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Chapter

Risk Assessment under
Uncertainty
Rosa Maria Arnaldo Valdés,

Victor Fernando Gómez Comendador and Luis Perez Sanz

Abstract

System safety assessment (SSA) has become a standard practice in air traffic
management (ATM). System safety assessment aims, through a systematic and
formal process, to detect, quantify, and diminish the derived risks and to guarantee
that critical safety systems achieve the level of safety approved by the regulatory
authorities. Verification of compliance with the established safety levels becomes
the last but an essential part of the safety assurance process. This chapter provides a
Bayesian inference methodology to assess and evaluate the compliance with the
established safety levels under the presence of uncertainty in the assessment of
systems performances.

Keywords: risk assessment, Bayesian inference, uncertainty, safety compliance

1. Introduction

Safety in aviation, and particularly in air traffic management (ATM), has evolved
to the concepts of safety management and risk management. To achieve and guaran-
tee safety, operators and providers develop and implement safety management sys-
tem (SMS). SMS is a methodical and explicit approach for handling safety that
comprises the required organisational arrangements and accountabilities, as well as
the applicable safety policies and safety procedures. Hazard identification, risk
assessment and risk mitigation have become essential processes within the frame-
work of the SMS. Manufacturers, air navigation service providers (ANSPs) and
operators shall implement a formal risk management process within their SMS.

This process, known as safety assessment (SA), has become a standard practice
in the aviation industry. The global aim of SA is to ensure (by means of formal and
systematic identification, evaluation and management of risks connected with haz-
ards) that the design, production and operation of a system attain the safety levels
settled by the safety regulatory authorities. Safety assessment has become a stan-
dard practice in the aviation industry [1–8].

SA typically implies three major phases that advance alongside the whole
lifespan of the system [9, 10]:

• FHA—Functional hazard assessment

• PSSA—Preliminary system safety assessment

• SSA—System safety assessment
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Figure 1 illustrates the liaisons between these three phases and the system
life cycle.

System definition is the first stage of the system lifecycle. Its purposes are as
follows:

i. To establish initial objectives for the system operating within its pertinent
operational environment

ii. To define the functions to support these objectives

iii. To agree on high-level system requirements and interfaces

From the safety perspective, the first phase in the SA is referred to as functional
hazard assessment (FHA). FHA aims to specify the safety level to be attained by
the system in terms of safety objectives. A safety objective is a qualitative or
quantitative statement that outlines the maximum acceptable frequency or proba-
bility of occurrence for a specific hazard or failure condition. If the hazard is a
system failure, the safety objective will be the maximum allowed rate of failure.
FHA is executed at the start of system design and development before the functions
of the system have been deployed into procedures, equipment, or people
components.

To determined system safety objectives, each function and combination of
functions is assessed by safety analysts to:

Figure 1.
Safety assessment phases alongside and system life cycle.
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• Identify possible hazards and failures modes derived from the system
definition.

• Identify hazard consequences or effects on operations.

• Evaluate the severity of each hazard consequences.

• Determine safety objectives, i.e. the maximum acceptable frequency for each
hazard’s occurrence.

• Assess intended aggregated risk.

The main step in this phase is the identification and classification of failures by
their severity [11, 12] and the definition of safety objectives.

The following lifecycle stage is a system design. At this stage, the system opera-
tion and functions are defined in detail, describing the new system as an assortment
of subsystems or components. In parallel, the risk assessment process develops a
preliminary system safety assessment (PSSA). The objective of the PSSA is to prove
that the designed system architecture can soundly attain the safety objectives stated
during the FHA.

PSSA inspects the system architecture and concludes how failures could cause
the hazards acknowledged in the FHA, it identifies required mitigations to minimise
the risk or even eradicate them, and it specifies these measures in the form of safety
requirements. A safety requirement is a risk measure, which may cover several
different aspects such as operational, human, functional, organisational, procedural
and performance, among others. Therefore, the PSSA process apportions safety
objectives to the system elements and generates safety requirements, and then it
stipulates the level of risk of each system element. The system architecture will
meet the safety objectives established at the system level at the FHA, only if the
architecture components satisfy their safety requirements.

After design, the next steps in the system lifecycle are implementation and
integration. System implementation includes the production of the individual
components, and integration refers to their amalgamation into the system. The
next step, known as transfer into operations, refers to the system deployment, its
on-site installation, its integration as part of an operational environment and the
validation of its performances. During the system operation, maintenance actions,
preventive and corrective, are accomplished in order to preserve the required
safety and service level. Finally, once the system has reached the end of its
operational life, decommissioning stands for the system withdrawal from the
operation.

The last stage of the safety process, the system safety assessment (SSA), is
developed in parallel to system implementation to verify whether the system, as
implemented, achieve an acceptable risk. This means that the envisage mitigations
have been put in place; all safety goals, objectives and requirements have been
satisfied; and the expected level of safety has been successfully attained during the
system operation [13, 14].

SSA monitors the safety performances of the system through its lifetime. It
collects evidence and arguments to confirm that each implemented system compo-
nent satisfies its safety requirements and safety objectives. It is, in the end, a
continuous safety compliance assessment [15].

The SA process, although extended and widely accepted in aviation, is affected
by a series of limitations. The main limitation neither resides in the fact that the
process does not sufficiently considers nor widely capture the inherent uncertainty

3

Risk Assessment under Uncertainty
DOI: http://dx.doi.org/10.5772/intechopen.89445



in every step of the safety assessment. The process has also shown limitations in
dealing with lacking data if when the system is brand new or when there is few
measurable information about its performance. These limitations severely affect the
effectiveness of the last step in the process, the system safety assessment. Addi-
tionally, many times, decision-makers cannot support their safety compliance deci-
sion on objective tools. As a consequence, the process has not enough objectivity or
transparency.

This chapter illustrates that a systematic approach for dealing with uncertainties
in safety compliance evaluation is possible through Bayesian reasoning. Bayesian
inference is a systematic method that helps decision-makers to select a suitable path
in relation to the acceptance of a system against its safety results. It is particularly
useful if under the presence of uncertainty about the actual failure rates of a system
and/or about the consequences of the decision-making process. It could also take
into consideration the predilections of the decision-makers, experts’ understanding
and the consequences of the decisions to be made.

2. System safety assessment limitations

Most safety assessment decisions are taken under the assumption that the mag-
nitudes of the variables and parameters describing the system performance are
equal to their estimates. But, this postulation is valid as long as there is enough data
or precise expertise for an accurate estimation of the system parameters [16]. This
does not happen in many situations, particularly for new systems where only tiny
information is accessible about its performance. Uncertainty also comes from par-
tial or imprecise models or deficient data gathering.

There are several approaches to the concept of uncertainty [17–19]. Uncertainty
is often understood as a “state of knowledge” [20]. Ayyub [21] describes it in terms
of knowledge imperfection due to intrinsic shortages of knowledge acquisition.
Walker [22] expresses uncertainty as “any departure from the unachievable ideal of
complete determinism”. Aven [23] defines it as “….lack of understanding about the
behaviour and outcomes of a system, and discernible magnitudes”.

Although there is a wide variety of definition for the concept of uncertainty, the
common element in all of them is the notion of deficient or partial knowledge of a
system and its performances because of shortages in apparent information and
noticeable data [24, 25].

Uncertainty denotes the nondeterministic conduct of a system and the ambigu-
ous magnitudes of the parameters that define how the systems behave or perform.
It might have an epistemic or aleatory nature. Aleatory uncertainty accounts for the
usual disparity of the physical phenomena. Epistemic uncertainty accounts for the
limited knowledge of the parameters used to describe and explain the system
[26, 27].

Both types of uncertainties are an essential component of any safety assessment.
Uncertainty is introduced through the SA process at several stages. During FHA
uncertainty is related to the modes of failure and the consequences of such failures.
There are also uncertainties related to the extent of the consequences and conse-
quently to the severity assigned of every failure condition. All these uncertainties
are also translated into the assignment of SO—safety objective (the lower frequency
of occurrence admissible for each failure circumstance), and into the derivation of
safety requirements during the PSSA. During the SSA, uncertainties will come from
inaccurate or incomplete medialization or data gathering.

The current safety compliance process acknowledges that multiple potential
failure situations are possible, i.e. a single failure condition or hazard might lead to
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several failure modes and, accordingly, to diverse effects and consequences. This
uncertainty has been traditionally mitigated with the definition of the worst-case
scenario. This way to proceed appears to be too biased and over-conservative,
which lead to excessively conservative safety requirements. The consideration of
worst-case scenario incorporates a sort of guard band to reduce the chance of
accepting a system that does not perform safely enough. This guard band implies a
cost to the system. This could only be evaded if the decision-maker has truthful (i.e.
not conservative neither optimistic) guesses of the uncertainties in the magnitudes
backing up the decisions.

As can be seen, most decision-making processes in safety compliance assessment
during SSA imply judgement of safety performance in a context with uncertainty
[28, 29]. However, the existing SSA process does not comprise a methodical process
to cope with all those uncertainties. Today, SSA is reduced to gathering evidence
and a simple binary comparison of those evidence towards safety goals and
requirements.

3. System acceptance decision under uncertainty

Let us consider that the outcome of the SSA process is a dual pronouncement by
the safety regulator to authorise, or not, the operation of a system. To help decision-
makers in such a judgement, six uncertainties should be computed: two related to
the acceptance of the system, two linked with the nonacceptance of the system and
two linked with the consideration of insufficient information.

An essential step is also to evaluate the decision-maker’s utilities. Decision-
maker’s utilities reflect the consequences, expressed typically as costs, connected to
each of the former listed uncertainties. Determining an individual’s utilities typi-
cally comprises expressing preferences among different options [30–33].

Figure 2 shows a decision diagram for safety assessment. Rectangles stand for
decision node. The decision-maker choices ai are as follows:

a1—Judge the system compliant.
a2—Judge the system as noncompliant.
a3—Judge the information insufficient.
Circles are random nodes representing the “states of nature”, where:
S1 represents that the system is actually compliant.

Figure 2.
Safety assessment decision tree.

5

Risk Assessment under Uncertainty
DOI: http://dx.doi.org/10.5772/intechopen.89445



S2 represents a NOT compliant system.
The uncertainties about the system states P j are dependent on the data “Data”

and information “Inf”available and will be calculated in subsequent sections of the
chapter.

P1 ¼ P S1ð Þ ¼ P S1jData, Infð Þ;

P2 ¼ P S2ð Þ ¼ P S2jData, Infð Þ ¼ 1� P1 (1)

The paths in the tree correspond to the likely outcomes Oij following the actions
by the decision-maker. Six outcomes are considered:

O11: The system is affirmed compliant and it is so.
O12: The system is affirmed compliant though it is not.
O21: The system is affirmed NO compliant while it is truly trustable.
O22: The system is affirmed NO compliant and it actually is so.
O31: Although the system is truly compliant, it is not enough to make a decision.
O32: It is not enough to make a decision.
The rightmost end of the tree indicates the decision-maker’s utilities uij for each

of the six branches. Each pair ai, Sið Þ∈C ¼ AxN determines a consequence of
decision-making. The utility uij cð Þwhich is defined on C ¼ AxN can be expressed as
uij cð Þ ¼ u ai, S j

� �

and defines the preferences of the decision-maker.
If action a1 is taken, larger compliance is preferred over a smaller one:

uða1, S1 a1, S2ð Þ if and only if  S1 ≥ S2 (2)

If action a2 is taken, diverse preferences can be outlined.

a. After a nonacceptance decision, the actual state of the system becomes irrele-
vant. This situation is equivalent to a constant utility for each value of S j, i.e.
u a2, S j

� �

¼ cte ∀ S j ∈N:

b. The combination of a nonacceptance decision and low system compliance is
perceived as an opportunity loss. With a2 decision-maker loses the occasion to
admit a trustworthy system. The utility function u a2, S j

� �

would not be con-
stant any more, and smaller values of the actual system compliance would be
preferred over larger opportunity loss). u a1, S1ð Þ≥ u a1, S2ð Þ if and only of
S1 ≤ S2.

Despite the precise forms of u a1, S1ð Þ and u a1, S2ð Þ, there is an “equilibrium”

value S0 such as

u a1, S0ð Þ ¼ u a2, S0ð Þ ∀Ns j ∈ 0, 1½ � (3)

Therefore, the utility functions must follow the following relations:

u a1, S j

� �

. u a2, S j

� �

 if  S j. S j0

u a1, S j

� �

, u a2, S j

� �

 if  S j, S j0
(4)

A decision-maker should choose the action that maximises the predictable utility
P S j

� �

¼ P S jjData, Inf
� �

. He should choose the action a ∗ such that satisfy the fol-
lowing expression:

EN u a ∗ , Sð Þ½ � ¼ max
ai ∈A,

EN u ai, S j

� �

∗P S j

� �� �

(5)
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4. Quantification of the uncertainties

Safety compliance has been allocated a probability of truth or falsity. This prob-
ability corresponds to the decision-maker uncertainty (or state of knowledge),
about safety compliance being true.

This probability is, namely, the uncertainty on the state of nature of the system
compliance considering previous knowledge and information which is expressed as
P S j

� �

¼ P S jjData, Inf
� �

, where a proposition “Data” stands for data, while “Inf”
stands for background information. This section details how P S j

� �

¼ P SsjData, Infð Þ

are calculated.
The proposed structure subscribes the concept that probability is not a fre-

quency, rather a measure of uncertainty, belief or a state of knowledge. That is,
probability allows doing credible thinking in situations where reasoning with
certainty is not possible.

The result is the predictive probability that the system meets the safety objec-
tives for what it has been designed, considering the envelope of data, knowledge
and information gathered about the system during its design, production
and operation.

To that aim, compliance assessment is redefined as the calculation of the degree
of belief in the fulfilment of the applicable SO by the candidate system. The system
is considered compliance if all the rate of failures λn satisfy their pertinent safety
objective On:

Here the basis of Bayesian theory is applied to obtain an improved estimation of
the system’s components rate of failure λn.

Let us define a set of propositions, each one with a probability stating the grade
of confidence in its states, being these states either TRUE if λn is lower than its
safety objective, On, or FALSE otherwise.

S ¼ Sn : n∈Qf g where Sn ¼
TRUE if   λnj j≤On

FALSE otherwise

(

(6)

This grade of confidence P SnjData, Infð Þ is denoted as a conditional probability.
Each conditional probability P SnjData, Infð Þ mirrors our grade of assurance in λn

satisfying its mandatory safety objective, On.
The grade of assurance in the system compliance P CsjData, Infð Þ will be

evaluated as the intersection of the belief of compliance of all particular failure
conditions:

P S jjData, Inf
� �

¼ ⋂N
n¼1P S jjData, Inf

� �

¼ P S1jData, Infð Þ⋂P S2jData, Infð Þ⋂…⋂P SnjData, Infð Þ
(7)

Uncertainties about the magnitude of the variables that govern the stochastic
performance of the system are random variables which follow particular probability
functions (pdfs). Consequently, rates of failure λn become, therefore, also random
variables. Therefore, safety assessments are reduced to the determination of the
failure rate pdfs.

For straightforwardness, we adopt probability function for the failure rate of
a component, λn, conditional upon one or more unknown parameters θ. Other
indicators could be selected instead, for example, the delay time between defect
and failure or the number of failures in a period of time, but the theory hereafter
applies equally.
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The corresponding probability function is indicated as λnjθð Þ. To some extent
previous knowledge about the expected values of λn should impact decisions about
the system acceptability. However, θ is commonly unknown, and f λnjθð Þ is not
known unambiguously, so it cannot be used directly in making such decisions about
system acceptance. f λnjθð Þ is usually approximated by estimating θ over data and
supposing the parameters are equal to estimates.

Maximum likelihood method is applied [34, 35]. Eq. (24) expresses the likeli-
hood function:

L θ; Dð Þ∝
Y

n

i¼1

p λijθð Þ∝
Y

n

i¼1

f λijθð Þ (8)

The Maximum likelihood estimate (MLE) is

L θ̂; Data
� �

≥L θ; Datað Þ ∀ θ 6¼ θ (9)

In practical applications, previous inequality is usually strict, and a single
maximum exists. The classical approach to inference now substitutes θ by the
first-order approach. In this case, as few data are available; this approximation
would be very poor:

f λnjθð Þ≈ f λnjθ̂
� �

(10)

Decisions concerning compliance assessment, which seek for unknown values of
λn, might alternatively be resolved conditional upon the observation, information,
data or available knowledge, rather than on the unknown parameters. This allows to
base decisions upon f λnjData, Infð Þ instead on f λnjθð Þ, provided that Data and Inf
are known.

The conditional probability distribution P λnjData, Infð Þ describes then the
uncertainty in the parameter under study (λn) considering observed data “Data”
and the prior understanding of the system Inf. It denotes the sample of the rate of
failure distribution, conditional upon the observed data, and it is exactly the mag-
nitude required for the decision-making process, with no approximation.
P λnjData, Infð Þ is calculated using the Bayes’ theorem:

P λnjata, Infð Þ ¼
P Datajλn, Infð Þ � P λnjInfð Þ

P DatajInfð Þ
(11)

where:
P λnjData, Infð Þ is referred to the posterior distribution. All inference regarding

λn will be derived from the posterior distribution.
P Datajλn, Infð Þ corresponds to the likelihood distribution, at times mentioned as

sampling.
P λnjInfð Þis the prior distribution.
P DatajInfð Þ is the marginal probability.
Epistemic uncertainty is incorporated through the prior distribution P λnjInfð Þ. It

synthesises the level of confidence in our model parameters λn, and it expresses
experts’ preliminary state of information or knowledge. The prior distribution
might be informative or non-informative.

The first ones deliver important information about the unquantified parameters.
They are the way to capture past data and expert knowledge into a probability
distribution and incorporate them into the model. Conjugate priors streamline the
assessment of the preceding equation and permit analytical resolutions. However,
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prior can follow any distribution, and the preceding equation can be solved using
numerical integration.

Non-informative priors are sometimes named as flat priors, vague priors, diffuse
priors or reference priors. They are used when there is just very little background
information about the parameters.

Most of the times, the Bayesian method requires numerical simulation because
of the complexity of the distributions involved. That implies that the solution of
Eq. (27) has to be obtained by numerically Markov chain Monte Carlo (MCMC)
simulation [36, 37].

The resulting posterior distribution, P λnjData, Infð Þ, stands for updated knowl-
edge about λn and, as stated before, will be the foundation for all inferential con-
clusions regarding λn:

The distribution P Datajλn, Infð Þ signifies the aleatory uncertainties or change
naturally included in data and models. It also accounts for inefficiencies in the data
assembly as well as inadequacies in the models. Likelihood function most commonly
employed in system safety assessment are binomial, Poisson or exponential ones
[38–40].

And finally P DatajInfð Þ is just a normalisation factor.
P SnjData, Infð Þ can be obtained from the posterior distributions P λnjData, Infð Þ

through the marginalisation of the parameter λn, as shown in the next equation:

P CsnjData, Infð Þ ¼

ð

Ʌ

P On, λnjData, Infð Þ:dλ ¼
ðOn

O
P Onjλnð ÞP λnjData, Infð Þ: dλ

¼

ðOn

O
P Onjλnð Þ

P Datajλn, Infð Þ � P λnjInfð Þ

P DatajInfð Þ
: dλ

(12)

Eq. (12) calculates an average of the model uncertainty through the integration
of the sampling P Onjλnð Þ through the posterior distribution P λnjInfð Þ [36]. The
outcome is a predictive probability of a failure rate λn meeting its safety objective.

5. Conclusions

The safety assessment is a methodical and prescribed procedure applied by
ANSP to find, quantify and diminish risks in ATM systems and ensure that new
services or systems reach assurance levels required by the aviation authorities. The
assessment of safety compliance against approved safety levels becomes the last but
essential part of the safety assurance process.

Nevertheless, this method is still exhibiting a series of limitations, the most
important being its failure to cope with the uncertainty intrinsic in each step of the
assessment and its lack of ability to deal with the lack of data in early stages of
operation, and only small measurable information about its performance can be
accessed. While most choices in the safety assessment involve a trial under uncer-
tainty, the present system safety assessment process does not embrace any
organised process or help to address all these uncertainties. So, the process misses
the simplicity and impartiality essential for regulatory decision-making.

This chapter discussed the mathematical grounds for a cohesive Bayesian infer-
ence methodology, to assess and evaluate compliance with system safety goals and
requirements, taking into account the uncertainty in performances. This work pro-
poses a Bayesian structure that assesses safety compliance as a decision-making
issue taken place under the presence of uncertainty.
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Bayesian approach enables more comprehensive management of the uncer-
tainties inherent to all system safety assessments and improves impartiality and
accepting of compliance decisions and judgements, particularly in the cases where
uncertainty is a limitation. This method might be applied to any safety or regulatory
compliance process. It might be directly implemented by either operator or manu-
facturers, as well as by safety oversight authorities.

This work aims to increase the use of statistical Bayesian methods in the ground
of aviation safety compliance assessment, up to a level equivalent to the one
achieved so far in other critical industries, such space or nuclear power industries.
The method offers a significant improvement to how ANSP presently take on
regulatory safety compliance. Whereas the theoretical grounds are not new, their
application to aviation signifies a noteworthy progression over current practices.
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