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Chapter

KLF4-Mediated Plasticity of 
Myeloid-Derived Suppressor Cells 
(MDSCs)
Daping Fan, Samir Raychoudhury and Walden Ai

Abstract

Robustness of tissues refers to their capability to maintain normal functions 
despite perturbation such as injuries. Recent studies suggest a key role of the 
immune system in injury repair. In this process, several immune cell lineages exhibit 
considerable plasticity as they migrate toward the site of damage and contribute to 
repair. For example, myeloid-derived suppressor cells (MDSCs) are a heterogeneous 
group of immature cells and possess phenotypic plasticity in cancer, a pathological 
status that is considered as “wounds that do not heal.” They are characterized by 
their potent ability to suppress immune responses. In cutaneous wound healing, 
MDSCs not only execute their immunosuppressive function to inhibit inflammation 
but also stimulate cell proliferation once they adopt a fate of a totally different cell 
type. At a molecular level, we found that Krüppel-like factor 4 (KLF4), a transcrip-
tion factor with multiple roles in homeostasis and disease development plays a criti-
cal role in regulating MDSCs. In this review, KLF4-mediated plasticity of MDSCs 
and the underlying mechanisms are discussed.

Keywords: KLF4, FSP-1, myeloid-derived suppressor cells (MDSCs), plasticity, 
cancer, wound healing

1. Introduction

KLF4 is a member of the Krüppel-like factor family, a group of zinc finger-
containing transcription factors that are highly homologous with the Drosophila 
Krüppel protein [1–4]. It has important functions in a variety of cellular processes 
that include cell proliferation, differentiation, development, and maintenance of 
normal tissue homeostasis [5]. KLF4 has also been shown to act either as a tumor 
suppressor or an oncoprotein in a context-dependent manner [6–8]. Moreover, 
KLF4 is critical to barrier function of the skin and promotes physiological and 
pathological wound healing [9–11].

MDSCs are bone marrow-derived cells present in bone marrow, spleen, and 
circulation. They are a heterogeneous collection of immature myeloid cells. These 
immature cells possess typical CD11b+Ly6G+ markers in mice with a wider range of 
markers in humans. The main function of MDSCs is their potent ability to suppress 
the host immune responses, especially T-cell proliferation and cytokine production 
[12]. They possess phenotypic plasticity in cancer [13, 14], a pathological status that is 
considered as “wounds that do not heal.” However, while the involvement of MDSCs 
in wound healing has been shown by their recruitment to the wound sites [15], the 
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role of their plasticity in wound healing has not been fully examined. On the other 
hand, two immune cell lineages closely related to MDSCs, namely neutrophils and 
macrophages, demonstrated their phenotypical and functional plasticity in wound 
repair [16]. In addition, we showed that in wound healing MDSCs not only execute 
their immunosuppressive function to inhibit inflammation, but also stimulate cell 
proliferation once they adopt a fibrocyte fate [11]. Collectively, these observations 
support a key role of MDSC plasticity in wound healing leading to tissue robustness, 
though the underlying cellular and molecular mechanisms are not clear.

We recently reported that KLF4 promotes cancer development by regulating the 
recruitment and function of MDSCs [8, 17, 18]. In addition, we found that KLF4 
regulates generation of fibrocytes, emerging effector cells in chronic inflammation 
[19, 20], from MDSCs in cancer [8], wound healing [11], allergic asthma [21]. Given 
the importance of plasticity of macrophages, a highly relevant cell type to MDSCs, 
in tissue repair and regeneration [22], we postulate that KLF4 also regulates myeloid 
plasticity in wound healing. In this review, the role of KLF4 in regulating plasticity of 
MDSCs in wound healing and the underlying molecular mechanisms will be discussed.

2. Plasticity of MDSCs in cancer and wound healing

MDSCs represent a group of heterogeneous monocytes during myeloid cell 
development with a major attribute of immunosuppressive activities. The popula-
tion of these cells increases in a number of conditions associated with chronic 
inflammation, autoimmune diseases, and cancer. These heterogeneous cells are now 
further divided into two major subgroups including polymorphonuclear (PMN) 
and monocytic (M)-MDSCs [23]. Although non-immunosuppressive MDSCs exist 
in tumor-bearing hosts or in conditions of chronic inflammation [24], in which 
MDSCs can be classified as MDSC-like cells (MDSC-LC), demonstration of immu-
nosuppressive activities is required to accurately define MDSCs after the initial phe-
notypical characterization by cell surface markers. In term of immunosuppressive 
activities of MDSCs, different mediators were reported, such as arginases, nitric 
oxide (NO), reactive oxygen species (ROS), indoleamine 2,3-dioxygenase (IDO), 
transforming growth factor-β1 (TGF-β1), and prostaglandin E2 (PGE2) among 
others, depending on specific conditions. As MDSCs are heterogeneous and sup-
press immune functions with different mechanisms, it is not surprising that they 
possess phenotypical and functional plasticity [25], reflecting their adaptation to 
varied environmental conditions. Note that immune cell plasticity could be under-
stood from two different and important senses [16]. The first one is intra-lineage 
cell plasticity, that is, changes in cell function within a given cell lineage. This is also 
known as functional plasticity. The second sense is trans-lineage cell plasticity, that 
is, the switch from one lineage to another. Alternatively, this can be called “transdif-
ferentiation” or “phenotypical plasticity.” We will mainly use “phenotypical plastic-
ity” and “functional plasticity” to discuss MDSC functions in this chapter.

2.1 MDSC plasticity in cancer

Immunotherapies against cancer rely on activated T cells or NK cells to recognize 
and eliminate tumor cells. However, the effector cells in the tumor microenviron-
ment encounter a wide array of factors that limit their activities. MDSC-mediated 
immune suppression represents one of the major mechanisms by which the 
functions of immune effector cells are blocked in cancer. In addition, MDSCs are 
implicated not only in regulating tumor immune response, but also in tumor angio-
genesis, tumor cell invasion, and formation of pre-metastatic niches [26].
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Phenotypical plasticity of MDSCs in cancer could be first understood from 
the capacity of myeloid regulatory cells to convert from each other under certain 
conditions. Such plasticity could explain confusing observations on the role of 
MDSCs in tumor growth or tumor inhibition [13]. For example, while MDSCs are 
well known for their tumor promoting function because of their immunosuppres-
sive activities against T cells, they can be converted to dendritic cells (DCs) in the 
presence of nature killer T (NKT) cells and α-galactosylceramide, leading to an 
anti-tumor immune response against HER2/CT26 tumor [27]. Mechanistically, 
it was proposed that NKT cells interact with MDSCs. This interaction leads to the 
conversion of MDSCs to DCs by increasing gene expression of CD80, CD86 and 
CD70. Consequently, interactions of CD80 and CD70 on newly converted DCs with 
CD28 and CD27 on T cells support these T cell responses to the tumor cells resulting 
in elimination of MDSC-mediated immune suppression [13].

Phenotypical plasticity of MDSCs could also be understood from the existence 
of MDSC subtypes and their differentiation into macrophages under normal and 
abnormal conditions. Because PMN-MDSCs are short lived, M-MDSCs have been 
studied in a more detail. In addition, most studies did not correlate M-MDSCs with 
monocytes expressing high levels of Ly-6C (Ly-6Chi cells). These Ly-6Chi cells are 
frequently referred to inflammatory monocytes. Given their elevated function at the 
tumor site and their potent immunosuppressive activities, Ly-6Chi monocytes in the 
tumor microenvironment most likely represent bona fide M-MDSCs [14]. M-MDSCs 
have been shown to differentiate into tumor-associated macrophages (TAMS) after 
they are recruited to the tumor site [28]. It was shown that the CD45-mediated 
inhibition of STAT3 in MDSCs promotes TAM differentiation [29]. Besides TAMs 
and DCs as we discussed earlier, MDSCs differentiate into fibrocytes, an emerging 
group of cells with multiple functions in inflammation and cancer [19, 20, 30, 31].

Functional plasticity of MDSCs could be understood by their intrinsic features 
especially their immunosuppressive activities. It is known that immunosuppres-
sive activities of MDSCs are mainly detected in tumors, but rarely in other tissues 
or organs including bone marrow or spleen. However, MDSCs in tumor and other 
chronic inflammatory conditions may not always be immunosuppressive. For 
example, in the initiation stage of chronic inflammation or early stage tumors, 
there are cells with MDSC phenotypical markers but without potent immunosup-
pressive activities. Moreover, even in advanced stage tumors, not all cells with a 
MDSC phenotype possess immune suppressive activity. For example, recent studies 
showed that in chronic inflammation, cells with an MDSC phenotype lacking sup-
pressive activity actually contribute to the early stages of tumor inflammation [32]. 
However, the exact nature and the mechanism of how MDSCs acquire their immune 
suppressive activities are not entirely clear.

2.2 Potential role of MDSC plasticity in tissue repair

Though immunologists generally consider the immune system as a system of 
defense, recent studies suggest a key role of the system in tissue robustness, the capa-
bility of an organism to maintain its function and performance despite perturbations 
[33, 34]. One of the major ways by which the immune system contributes to robust-
ness is through immune cell plasticity. Most studies of tissue repair have focused on 
the innate immune system, which may reflect the evolutional conservation of the 
repair-mediated robustness. Although plasticity of γδT cells [35, 36], innate lym-
phoid cells [37], and regulatory T cells [38] is also involved in tissue repair, we will 
mainly discuss the role of neutrophils, macrophages, and MDSCs in the process.

Neutrophils are the major innate cells recruited to the damage site and are 
considered as the first line of defense against infection [39]. However, these cells 
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can switch phenotypes, display distinct subpopulations, and produce a large variety 
of cytokines and chemokines [40]. In tissue repair, neutrophils can show their 
intra-lineage or functional plasticity by pro- or anti-inflammation, during the early 
stage of a typical wound repair. In addition, in an inflammatory and pro-type 2 
microenvironment of a lesion, neutrophils transdifferentiate into antigen present-
ing cells (APCs) [41]. Such transdifferentiation into APCs has also been studied 
in rheumatism, where it could drive sustained inflammation, thereby preventing 
normal repair [42]. Besides neutrophils, macrophages fulfill roles that change over 
the duration of wound healing [43]. Initially they are bactericidal, and voraciously 
phagocytose cell and matrix debris, particularly red blood cells and any spent 
neutrophils at the wound site. These early stage macrophages are called M1 macro-
phages, and they are pro-inflammatory. Later in the repair process, macrophages 
develop the pro-repair capacity. These macrophages are called M2 macrophages, 
and they are anti-inflammatory and pro-reparative. The resting macrophages are 
called M0 macrophages. Not surprisingly, the plasticity of macrophages, namely 
the changeable cellular phenotypes and the range of differentiation and activation 
states, helps to explain the pleiotropic nature of these cells and their complex func-
tions in wound repair [22, 44]. Beside their role in the early inflammatory stage of 
wound healing, macrophages contribute to tissue remodeling in wound healing by 
transdifferentiation, notably into endothelial cells [45, 46], a phenotypical plasticity.

When compared to those of neutrophils and macrophages, the role of MDSCs 
and their plasticity in wound healing are less studied [47]. However, there is ample 
evidence supporting a critical role of MDSC plasticity in repair. For example, as 
a heterogeneous and immature population of myeloid cells, recruited MDSCs at 
wound sites can differentiate into macrophages, DCs, and neutrophils [25]. In 
addition, because of their immunosuppressive function, MDSCs appear to dampen 
inflammation at the early stage but then promote healing after inflammation wanes 
by adopting a fate of fibrocytes [11], a cell type that can further differentiate into 
myofibroblasts that produce extracellular matrix in wound closure [48, 49]. In 
cancer, a pathological condition considered as “wounds that do not heal,” fibrocytes 
are viewed as a subpopulation of MDSCs [50, 51], further highlighting a dynamic 
and plastic nature of MDSCs in wound healing.

3. KLF4-mediated plasticity of MDSCs

3.1  KLF4 promotes cancer development through regulating plasticity  
of M-MDSCs

KLF4 is expressed in many tissues and cells types. Besides in epithelial cells, it 
is also expressed in bone marrow-derived cells and is key to inflammation [52, 53] 
and monocyte differentiation [54, 55]. However, it was not clear whether and how 
immune cell-expressing KLF4 is involved in the development of tumor. It is our 
hypothesis that the overall function of KLF4 depends on its expression in immune 
cells and in the resident epithelial cells. In the following discussion, we will focus on 
the role of MDSC-expressing KLF4 in cancer.

To study the function of KLF4 in MDSCs, we used a 4T1 mammary tumor 
model. This model is unique due to its similar characteristics with human breast 
cancer, particularly the ability to spontaneously metastasize to lungs. Based on 4T1 
cells, we generated stable KLF4 knockdown cells and control cells using siRNA tech-
nology. They were designated as siKLF4 and siCon, respectively. We found that in 
siCon cell-inoculated BALB/c mice tumors were observed as early as Day 9 and the 
tumor size reached to 18.2 ± 1.6 mm in diameter. However, in siKLF4 cell-inoculated 
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mice the primary mammary tumors became visible on Day 14 and the tumor size 
was only 11.3 ± 1.4 mm in diameter [18]. These data were in agreement with our pre-
vious results showing that KLF4 knockdown delayed the onset of mammary tumor 
development and inhibited lung metastasis in immunocompromised NOD/SCID 
mice inoculated with MDA-MB-231 human breast cancer cells [56]. We then tested 
whether MDSCs were involved in KLF4-mediated tumor development. We exam-
ined MDSCs in bone marrow, spleen, and tumor by flow cytometry. We found that 
after implantation of 4 T1 cells, KLF4 knockdown significantly reduced the num-
bers of MDSCs in bone marrow and spleen when compared to siCon counterparts 
[18]. As a critical control, we examined the immunosuppressive activities of MDSCs 
from control cell- and KLF4 knockdown cell-inoculated mice [57, 58]. As expected, 
MDSCs from siKLF4 cell-inoculated mouse inhibited proliferation of CD4+ and 
CD8+ T-cell significantly less than their siCon counterparts. The same assay using 
MDSCs purified from mouse tumors confirmed this observation. Moreover, consis-
tent with higher T cell proliferation upon KLF4 knockdown, the arginase activities 
in MDSCs from siKLF4 cell-inoculated mice were lower when compared to those in 
siCon counterparts. Furthermore, we examined the infiltration of T cells into tumor 
sites by CD3 immunofluorescence staining. We found that there were more T cells 
accumulated in siKLF4 cell-inoculated mice than in siCon group.

Consistently, in a mouse B16-F10 implantation melanoma model, we showed 
that KLF4 deficiency in bone marrow drastically reduced lung metastasis accom-
panied by decreased recruitment of monocytic CCR2+ MDSCs (M-MDSCs) in the 
lungs. Interestingly, bone marrow KLF4 deficiency was linked with significantly 
reduced numbers of fibrocytes and myofibroblasts in metastatic lungs [8]. We 
further performed a cause-effect study to exclude the effect of KLF4-mediated 
development of MDSCs and to test the direct effect of KLF4-regulated fibrocyte 
generation from M-MDSCs on tumor metastasis. We sorted M-MDSC subset from 
the lungs of mice bearing B16-F10 melanoma. They were mixed with B16-F10 
tumor cells and then injected wild-type mice with the mixture intravenously. We 
then induced KLF4 knockout in these mice by tamoxifen injection. In the control 
mice, they only received B16-F10 tumor cells, but were still injected with tamoxifen 
or sunflower seed oil as controls. Mice were sacrificed at Day 7 after tumor cell 
inoculation. We found that no difference was observed in the incidence of lung 
metastasis between the mice administrated with tamoxifen or sunflower seed oil. 
However, in the KLF4−/− and control groups, metastatic nodules in the pulmonary 
were drastically fewer than those in the KLF4+/+ group. The results strongly sug-
gest that KLF4 controls the process in which M-MDSCs facilitate the seeding and 
growth of pulmonary metastatic nodules. We also took advantage of the EGFP 
marker in the transplanted M-MDSCs. We examined MDSC differentiation in the 
lung by immunofluorescence using COL1A1 and α-SMA antibodies. We found that 
although there was no difference in the total number of EGFP+ cells between the 
KLF4+/+ and KLF4−/− group, in KLF4 deficient mice the number of COL1A1+EGFP+ 
cells decreased significantly when compared to that in the KLF4+/+ mice. Similarly, 
α-SMA+EGFP+ cells also decreased in KLF4−/− mice, further supporting our specu-
lation that KLF4 regulates the differentiation of M-MDSCs into fibrocytes and 
myofibroblasts after they are recruited to the lungs in vivo.

3.2  KLF4 deficiency compromised cutaneous wound healing depending  
on functional MDSCs

A pressure ulcer (PU) is defined as an injury caused by unrelieved pressure that 
results in damage to the skin and underlying tissue [59, 60]. They are thought to be 
caused by local tissue ischemia, interstitial and lymphatic blockage, reperfusion injury, 
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and mechanical deformation of cells by compressive forces [61]. PUs are detrimental 
to the patients by prolonging their hospital stay, affecting social life-styles, and 
contributing to negative psychological consequences [62, 63]. Generally, wound heal-
ing includes the early inflammatory phase and the later proliferative and remodeling 
phases [64–66]. However, this process in PU is frequently stalled in the inflammatory 
stage [67]. This is the reason why PU has been considered a chronic wound [68].

We have reported that KLF4 ablation delayed cutaneous wound healing in 
KLF4-CreER/KLF4(flox) [69] and RosaCreER/KLF4(flox) double transgenic 
mice [11], in which KLF4 was knocked out upon tamoxifen induction. To further 
test the possibility that KLF4 deficiency-induced delay of cutaneous wound heal-
ing may be attributed to bone marrow cells, we transplanted bone marrow cells 
from RosaCreER/KLF4(flox)/β-actin-EGFP triple transgenic mice into wild type 
C57BL/6 mice and used these chimeric mice to perform full-thickness wound 
healing experiments. The wound-closure kinetics showed that wound healing was 
significantly delayed upon KLF4 knockout in bone marrow. In addition, M-MDSCs 
but not total MDSCs in the skin wounding bed significantly decreased in the 
KLF4−/− group compared to those in the KLF4+/+ group. By flow cytometric analy-
sis, after we gated EGFP+ cells and analyzed COL1A1+CD45+CD11b+ populations 
to examine bone marrow-derived fibrocytes in the skin wounding bed, we showed 
that fibrocytes decreased in KLF4−/− group compared to those in KLF4+/+ group. 
This finding was further confirmed by immunofluorescent staining of the wound-
ing bed, as demonstrated by significantly reduced numbers of COL1A1/EGFP and 
α-SMA/EGFP co-expressing cells in KLF4−/− group. Moreover, we transplanted 
bone marrow cells from KLF4/EGFP transgenic mice, in which KLF4-expressing 
cells are labeled with EGFP [69], to the wild type mice and performed full thick-
ness wound healing experiments. Four days after the wound placement, the wound 
healing tissues were collected and slides prepared, followed by immunofluorescent 
staining. We found that KLF4 expressing EGFP cells in the wound bed adapted 
elongated morphology and were co-localized with those expressing α-SMA, a 
marker of myofibroblasts that play a critical role in wound healing [70, 71].

KLF4 was highly expressed in M-MDSCs, and we postulated that KLF4 in 
M-MDSCs may directly regulate the cutaneous wound healing. Because of the 
highest expression level of FSP-1 in M-MDSCs among all MDSC subpopulations, 
to test our hypothesis, we used FSP-1-Cre/KLF4(flox) mice to produce PUs [72]. 
The dorsal skin of WT and FSP-1-Cre/KLF4(flox) (KLF4 null) mice were shaved, 
gently pulled up and placed between two cylinders of magnets (12 mm in diameter 
and 5 mm in thickness), producing a compressive pressure of 50 mmHg between 
the two magnets according to the established PU model [72–74]. A single ischemia-
reperfusion cycle (I/R) consisted of a period of magnet placement for 16 h followed 
by a release or rest of 8 h. Three I/R cycles were used in each animal to initiate decu-
bitus ulcer formation. Ulcers were typically formed at Day 3 (at the end of third I/R 
cycle) accompanied by full-thickness loss of skin. To assess the wound healing of 
PU, the detached full-thickness skin (ulcered skin) was removed at Day 3 right after 
the third I/R cycle, and the closure of open ulcer area in each mouse was monitored 
and photographed consecutively for 10 days. We found that 1 day after the ulcered 
skin was removed, the opening areas were increased in both WT and KLF4 null 
mice, probably because of the acute responses. From Day 2 to Day 10, wounds were 
gradually healed in WT mice, but the healing was delayed in KLF4 null mice as also 
indicated by an unclosed wound at Day 10. H&E staining showed an increased 
suprabasal layer of the skin and decreased hair follicle densities. The infiltrated 
lymphocytes were almost doubled in granule tissue of the skin in KLF4 null mice. 
These results suggest an elevated inflammatory status in KLF4 null mice. In agree-
ment with reduced numbers of M-MDSCs and fibrocytes upon KLF4 knockout in 
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bone marrow in our full-thickness wound healing model, these populations were 
also decreased in FSP-1-Cre/KLF4(flox) mice in the PU model. Interestingly, we 
found that the populations of CD11b+Ly6C++ cells, which may represent inflam-
matory monocytes [75], in both blood and skin wounding beds were increased 
when compared to those in wild type mice. This observation is consistent with the 
increased inflammation in KLF4 null mice.

3.3 Mechanisms of KLF4-mediated MDSC plasticity

MDSC plasticity, and in general, myeloid plasticity, is regulated by the local 
microenvironment. These cells are environmental sensors and adapters [25]. In 
tumor, myeloid cells are the most abundant immune cells, and signals within the 
tumor microenvironment instruct these cells to change their dynamics and plastic-
ity. There are many potential factors/mechanisms in these processes, including 
hypoxia, tumor ER stress, exosomes, and tumor-derived soluble factors [76]. In 
the following discussion, we will focus on KLF4-mediated plasticity of MDSCs in 
cancer and wound healing based on our recent studies.

3.3.1 KLF4 regulates FSP-1 in fibrocyte generation from MDSCs

FSP-1, also known as S100A4, is widely accepted as a fibroblast-specific marker 
[77, 78]. Given the fact that FSP-1 is expressed in more than 90% of monocytes of 
the host immune system [79] and that it has a “specific” expression in fibroblasts, 
it is challenging to reconcile the function of FSP-1 at the cellular level between 
these two very different cell types. On the other hand, fibrocytes are bone marrow-
derived progenitor cells that can differentiate into myofibroblasts and promote 
cutaneous would healing and cancer development [20, 51, 80, 81]. Therefore, 
fibrocytes are very good candidates for carrying the expression/function of FSP-1 
from the host immune cells such as MDSCs to fibroblasts.

It has been reported that fibrocytes can be generated from bone marrow-derived 
cells such as MDSCs [82]. We postulated that KLF4 controls MDSC-mediated 
generation of fibrocytes. To test this hypothesis and to examine the underlying 
mechanisms, we isolated spleen cells from KLF4 inducible knockout Rosa26CreER/
KLF4(flox) mice and examined fibrocyte differentiation using an ex vivo assay with 
murine IL-13 and M-CSF [83]. We found that the application of IL-13 and M-CSF 
resulted in 58 ± 7 fibrocytes per 1 × 105 cells (Figure 1A) in the control group. 
However, the same treatment decreased the number of fibrocytes to 5 ± 2 cells per 
1 × 105 splenocytes when KLF4 was knocked out by induction of 5 μM 4-OH tamoxi-
fen (Figure 1B). Furthermore, we examined KLF4 and FSP-1 expression in the 
process of fibrocyte generation by quantitative RT-PCR analysis. As shown in Figure 
1C, both KLF4 and FSP-1 mRNA levels were significantly elevated after the applica-
tion of IL-13 and M-CSF, which was consistent with ex vivo generation of fibrocytes. 
The induction of KLF4 deficiency by 4-OH tamoxifen correlates with a significant 
decrease in FSP-1 expression, suggesting a KLF4-mediated regulation of FSP-1 in 
the process. Since splenocytes are a mixed group of cells, we proceeded to examine 
KLF4 and FSP-1 expression in different subsets of MDSCs from the wild type mouse 
splenic tissues (Figure 1D). Highest levels of KLF4, FSP-1, and CCR2 expression 
were found in the CD11b+Ly6GInt subpopulation of MDSCs (P2 in Figure 1D and E), 
known as M-MDSCs [84, 85]. Note that these M-MDSCs had the highest potential 
for fibrocyte generation (Figure 1F), thus supporting the observation that KLF4 
deficiency led to significant decrease in FSP-1 expression and fibrocyte generation 
(Figure 1A–C) in the MDSC pool. To test whether KLF4 directly regulates FSP-1 
gene expression, we first using two different KLF4 antibodies to perform a chromatin 
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Figure 1. 
KLF4 regulates FSP-1 gene expression in fibrocyte generation. (A) Representative photographs of 
morphological fibrocyte generation from splenocytes in the absence and presence are indicated by red arrows. 
KLF4 deficiency was induced by 4-OH tamoxifen (TAM). (B) Quantification of the data from (A). (C) 
Relative levels of KLF4 and FSP-1 mRNA in fibrocyte generation as assessed by qRT-PCR. (D) Different 
MDSC subsets in mouse splenocytes measured by flow cytometry. (E) Relative levels of KLF4, FSP-1 and 
CCR2 mRNA in different MDSC subsets by qRT-PCR. (F) Potential of fibrocyte generation from MDSC 
subsets in mouse spleen. (G) Left—binding of KLF4 to the FSP-1 promoter as assessed by chromatin 
immunoprecipitation assay using two KLF4 antibodies (KLF4-1 and KLF4-2). IgG was used as a negative 
control. Right—the effect of KLF4 overexpression on FSP-1 promoter activities, as examined by transient 
transfection and dual luciferase assays, *P < 0.05, **P < 0.01.
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immunoprecipitation (CHIP) assay. We found that KLF4 directly bound to the FSP-1 
proximal promoter region (Figure 1G left). Then we constructed a FSP-1 promoter 
luciferase reporter containing ~2.3 kb of the FSP-1 promoter region. By transient 
transfection and dual luciferase assays, we found that KLF4 overexpression resulted 
in three fold increase of the FSP1 promoter activity (Figure 1G right), suggesting a 
direct regulation of FSP-1 by KLF4 at the transcriptional level.

3.3.2 Epigenetic control of MDSC plasticity

The studies of epigenetics, heritable changes to gene expression without changes 
to DNA, are significantly advancing our knowledge of the inflammatory conditions 
[86]. They include DNA modifications mainly methylation, histone tail modifica-
tions, and non-coding RNA-mediated gene regulation. Recent data revealed that 
epigenetic mechanisms could provide novel strategies for modulating wound 
healing [87–89].

Critical functions of KLF4 have been shown in the generation of induced pluripo-
tent stem cells and in cancer development through epigenetic mechanisms [90, 91]. 
In addition, there are numerous reports showing that microRNAs regulate KLF4 [92–
94] or KLF4 regulate microRNAs [95, 96] in varied pathological conditions. KLF4-
mediated DNA methylation have also been reported in hTert promoter [97] and 
methylation of KLF4 promoter is associated with urothelial cancer progression and 
early recurrence [98]. Moreover, the correlation of KLF4 and histone modifications 
has also been reported. For example, histone methyltransferase KMT2D, a frequently 
aberrant epigenetic modifier in various cancer, sustains prostate carcinogenesis and 
metastasis via epigenetically activating KLF4 [99]. From the perspective of MDSCs, 
epigenetic regulation of their differentiation and function is not completely under-
stood. However, there is evidence to indicate the importance of epigenetic regulation. 
Shang et al. showed that long non-coding RNA retinal non-coding RNA3 (RNCR3) 
promotes C/EBP homologous protein (Chop) expression by sponging microRNA 185-
5p during MDSC differentiation [100]. In addition, although histone modifications 
related to myeloid differentiation have been extensively studied [101], currently there 
is no clear indication about epigenetic markers that can discriminate specific MDSC 
subsets. Given the role of KLF4 in epigenetic regulation and the importance of MDSC 
plasticity in cancer and wound healing, it will be very interesting to examine how 
KLF4 is involved in epigenetic control of MDSC subsets or plasticity.

3.3.3 Is there potential molecular plasticity of KLF4 in cancer and wound healing?

KLF4 is a transcription factor with multiple functions in different physiological 
and pathological conditions, notably in cancer development. For example, KLF4 
is well known for its tumor suppressive effect on tumor development in the gas-
trointestinal tract [102]. However, high expression of KLF4 is associated with skin 
cancer and breast cancer development [56, 103, 104], suggesting a tumor promot-
ing function of KLF4 in these tissues. Recently, a tumor suppressive function of 
KLF4 was also reported in breast cancer [105]. These contradictory reports suggest 
context-dependent functions of KLF4 in cancer development [106]. At a molecular 
level, different KLF4 transcripts were found in testis [107], and alternative splic-
ing of KLF4 has been proposed to explain context-dependent functions of KLF4 
[108]. Consistently, an oncogenic KLF4 isoform, named KLF4α, has been found in 
both pancreatic cancer [109] and breast cancer [110]. In line with these observa-
tions, there is dynamic expression of KLF4 isoforms in mouse embryogenesis [111]. 
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Interestingly, another human KLF4 isoform with an additional 34 amino acid-
fragment in the C-terminal region has been reported in leukemia patients [112] 
and in myeloid cells [113], which further supports the importance of differential 
expression of KLF4 in different conditions.

We speculate that the existence of different isoforms of KLF4 and possibly 
relative ratios of these isoforms may explain different functions of KLF4 in cancer 
development and even in wound healing. Because KLF4 is a transcription factor that 
regulates gene expression, different isoforms of KLF4 will have different patterns of 
gene regulation of the downstream targets. In analogy to MDSC dynamics and plas-
ticity, we propose a concept of KLF4 plasticity, which reflects the dynamic nature of 
KLF4 expression under different conditions. It is likely that under one condition, a 
major isoform of KLF4 regulates a group of genes that are responsible for one signal-
ing transduction pathway. This pathway may be linked to one functional or pheno-
typical MDSC group. Under a different condition, another KLF4 isoform dominates 
and regulates a different group of genes and a different signaling pathway. This kind 
of differential regulation may cause the plastic change of MDSCs in cancer or wound 
healing. To confirm our hypothesis, future experiments will be needed to character-
ize the different KLF4 isoforms during the dynamic change of MDSCs. Validation 
of our hypothesis will not only reveal novel molecular mechanisms whereby KLF4 
regulates MDSC plasticity, but also help design KLF4-based therapeutic strategies to 
manipulate MDSC plasticity in the treatment of cancer and wound healing.

4. Conclusion remarks

Studies of immune cell plasticity have recently gained momentum due to their 
novel functions in tissue repair and robustness beside their well-known functions in 
system defense. MDSCs, as a myeloid population with unique functions in tumor and 
tissue repair, are less studied regarding their phenotypical and functional plasticity, 
compared to macrophages and neutrophils. Given the ample evidence showing MDSC 
plasticity in cancer and wound healing, it is essential to elucidate the underlying 
molecular mechanisms in order to harness MDSCs in tissue repair and cancer treat-
ment. In the meantime, we have shown KLF4 as a key molecule to regulate MDSC 
plasticity in cancer, wound healing, and allergic asthma. KLF4-controlled FSP-1 
expression and possible epigenetic alterations are two possible mechanisms underly-
ing MDSC plasticity. In addition, the existence of different KLF4 isoforms prompts 
us to hypothesize that KLF4 isoforms control gene expression of different signaling 
pathways that may contribute to MDSC dynamics and plasticity in both cancer and 
wound healing. In this regard, future studies to characterize different KLF4 isoforms 
during MDSC plastic changes and the relevant signaling pathways will pave the way 
to harness MDSC plasticity in the treatment of cancer and wound healing.
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