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Chia-Feng Juang 
Department of Electrical Engineering, National Chung-Hsing University 

Taiwan, R.O.C. 

1. Introduction     

Fuzzy systems (FSs) have been extensively applied to automatic control, pattern recognition, 
and decision analysis. However, a common bottleneck is encountered in the derivation of 
fuzzy rules, which is often difficult, time consuming, and relies on expert knowledge. To 
automate the design of FSs, many metaheuristic learning algorithms have been proposed. 
One major optimization category uses Swarm Intelligence (SI) model (Kennedy et al., 2001). 
The SI technique studies collective behavior in decentralized systems. Its development was 
based on mimicking the social behavior of animals or insects in an effort to find the optima 
in the problem space. SI models are initialized with a population of random solutions. One 
well-known SI model is particle swarm optimization (PSO) (Kennedy & Eberhart, 1995). 
Many modified PSO models have been proposed and successfully applied to different 
optimization problems (Clerc & Kennedy, 2002; Bergh & Engelbrecht, 2004; Ratnaweera et 
al., 2004; Juang, 2004; Kennedy & Mendes, 2006; Parrott & Li, 2006; Chen & Li, 2007). FS 
design using PSO has also been proposed in several studies (Juang, 2004; Chatterjee et al., 
2005; Juang et al., 2007; Araujo & Coelho, 2008; Sharma et al., 2009).  
Another well-known SI is ant colony optimization (ACO) (Dorigo & Stutzle, 2004). The ACO 
technique is inspired by real ant colony observations. It is a multi-agent approach that was 
originally proposed to solve difficult discrete combinatorial optimization problems, such as 
the traveling salesman problem (TSP) (Dorigo et al., 1996; Dorigo & Gambardella, 1997). In 
the original ACO meta-heuristic, artificial ant colonies cooperate to find good solutions for 
difficult discrete optimization problems. Different ACO models have been applied to FS 
design problems (Cassillas et al., 2000; Cassillas et al., 2005; Mucientes & Casillas; 2007;  
Juang & Lo, 2007; Juang et al., 2008; Juang & Lu; 2009). In  (Cassillas et al.,2000; Mucientes & 
Casillas; 2007;  Juang et al., 2008; Juang & Lu; 2009), the FS input space was partitioned in 
grid type with antecedent part parameters of an FS manually assigned in advance. In (Juang 
& Lo, 2007), the FS input space was flexibly partitioned using a fuzzy clustering-like 
algorithm in order to reduce the total number of rules. For all of these studies, the 
consequent part parameters were optimized in discrete space using ACO. Since only the 
consequent part parameters are optimized, and the optimization space is restricted to be 
discrete, the designed FSs are unsuitable for problems where high accuracy is a major 
concern. 

Source: Fuzzy Systems, Book edited by: Ahmad Taher Azar,  
 ISBN 978-953-7619-92-3, pp. 216, February 2010, INTECH, Croatia, downloaded from SCIYO.COM
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Several studies on the combination of PSO or ACO with other optimization algorithms have 
been proposed in order to improve the performance of the original optimization model.  In 
(Juang, 2004), a hybrid of GA and PSO, called HGAPSO, was proposed. In HGAPSO, new 
individuals are created not only by PSO but also by the crossover and mutation operations 
of a GA. In (Fan et al., 2004; Juang & Hsu, 2005), the simplex method was introduced into 
PSO. In (Ling et al., 2008), a hybrid of PSO with wavelet mutation was proposed.  To apply 
the ACO technique to solve continuous optimization problems, several studies on the 
combination of ACO with other continuous optimization methods have been performed 
(Feng & Feng, 2004; Ge et al., 2004). An ACO followed by immune operation for 
optimization in a continuous space was proposed in (Feng & Feng, 2004).  The incorporation 
of a deterministic searching algorithm (the Powell method) into ACO for continuous 
optimization was proposed in (Ge et al., 2004).  
This chapter studies the combination of PSO and ACO for FSs design. One problem of PSO 
in FS design is that its performance is affected by initial particle positions, which are usually 
randomly generated in a continuous search space. A poor initialization may result in poor 
performance. Searching in the discrete-space domain by ACO helps to find good solutions. 
However, the search constraint in a discrete-space domain restricts learning accuracy. The 
motivation on the combination of ACO and PSO is to compensate the aforementioned 
weakness of each method in FS design problems. Two combination approaches, sequential 
and parallel, for PSO and ACO proposed in (Juang & Lo, 2008; Juang & Wang, 2009) are 
described and discussed in this Chapter.  
This chapter is organized as follows. Section 2 describes the FS to be designed. The rule 
generation algorithm and rule initialization are also described in this section. Section 3 
describes PSO and how to apply it to FS design. Section 4 describes ACO and how to apply 
it to FS design. Section 5 describes the sequential combination of PSO and ACO for FS 
design. Section 6 describes the parallel combination of PSO and ACO for FS design. Finally, 
Section 7 draws conclusions.  

2. Fuzzy systems 

2.1 Fuzzy system functions 

This subsection describes the FS to be designed. The FS is of zero-order Takagi-Sugeno-

Kang (TSK) type. That is, the thi  rule, denoted as 
iR , in the FS is represented in the 

following form: 

 iR : If  
1
( )x k  is 

1iA  And … And ( )
n

x k  is 
inA , Then ( )u k  is ia    (1) 

where k  is the time step, 1( ),..., ( )nx k x k  are input variables, ( )u k  is the system output 

variable, ijA  is a fuzzy set, and ia  is a crisp value. Fuzzy set ijA  uses a Gaussian 

membership function 

 
2

( ) exp{ ( ) }
j ij

ij j

ij

x m
M x

b

−
= −   (2) 

where ijm  and ijb  represent the center and width of the fuzzy set ijA , respectively. In the 

inference engine, the fuzzy AND operation is implemented by the algebraic product in 
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fuzzy theory. Thus, given an input data set 
1( , , )nx x x=j … , the firing strength ( )i xφ j  of 

rule i  is calculated by 

 

2

11
( ) ( ) exp

n n j ij

i ij j jj
ij

x m
x M x

b
φ

==

⎧ ⎫⎛ ⎞−⎪ ⎪= = − ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑∏j

  (3) 

If there are  r  rules in an FS, the output of the system calculated by the weighted average 
defuzzification method is  

 1

1

( )

( )

r

i ii

r

ii

x a
u

x

φ

φ
=

=

=∑
∑

j

j ,  (4) 

where ia  is the rule consequent value in (1). There are a total of (2 1)D r n= +  free 

parameters in an FS, all of which are optimized using the combination of PSO and ACO 

algorithms. 

2.2 Rule generation and initialization 

Most studies on SI-based FS design algorithms determine the number of rules by trial and 
errors and assign the initial FS parameters randomly and uniformly in the domain of each 
free parameter. The subsection describes one promising rule generation and initialization 
algorithm based on the fuzzy clustering-like approach that has been used in an SI algorithm 
(Juang et al., 2007). It is assumed that there are initially no rules in the designed FS. The rule 
generation method generates fuzzy rules online upon receiving training data. Rules are 
generated in order to ensure that at least one rule is activated with a firing strength larger 

than a pre-defined threshold (0,1)thφ ∈  for each input x
j

. Geometrically, as Fig. 1 shows, this 
  

(3)x

input 1

input 2

I thφ φ≤

Rule 1

Rule 2

(2)x

(1)x

(3)x

input 1

input 2

I thφ φ≤

Rule 1

Rule 2

(2)x

(1)x

 

Fig. 1. Distributions of input data, generated fuzzy rules that properly cover the data, and 
initial shapes of the corresponding fuzzy sets in each input dimension.  
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threshold ensures that each input data is properly covered by a rule in the input space. 

According to this concept, the firing strength ( )i xφ j  in (3) is used as the criterion to decide if 

a new fuzzy rule should be generated. For each incoming piece of data ( )x k
j

, find 

 
1

arg  max ( ( ))i
i r

I x kφ
≤ ≤

= j
  (5) 

where  r  is the number of existing rules at time t . If 
I thφ φ≤  or r =0, then a new fuzzy 

rule is generated to cover ( )x t
j

 
and 1r r← + . A smaller 

thφ  value generates a smaller 

number of rules. The generation of the r th rule also generates the r th new fuzzy set in 

each input variable. That is, the number of fuzzy sets in each input dimension is equal to the 

number of fuzzy rules in the designed FS. To reduce the number of fuzzy sets in each input 

dimension, the fuzzy set generation criterion proposed in (Juang et al., 2007; Juang & Wang, 

2009) can be further employed though it adds computation cost. For each newly generated 

fuzzy rule, the corresponding center and width of Gaussian fuzzy set 
rj

A  in each input 

variable are assigned as follows: 

 ( ),  rj j rj fixm x k b b= = , 1,...,j n=   (6) 

where 
fixb  is a pre-specified constant value. Since the centers and widths of all fuzzy sets can 

be further tuned by PSO, all of the initial widths are simply set to the same value of 
fixb .  

3. Particle swarm optimization (PSO) for FS design 

This section first describes the basic concept of PSO. The application of PSO to optimize the 

generated FS in Section 2 is then is then described. The swarm in PSO is initialized with a 

population of random solutions (Kennedy & Eberhart, 1995). Each potential solution is 

called a particle. Each particle has a position, which is represented by a position vector 
i

s
j

. A 

swarm of particles moves through the problem space, with the velocity of each particle 

represented by a velocity vector 
i

v
j

. At each time step, a function  f  is evaluated, using is
j

 

as an input. Each particle keeps track of its own best position, which is associated with the 

best fitness it has achieved so far, in a vector 
i

p
j

. Furthermore, each particle is defined 

within the context of a topological neighborhood that is made up of itself and other particles 

in the swarm. The best position found by any member of the neighborhood is tracked in g

ip
j

. 

For a global version of PSO, g

ip
j

 is defined as the best position in the whole population. At 

each iteration t , a new velocity for particle i  is obtained by using the individual best 

position, ( )
i

p t
j

, and the neighborhood best position, ( )g

ip t
j

: 

       1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( )),g

i i i i i iv t wv t c p t x t c p t x tφ φ+ = + ⋅ − + ⋅ −
j jj j j j j j

  (7)  

where w  is the inertia weight, 
1

c and 
2

c  are positive acceleration coefficients, and 1φ
j

 and 

2φ
j

are uniformly distributed random vectors in [0,1], where a random value is sampled for 

each dimension. The limit of 
i

v
j

 in the range max max[ , ]v v−j j
 is problem dependent. For some 

problems, if the velocity violates this limit, it is reset within its proper limits. Depending on 

their velocities, each particle changes its position according to the following equation: 

 ( 1) ( ) ( 1).i i is t s t v t+ = + +j j j
  (8) 
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Based on (7) and (8), the particle population tends to cluster around the best.  

The use of PSO for FS design, i.e., optimization of all free parameters in an FS, is described 

as follows. For the FS in (1) that consists of n  input variables and r  rules, all of its free 

parameters can be described by the following position vector 

 11 11 1 1 1 1 1[ , , , , , ,  , , , , , , ] D

n n r r rn rn rs m b m b a m b m b a= ∈ℜj A A A A   (9) 

After the rule generation and initialization process described in Section 2, the initial 

antecedent part parameters are determined. Based on the solution vector representation in 

(9) and the antecedent part parameter initialization in (6), the i th solution vector 
i

s
j

 is 

generated: 

 

1 2

11 11 11 1 1 1 1

1 1 1

[     ]

  [ , , , , , , ,

         , , , , , ]

= … …

= + Δ + Δ + Δ + Δ

+ Δ + Δ + Δ + Δ

j

A AA

A

i i i iD

i i i i

fix n n fix n

i i i i

r r fix r rn rn fix rn r

s s s s

m m b b m m b b a

m m b b m m b b a

  (10) 

where ijmΔ  and ijbΔ  are small random numbers. The parameter ia  is a random number 

randomly and uniformly distributed in the FS output range. The evaluation  function f  for  

a particle is
j

 is computed according to the performance of the FS constituted of the 

parameters in (10).  

4. Ant colony optimization (ACO) for FS design 

ACO is a meta-heuristic algorithm inspired by the behavior of real ants, and in particular 
how they forage for food (Dorigo & Caro, 1999; Dorigo &  Stutzle, 2004). It was first applied 
to the traveling salesman problem (TSP). In ACO, a finite size colony of artificial ants is 
created. Each ant then builds a solution to the problem. While building its own solution, 
each ant collects information based on the problem characteristics and on its own 
performance. The performance measure is based on a quality function F(·). ACO can be 
applied to problems that can be described by a graph, where the solutions to the 
optimization problem can be expressed in terms of feasible paths on the graph. Among the 
feasible paths, ACO is used to find an optimal one which may be a locally or globally 
optimal solution. The information collected by the ants during the search process is stored in 
the pheromone trails, τ , associated to the connection of all edges. These pheromone trails 

play the role of a distributed long-term memory about the whole ant search process. The 
ants cooperate in finding a solution by exchanging information via the pheromone trials. 
Edges can also have an associated heuristic value, η , representing a priori information about 

the problem instance definition or run-time information provided by a source different from 
the ants. Ants can act concurrently and independently, showing a cooperative behavior. 
Once all ants have computed their tours (i.e. at the end of the each iteration), ACO 
algorithms update the pheromone trail using all the solutions produced by the ant colony. 
Each edge belonging to one of the computed solutions is modified by the amount of 
pheromone that is proportional to its solution value. The pheromone trail may be updated 
locally while an ant builds its trail or globally when all ants have built their trails.  

Let ( )ij tτ  be the pheromone level on edge ( , )i j  at iteration t , and 
ijη  be the 

corresponding heuristic value. The probability that an ant chooses j  as the next vertex 

when it is at the vertex i  at iteration t  is given by 
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( )

( ) ( )
, if ( )

( ) ( )( )

0 otherwise

β

β

τ η
τ η

∈

⎧
∈⎪

= ⎨
⎪
⎩

∑
ij ij

iz izij z J i

t t
j J i

t tp t   (11) 

where ( )J i is the set of vertices that remain to be visited by the ant, β  is a parameter that 

determines the relative influence of the pheromone trail and the heuristic information. After 
all ants have completed their tours, the pheromone level is updated by  

 ( 1) ( ) ( )ij ij ijt t tτ ρτ τ+ = + Δ ,  (12) 

where (0,1)ρ ∈  is a parameter such that 1 ρ−  represents the evaporation coefficient. The 

update value Δτij is related to the quality value F. Many updating rules for Δτij have been 
studied (Dorigo & Stutzle, 2004), like ant system (Dorigo et al., 1996), ant colony system 
(Dorigo & Gambardella, 1997), MAX MIN ant system (Stutzle & Hoos, 2000), and hypercube 
framework ACO (Blum & Dorigo, 2004). The major differences between these ACO 
algorithms and AS are the probability selection techniques or pheromone update. 
ACO can be applied to design the consequent part parameters in an FS. The general design 
approach is described as follows. Consider the FS whose structure and antecedent part 
parameters are determined according to (5) and (6) in Section 2. Suppose the consequent 

part is selected from a discrete set 1{ ,..., }mU u u= . For each rule, there are m candidate 

actions to be chosen. Each rule with competing consequent may be written as 

 iR : If 
1

x   is 
1iA  And … And  

n
x  is 

inA Then  ( )u k  is 
1u  Or 

2u  Or …. Or 
mu .  (13) 

That is, we have to decide one from a total of rm  combinations of consequent parts. This 

combinatorial problem is solved by ACO. To select the consequent value of each rule by 

ACO, we regard a combination of selected consequent values for a whole FS as a tour of an 

ant. For example, in Fig. 2, there are four rules, denoted by 1 4,...,R R , in an FS and three 

candidate values , 1 3,...,u u , for each rule. Starting from the initial state, the nest, the ant 

moves through 1 3,...,R R  and stops at 4R , where the tour of this ant is marked by a bold line. 

For each rule, the node visited by the ant is selected as the consequent part of the rule. For 

the whole FS constructed by the ant in Fig. 2, the consequent values in 1R , 2R , 3R , and 4R  

are 
2u ,

3u  , 
1u , and 

3u , respectively. Selection of the consequent value is partially based on 

pheromone trails between each rule. The size of the pheromone matrix is  r m×  and each 

entry in the matrix is denoted by 
ij

τ , where 1,...,i r=  and 1,...,j m= . As shown in Fig. 2, 

when the ant arrives at rule qR , then selection of the m candidate values (denoted by nodes) 

of  1qR +  is partly based on  1q jτ + , 1,...,j N= .  By using only the pheromone matrix, the 

transition probability is defined by  

 

1

( )
( )

( )

ij

ij m

izz

t
p t

t

τ

τ
=

=
∑

  (14) 

In an FS, different fuzzy rules may share the same consequent value. That is, when value aj 
is selected as the consequent of rule i, it may also be selected as the consequent of following 
rules i+1,…,r. For this reason, the set J(i) in (11) is released to the whole set U for all i in (14). 
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Fig. 2. The relationship between an ant path and the selected consequent values in an FS. 

The ACO works without the use of heuristic values, and the consequent part can be simply 

selected by using (14). The use of heuristic values can be further employed for learning 

performance improvement. However, determination of the heuristic value η usually 

requires a priori information about the problem instance. For an unknown plant control 

problem using FSs, it is difficult to assign proper heuristic values in advance. For this 

problem, in (Juang & Lo, 2007), a new heuristic value assignment approach is proposed for 

controlling an unknown plant. For the control problems considered in this study, it is 

assumed that neither a priori knowledge of the plant model nor training data collected in 

advance are available. This study proposes an on-line heuristic value update approach 

according to temporal difference error between the actual output ( )y k and the desired 

output ( )dy k . In (Juang et al., 2008), a simple heuristic value assignment approach is 

proposed for controlling a plant with an unknown model except the information on the 

change of output direction with control input. This study assigns heuristic values to each 

candidate consequent value according to the corresponding fuzzy rule inputs which are 

control error ( ) ( ) ( )de k y k y k= − and its change with time ( ) ( ) ( 1)e k e k e kΔ = − − . In (Juang & 

Lu, 2009), the q-values in a reinforcement fuzzy Q-learning algorithm are used as heuristic 

values for an unknown plant control. Each candidate is assigned with a q-value which is 

updated using success and failure reinforcement signals during the reinforcement learning 

process.  

5. Sequential combination of ACO and PSO 

This section describes the sequential combination approach of ACO and PSO proposed in 
(Juang & Lo, 2008). In this sequential combination approach, the rule consequent of each on-
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line generated rule described in Section 2 is first learned by ACO. The advantage of using 
ACO for rule consequent learning is that it can help determine a good fuzzy rule base for 
subsequent learning. However, the search constraint in a discrete-space domain restricts 
learning accuracy, and the ants do not optimize antecedent part parameters. Therefore, after 
ACO learning, PSO is then employed to further optimize both the antecedent and 
consequent parameters, where initial particles in PSO are generated according to learning 
results from ACO.  
 

Consequent value selection by ACO

pheromone matrix update
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Next iteration

No

.

.

Yes

Yes

No

Start

Generate Ps particles

PSO

End of iteration?

ACO
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End

FS performance evaluation

Rule generation and FS performance evaluation

Consequent value selection by ACO

pheromone matrix update

Convergence?

Next iteration

No

.

.

Yes

Yes

No

Start

Generate Ps particles

PSO

End of iteration?

ACO

PSO

Next iteration

End

FS performance evaluation

Rule generation and FS performance evaluation

 

Fig. 3. Flow chart of sequential combination of ACO and PSO for FS design.   

Figure 3 shows the flow of the sequential combination of ACO and PSO. The formulation of 
consequent part learning by ACO is described in Section 4. Detailed function evaluation and 
update of pheromone levels are described as follows. The pheromone trails, τij, on the ant 
tour are updated according to the performance of the constructed FS. When an ant 
completes a tour, the corresponding FS is evaluated by a quality function F, which is defined 
as the inverse of learning error. A higher F value indicates better performance. Let the 
population size be Ps, meaning that there are Ps ants in a colony.  For each iteration, after all 
the ants in the colony have completed their tours, i.e., after the construction of Ps  FSs, select 
the one with the highest F from the initial iteration until now. If a new global best ant is 
found in this iteration, then pheromone trails on the tour traveled by the global best ant are 
updated; otherwise, no pheromone update is performed in this iteration. Denote the global 
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best ant as *q  
with the corresponding quality value as

 
*q

F . The new pheromone trail 

( 1)ij tτ +  is updated by  

 ( 1) (1 ) ( ) ( )ij ij ijt t tτ ρ τ τ+ = − + Δ ,  if ( , )i j ∈global-best-tour   (15) 

where  0 < ρ < 1 is the pheromone trail evaporation rate and  

 *( )ij qt FτΔ =   (16) 

The ACO learning iteration above repeats until the criterion for switching is met. The 
switching point from ACO to PSO learning is determined by the learning error convergence 
property of the global best ant. Let E(t) denote the error index of the global best ant at 
iteration t. For example, E(t) can be defined as root-mean-squared error (RMSE) or sum of 
absolute error (SAE). If  

                   
( ) ( 50)

( )

E t E t

E t

− +
< 1%  (17) 

then ACO learning terminates and learning switches to PSO.  

Using PSO releases the discrete space constraint imposed on consequent parameters when 

ACO is used, and searches the best consequent parameters in continuous space. In addition 

to the consequent parameters, PSO also searches the optimal antecedent part parameters. 

Like ACO, population size in the PSO is equal to SP . The elements in position s
j

 are set as 

in (9). At iteration 0t = , the initial positions 1(0), , (0)
sPs s

j jA  are generated randomly 

according to the best-performing FS, denoted as ACOs
j

, found in ACO. Position 1(0)s
j

 is set to 

be the same as ACOs
j

. The left 1SP −  particles , 2 (0),  ...,  (0)
sPs s

j j
, are generated by adding 

uniformly distributed random numbers to ACOs
j

. That is,  

 (0)i ACO is s w= +j j j
, 2,..., si P=   (18) 

where iw
j

 is a random vector. The initial velocities, (0)iv
j

, 1,..., si P= , of all particles are 

randomly generated. The performance of each particle is evaluated according to the FS it 

represents. The evaluation function f  is defined as the error index ( )E t  described above.  

According to f , we can find individual best position ip
j

 of each particle and the global best 

particle i

gp
j

 in the whole population. Velocity and position of each particle are updated 

using (7) and (8), respectively. The whole learning process ends when a predefined criterion 

is met. In (Juang & Lo, 2008), the criterion is the total number of iterations.  In (Juang & Lo, 

2008), the sequential combination of ACO and PSO approach for FS design has been applied 

to different control problems, including chaotic system regulation control, nonlinear plant 

tracking control, and water bath temperature control. The performance of the sequential 

combination approach has been shown to be better than those of ACO, PSO and different 

existing FS design methods which were applied to the same problem.  

6. Parallel combination of ACO and PSO 

This section describes the parallel combination approach of ACO and PSO for FS design 
(Juang & Wang, 2009). Like the sequential combination approach, the parallel combination 
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approach uses a constant population size and is denoted as Ps =2N. Each individual in the 
population represents a parameter solution of the FS as described in (9). An individual may 
be generated by an ant path in ACO or a particle in PSO. Individuals generated by ants and 
particles are called ant individuals and particle individuals, respectively. Figure 4 shows a 
block diagram of the algorithm. Generation of population individuals are described as 
follows.  
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Fig. 4. Parallel combination of ACO and PSO for FS design. 

In the first iteration, the rule generation algorithm in Section 2 and N different ant paths 

generate half of the population. The other half are generated from particle individuals. The 

N ant individuals contain no rules initially. New rules are generated using the criterion in 

(5) during the evaluation of an ant individual (FS). If the number of rules after evaluation of 

the N ant individuals is r1, then the number of rules in the N particle individuals are all 

equal to r1. In the parallel combination approach, the objective of using PSO is to optimize 

both the antecedent and consequent parameters in existing fuzzy rules; therefore, no rules 

are generated during the performance evaluation of a particle (FS). The initial N particle 

position vectors are generated using (10).  

The second and subsequent iterations generate a new population with 2N new individuals. 

For the generation of new individuals in each iteration, the ACO-based FS design approach 

in Section 4 is used. In this approach, N ant paths generate N ant individuals (FSs). During 

the new ant individual generation process, some ants may choose the same path and 

generate the same individuals. This phenomenon becomes more obvious as more iterations 

are conducted due to pheromone matrix convergence. To consider this phenomenon, 

suppose that Nt ants have the same path at the tth iteration. Then only N- Nt +1 different ant 
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individuals are reserved in the population. The performance of these N- Nt +1  individuals is 

evaluated and the pheromone matrix is updated according to their performance. The 

remaining N- Nt +1 new individuals in the population (population size is fixed at 2N) in 

iteration t are partly generated by particles in the last iteration. The original N + Nt-1 - 1 

particle individuals from the last iteration are optimized by PSO. The performance of these 

optimized particle individuals is then evaluated. In addition to these optimized particle 

individuals, the N - Nt-1 + 1 ant individuals in the previous iteration (iteration t-1) also help 

generate auxiliary particles to improve particle search performance. Adding these ant 

individuals with small random values generates auxiliary particles. The purpose of adding 

small random values is to distinguish auxiliary particles from existing ant individuals and to 

improve the algorithm’s exploration ability. Suppose an original individual has the form in 

(10), then the auxiliary particle takes the following form  

 11 11 11 11 1 1 1 1 1 1[ , , , , , , , , , ]rn rn rn rn r rn n n nm m m m a a m m a aσ σ σ σ σ σ+ Δ + Δ +Δ + Δ +Δ +Δ +Δ + ΔA A (19) 

The performance of these N - Nt-1 + 1 auxiliary particles is then computed. These auxiliary 

particles together with the original N + Nt-1 - 1 particles constitute a total of 2N temporary 

particles. Only the best N + Nt - 1 particles are reserved from among these 2N particles. In 

the next iteration, these reserved particles cooperate to find better solutions through PSO.  

For ant individual update by ACO at the end of each iteration, as in Section 4, a new ant 

path generates a new FS (individual) according to the pheromone levels and transition 

probability in (14). The pheromone levels are updated using (15) and (16).  For particle 

individual update in iteration t, PSO updates all of the N + Nt-1 - 1 particles generated either 

from auxiliary particles or original particle individuals in the previous iteration. Positions 

and velocities are updated based on (7) and (8) using a local version of PSO. For 

neighborhood best particle ( )g

ip t
j

computation, the neighbors of a particle with 1tr − rules for 

finding ( )g

ip t
j

 are defined as the particles that also have 1tr −  rules. As in the sequential 

combination approach, the learning process ends when a pre-defined number of iterations is 

performed. 
In (Juang & Wang, 2009), the parallel combination learning approach has been applied to 

two control examples, nonlinear plant tracking control and reversing a truck following a 

circular path. These examples generate training data only when fuzzy control starts. 

Simulation results show that the proposed method achieves a smaller control error than 

ACO, PSO, and other different SI learning algorithms used for comparison in each example. 

7. Conclusion 

This chapter describes the design of FSs using PSO, ACO, and their sequential and parallel 

combination approaches. The use of on-line rule generation not only helps to determine the 

number of fuzzy rules, but also helps to locate the initial antecedent parameters for 

subsequent parameter learning using PSO. For PSO, the incorporation of ACO helps to 

locate a good initial fuzzy rule base for further PSO learning. For ACO, the incorporation of 

PSO helps to find the parameters in a continuous space. The cooperative search of ACO and 

PSO compensates for the searching disadvantage of each optimization method. Reported 

results show that the two combination approaches outperform different advanced PSO and 
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ACO algorithms for FS design problems. Performance of these two combination approaches 

on other optimization problems will be studied in the future. Other different combination 

approaches of ACO and PSO may also be studied for further performance improvement.  
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