�

�

�

�

�

�

ð

þ∞

�∞

g t� uð Þxa uþ
τ

2

� �

x ∗
a u�

τ

2

� �

e�2iπf τdτdu

(22)

where h(t) is a smoothing frequential window and g(t) is a smoothing temporal
window.

We compare also the performance of these three time-frequency techniques by
using the same metrics that were used in the filtering method comparison.

2.3 Biomedical signals

Electrocardiogram signals allow to represent the human heart state. ECG signal
is a fundamental tool commonly used in the heart medical domain to treat patients
suffering from cardiac diseases. By measuring the potential difference between
electrodes posed in well-known places in the patient skin, these signals are usually
obtained. The ECG signal can be single channel or multichannel depending on how
many electrodes are used, one or several. Important knowledge is obtained by
cardiologists about the patient’s heart function only by analyzing a minute feature
of these signals.

The ECG signal has a well-defined P, QRS, and T signatures that represent each
heartbeat. The duration, shape, and amplitude of these waves are considered as
major features in time domain analysis.

Changes in the normal rhythmicity of a human heart may result in different
cardiac arrhythmias, which may be immediately fatal or cause irreparable damage
to the heart when sustained over a long period of time.

The following subsections present the different normal and abnormal ECG
signals chosen for this study. These data were obtained from [19].

2.3.1 Normal ECG

Figure 1 shows the time domain of a normal ECG signal. The sampling
frequency for this normal ECG signal was 128 samples/s and the signal length 8 s.

2.3.2 Atrial fibrillation ECG

Figure 2 shows a length of 4 s of an abnormal atrial fibrillation ECG signal
obtained from a patient with malignant ventricular arrhythmia. The sampling
frequency for this signal was 250 samples/s.

The atrial rate exceeds 350 beats per minute in this type of arrhythmias.
This arrhythmia occurs due to an uncoordinated activation and contraction of
different parts of the atrial which leads to ineffective pumping of blood into
the ventricles.

2.3.3 Ventricular tachyarrhythmia ECG

Figure 3 shows a length of 4 s of a ventricular tachyarrhythmia ECG signal with
a 250 samples/s sampling frequency.

This abnormal signal presents a misalignment of the third QRS complex.

8
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2.3.4 Malignant ventricular arrhythmia ECG

Figure 4 shows a length of 4 s of the time domain ECG signal obtained from a
patient with malignant ventricular arrhythmia. The sampling frequency for this
signal was 250 samples/s. The depolarization wave spreads through the ventricles
by an irregular and therefore slower pathway. The QRS complex is thus wide and
abnormal. Repolarization pathways are also different, causing the T wave to have an
unusual morphology.

Figure 2.
Atrial fibrillation ECG signal.

Figure 1.
Normal ECG signal.
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2.3.5 Supraventricular ECG

Figure 5 shows the time domain ECG signal of a patient with supraventricular
arrhythmia. The sampling frequency for this abnormal ECG signal was 128 samples/
s and the signal length 8 s. The shape of the QRS complex in this signal is abnormal
at the QR part.

Figure 3.
Ventricular tachyarrhythmia ECG signal.

Figure 4.
Malignant ventricular arrhythmia ECG signal.
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These normal and abnormal ECG signals were corrupted with noise CN gener-
ated by the following Eq. [4]:

CN ¼
wbw ∗BW þ wem ∗EMþ wma ∗MA

wbwþ wemþ wma
(23)

where BW is the baseline wander noise, EM is the electromyogram noise, and
MA is the motion artifact. Wbw, wem, and wma define the added noise percentage
of baseline wander, electromyogram noise, and motion artifact noises, respectively.
These parameters have been chosen with the following values wbw = 2, wem = 2,
and wma = 5, which signified that the predominant noise in the noisy ECG signal is
the motion artifact.

3. Results and discussion

3.1 Denoising methods

To evaluate the performance of the three denoising methods, EMD, EEMD, and
CEEMDAN, a set of normal and abnormal ECG signals with different shapes were
chosen. Before applying the proposed denoising methods, the ECG signals were
corrupted with different values of signal-to-noise ratio (SNR); these values are from
�5 dB to 20 dB with a 5 dB step.

Tables 1–5 report the performance of the denoising methods for the five ECG
recordings. These tables present the obtained results of the mean square error
(MSE), the root mean square error (RMSE), and the percent root mean square
difference (PRD) for the following ECG signals, respectively, a normal ECG, an
atrial fibrillation ECG, a ventricular tachyarrhythmia ECG, a malignant ventricular
arrhythmia ECG, and a supraventricular arrhythmia ECG.

Figures 6–10 present the RMSE comparison graphs of the results obtained by
using different denoising methods (EMD, EEMD, and CEEMDAN) to the five

Figure 5.
Supraventricular arrhythmia ECG signal.
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considered ECG signals: normal ECG, atrial fibrillation ECG, ventricular tachyar-
rhythmia ECG, malignant ventricular arrhythmia ECG, and supraventricular
arrhythmia ECG, respectively, at a SNR interval varying from �5 to 20 dB.

Figures 11–15 are presenting the obtained PRD results of the three denoising
methods (EMD, EEMD, and CEEMDAN) to all the chosen ECG signals, normal
ECG, atrial fibrillation ECG, ventricular tachyarrhythmia ECG, malignant ventric-
ular arrhythmia ECG, and supraventricular arrhythmia ECG, respectively, at a SNR
interval varying from �5 to 20 dB.

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 1.179 1.086 192.033 1.011 1.006 177.847 1.047 1.023 180.914

0 0.450 0.671 118.580 0.320 0.565 99.966 0.357 0.597 105.620

5 0.227 0.476 84.191 0.101 0.318 56.303 0.136 0.368 65.094

10 0.136 0.368 65.104 0.032 0.180 31.820 0.064 0.253 44.812

15 0.055 0.235 41.628 0.010 0.101 17.900 0.042 0.205 36.252

20 0.038 0.196 34.604 0.003 0.059 10.359 0.034 0.185 32.695

Table 1.
MSE, RMSE, and PRD of the normal ECG signal.

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 0.780 0.883 179.314 0.768 0.877 177.928 0.767 0.876 177.727

0 0.254 0.504 102.241 0.243 0.493 100.025 0.243 0.493 100.150

5 0.097 0.311 63.129 0.077 0.277 56.300 0.078 0.280 56.837

10 0.042 0.204 41.404 0.025 0.157 31.797 0.026 0.163 33.003

15 0.023 0.153 31.050 0.008 0.087 17.760 0.010 0.099 20.117

20 0.017 0.132 26.796 0.003 0.051 10.373 0.005 0.070 14.131

Table 2.
MSE, RMSE, and PRD of the atrial fibrillation ECG signal.

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 1.590 1.261 177.669 1.590 1.261 177.694 1.589 1.261 177.640

0 0.513 0.716 100.957 0.505 0.711 100.173 0.503 0.709 99.905

5 0.173 0.416 58.550 0.159 0.399 56.224 0.159 0.399 56.195

10 0.057 0.240 33.782 0.051 0.225 31.769 0.050 0.224 31.618

15 0.029 0.169 23.884 0.016 0.127 17.906 0.016 0.127 17.863

20 0.016 0.126 17.685 0.005 0.074 10.403 0.005 0.072 10.151

Table 3.
MSE, RMSE, and PRD of the ventricular tachyarrhythmia ECG signal.
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3.2 Time-frequency techniques

To compare the performance of the three chosen time-frequency techniques,
Choi-Williams (CW), periodogram (PE), and smoothed pseudo Wigner-Ville
(SPWV), we applied these time-frequency methods to ECG signals presented in

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 0.918 0.958 177.481 0.922 0.960 177.902 0.920 0.959 177.673

0 0.291 0.539 99.900 0.291 0.540 99.946 0.291 0.539 99.921

5 0.092 0.303 56.142 0.092 0.304 56.221 0.092 0.303 56.214

10 0.029 0.171 31.672 0.029 0.171 31.692 0.029 0.171 31.628

15 0.009 0.096 17.863 0.009 0.096 17.856 0.009 0.096 17.846

20 0.003 0.056 10.291 0.003 0.055 10.214 0.003 0.055 10.122

Table 4.
MSE, RMSE, and PRD of the malignant ventricular arrhythmia ECG signal.

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 0.137 0.370 179.290 0.135 0.367 177.814 0.135 0.367 177.867

0 0.047 0.217 105.004 0.043 0.206 99.982 0.043 0.207 100.557

5 0.017 0.131 63.466 0.013 0.116 56.276 0.014 0.119 57.717

10 0.008 0.090 43.633 0.004 0.066 31.748 0.005 0.071 34.536

15 0.006 0.079 38.091 0.001 0.037 18.000 0.002 0.047 22.774

20 0.004 0.061 29.538 0.0005 0.021 10.400 0.001 0.037 17.705

Table 5.
MSE, RMSE, and PRD of the supraventricular arrhythmia ECG signal.

Figure 6.
RMSE comparison of the three denoising methods at different SNR levels for the normal ECG signal.
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Figure 7.
RMSE comparison of the three denoising methods at different SNR levels for the atrial fibrillation ECG signal.

Figure 8.
RMSE comparison of the three denoising methods at different SNR levels for the ventricular tachyarrhythmia
ECG signal.

Figure 9.
RMSE comparison of the three denoising methods at different SNR levels for the malignant ventricular
arrhythmia ECG signal.
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Figure 10.
RMSE comparison of the three denoising methods at different SNR levels for the supraventricular arrhythmia
ECG signal.

Figure 11.
PRD comparison of the different denoising methods at different SNR levels for the normal ECG signal.

Figure 12.
PRD comparison of the different denoising methods at different SNR levels for the atrial fibrillation ECG signal.
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Figure 13.
PRD comparison of the different denoising methods at different SNR levels for the ventricular tachyarrhythmia
ECG signal.

Figure 14.
PRD comparison of the different denoising methods at different SNR levels for the malignant ventricular
arrhythmia ECG signal.

Figure 15.
PRD comparison of the different denoising methods at different SNR levels for the supraventricular arrhythmia
ECG signal.

16

Practical Applications of Electrocardiogram



Section 2.3. Before applying the time-frequency techniques, these ECG signals were
corrupted with different values of signal-to-noise ratio, varying from �5 to 20 dB
with a 5 dB step.

Tables 6–10 report the obtained results of the mean square error (MSE), the
root mean square error (RMSE), and the percent root mean square difference
(PRD) after applying the three time-frequency methods (CW, PE, and SPWV) to
the ECG signals, normal ECG, atrial fibrillation ECG, ventricular tachyarrhythmia
ECG, malignant ventricular arrhythmia ECG, and supraventricular arrhythmia
ECG, respectively.

SNR Choi-Williams Periodogram SPWV

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 14.590 3.820 768.692 0.243 0.493 566.139 14.084 3.753 787.649

0 2.247 1.499 338.207 0.029 0.171 254.753 1.910 1.382 332.290

5 0.470 0.686 160.505 0.004 0.067 123.148 0.367 0.606 158.078

10 0.124 0.352 80.891 0.001 0.030 62.893 0.092 0.303 79.802

15 0.037 0.192 42.531 0.0002 0.015 33.357 0.027 0.163 42.003

20 0.011 0.106 22.983 0.0001 0.008 18.122 0.008 0.090 22.712

Table 6.
MSE, RMSE, and PRD of the normal ECG signal.

SNR Choi-Williams Periodogram SPWV

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 13.303 3.647 271.222 0.252 0.502 151.833 13.340 3.652 270.031

0 2.270 1.507 131.224 0.041 0.202 75.307 2.202 1.484 126.352

5 0.478 0.691 67.090 0.008 0.090 39.165 0.458 0.676 64.774

10 0.119 0.345 35.616 0.002 0.044 21.018 0.113 0.335 34.446

15 0.033 0.181 19.362 0.001 0.023 11.501 0.031 0.176 18.746

20 0.010 0.098 10.678 0.0001 0.012 6.367 0.009 0.095 10.345

Table 7.
MSE, RMSE, and PRD of the atrial fibrillation ECG signal.

SNR Choi-Williams Periodogram SPWV

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 65.469 8.091 423.064 1.295 1.138 220.730 65.501 8.093 418.365

0 11.304 3.362 196.830 0.222 0.471 105.949 11.196 3.346 188.372

5 2.351 1.533 97.777 0.046 0.213 53.838 2.327 1.526 93.922

10 0.571 0.756 50.923 0.011 0.105 28.461 0.565 0.751 49.037

15 0.154 0.393 27.357 0.003 0.054 15.431 0.153 0.391 26.384

20 0.045 0.211 14.981 0.001 0.029 8.496 0.044 0.210 14.461

Table 8.
MSE, RMSE, and PRD of the ventricular tachyarrhythmia ECG signal.
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Figures 16–20 illustrate the RMSE comparison results obtained by using the
different time-frequency techniques (CW, PE, and SPWV), at a SNR interval vary-
ing from �5 to 20 dB, to the following signals, respectively: normal ECG, atrial
fibrillation ECG, ventricular tachyarrhythmia ECG, malignant ventricular arrhyth-
mia ECG, and supraventricular arrhythmia ECG.

Figures 21–25 show the comparison PRD results of the three time-frequency
techniques (CW, PE, and SPWV) to the five selected ECG signals.

SNR Choi-Williams Periodogram SPWV

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 25.422 5.042 81.102 0.505 0.710 44.366 25.435 5.043 79.304

0 4.654 2.157 42.667 0.092 0.303 23.665 4.621 2.150 40.959

5 1.020 1.010 23.067 0.020 0.141 12.902 1.013 1.006 22.176

10 0.257 0.507 12.679 0.005 0.071 7.127 0.255 0.505 12.200

15 0.071 0.267 7.038 0.001 0.037 3.967 0.071 0.266 6.775

20 0.021 0.145 3.929 0.0004 0.020 2.218 0.021 0.144 3.783

Table 9.
MSE, RMSE, and PRD of the malignant ventricular arrhythmia ECG signal.

SNR Choi-Williams Periodogram SPWV

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 0.410 0.640 1496.14 0.008 0.087 1300.33 0.407 0.638 1562.32

0 0.071 0.267 618.458 0.001 0.035 541.681 0.068 0.262 618.646

5 0.015 0.124 277.450 0.0002 0.016 244.693 0.015 0.121 277.768

10 0.004 0.062 133.833 0.0001 0.008 118.663 0.004 0.060 134.056

15 0.001 0.033 68.259 2 10�5 0.004 60.743 0.001 0.032 68.391

20 0.0003 0.018 36.175 5 10�6 0.002 32.266 0.0003 0.017 36.250

Table 10.
MSE, RMSE, and PRD of the supraventricular arrhythmia ECG signal.

Figure 16.
RMSE comparison of the three time-frequency methods at different SNR levels for the normal ECG signal.
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Figure 17.
RMSE comparison of the three time-frequency methods at different SNR levels for the atrial fibrillation ECG
signal.

Figure 18.
RMSE comparison of the three time-frequency methods at different SNR levels for the ventricular
tachyarrhythmia ECG signal.

Figure 19.
RMSE comparison of the three time-frequency methods at different SNR levels for the malignant ventricular
arrhythmia ECG signal.
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Figure 20.
RMSE comparison of the three time-frequency methods at different SNR levels for the supraventricular
arrhythmia ECG signal.

Figure 21.
PRD comparison of the three time-frequency techniques (CW, PE, and SPWV) at different SNR levels for the
normal ECG signal.

Figure 22.
PRD comparison of the three time-frequency techniques (CW, PE, and SPWV) at different SNR levels for the
atrial fibrillation ECG signal.
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Figure 23.
PRD comparison of the three time-frequency techniques (CW, PE, and SPWV) at different SNR levels for the
ventricular tachyarrhythmia ECG signal.

Figure 24.
PRD comparison of the three time-frequency techniques (CW, PE, and SPWV) at different SNR levels for the
malignant ventricular arrhythmia ECG signal.

Figure 25.
PRD comparison of the three time-frequency techniques (CW, PE, and SPWV) at different SNR levels for the
supraventricular arrhythmia ECG signal.
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3.3 Discussion

The study was divided to two separate steps. The first part involved a compari-
son between three denoising methods, empirical mode decomposition (EMD) and
its two variants ensemble empirical mode decomposition (EEMD) and complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN). We
note from the obtained results (Tables 1–5 and Figures 6–15) that the EEMD and
the CEEMDAN methods for the most selected ECG signals for the different signal-
to-noise ratio (SNR) values yield the smallest values of MSE, RMSE, and PRD
compared to those obtained by the EMD method. Despite the EEMD method pro-
viding a slight advantage than CEEMDAN for a few degrees of SNR in some ECG
signals, we concluded that the most optimal technique for denoising this type of
biomedical signals is CEEMDAN, especially for the large number of iterations
required in EEMD process.

The second part of study presents a comparison of the different results of the
three time-frequency techniques Choi-Williams (CW), periodogram (PE), and
smoothed pseudo Wigner-Ville (SPWV). These time-frequency techniques were
applied to normal and abnormal ECG signals with different degrees of SNR varying
from �5 dB to 20 dB. We note that the PE technique provides the best results; it
furnishes the smallest values of MSE, RMSE, and PRD than those obtained by the
two other techniques, CW and SPWV.

After these two steps, we concluded that a combination of the two techniques,
CEEMDAN denoising method and PE time-frequency technique, would be ideal for
the ECG signal analysis. The CEEMDAN method will be reserved for the pre-
treatment phase to filter the noise, and in the second phase, the PE technique will be
applied to supply the evolution of the ECG signal fequential components over the
time in order to provide a good diagnosis.

4. Conclusion

The work purpose was to conduct two comparative studies to determine the best
techniques for ECG signal processing. The first one focused on the comparison
between techniques aimed at preprocessing ECG signals, namely, denoising
methods. The second one was to compare some time-frequency techniques that are
intended to analyze these biomedical signals. The obtained results show that, in the
first part, the CEEMDAN presents a high effectiveness in the noise elimination and,
in the second one, the periodogram provides the best solution for analyzing ECG
signals. We conclude that a combination of the CEEMDAN denoising method and
the PE time-frequency technique can be a good issue in analyzing the ECG signals.
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