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Chapter

The Novel Applications of
Deep Reservoir Computing in
Cyber-Security and Wireless
Communication

Kian Hamedani, Zhou Zhou, Kangjun Bai and Lingjia Liu

Abstract

This chapter introduces the novel applications of deep reservoir computing (RC)
systems in cyber-security and wireless communication. The RC systems are a new
class of recurrent neural networks (RNNs). Traditional RNNs are very challenging
to train due to vanishing/exploding gradients. However, the RC systems are easier
to train and have shown similar or even better performances compared with
traditional RNNs. It is very essential to study the spatio-temporal correlations in
cyber-security and wireless communication domains. Therefore, RC models are
good choices to explore the spatio-temporal correlations. In this chapter, we explore
the applications and performance of delayed feedback reservoirs (DFRs), and echo
state networks (ESNs) in the cyber-security of smart grids and symbol detection
in MIMO-OFDM systems, respectively. DFRs and ESNs are two different types of
RC models. We also introduce the spiking structure of DFRs as spiking artificial
neural networks are more energy efficient and biologically plausible as well.

Keywords: recurrent neural networks, reservoir computing, delayed feedback
reservoir, echo state networks, cyber-security, smart grids, MIMO-OFDM

1. Introduction

Smart grids are a new generation of power grids, which provide more intelligent
and efficient power transmission and distribution. However, the smart grids are
vulnerable to security challenges unless properly protected. False data injection
(FDI) attacks are the first and most common type of attacks in smart grids. Two
major types of FDI attacks are known in smart grids. These two major types are
single-period or opportunistic and multi-period or dynamic attack, respectively. In
single-period attack, the adversary waits until it finds the opportunity to launch the
attack instantaneously. On the other hand, in dynamic attacks, the adversary
launches the attack gradually and through time toward its desired state. The single-
period attacks are widely studied in the literature and they are more easily detected
by the supervisory control and data acquisition (SCADA). In this chapter, we focus
to study the multi-period or dynamic attacks [1-5].

State vector estimation (SVE) is the first technique to tackle the FDI detection in
smart grids. However, SVE fails to detect stealth FDI attacks with low magnitudes.
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In recent years, both supervised and unsupervised machine learning (ML)
approaches have been proposed to study FDI detection in smart grids. Generally,
ML-based techniques have shown better performances than SVE. However, the
ML techniques that have been proposed so far are not capable to capture the rich
spatio-temporal correlations that exist between different components of smart
grids. Therefore, in this chapter, we introduce spiking delayed feedback reservoirs
(DFRs) to tackle the FDI detection problem in smart grids as they are very energy
efficient and also can capture the spatio-temporal correlations between different
components of smart grids. DFRs are an energy efficient class of reservoir
computing systems [6-8].

Figure 1 demonstrates the structure of a reservoir computing (RC) system. As
it can be seen, there are three layers in RC systems. They are the input, reservoir,
and output layer, respectively. The architecture of RC systems is based on recurrent
neural networks (RNNs). However, unlike the RNNSs, the weights of the hidden
(reservoir) layer are fixed and do not go through a training. The reservoir weights
have to be initialized such that the echo state property is satisfied. Echo state
property implies that in order to form a memory, the largest eigenvalue of the
reservoir weights has to be less than 1. The largest eigenvalue of the reservoir layer’s
weights is a design parameter and plays an important role in the performance of the
RC systems. DFRs, echo state networks (ESNs), and liquid state machines (LSMs)
are three different categories of RC systems. The strength of RNNs is employed as
the reservoir or liquid states. In the reservoirs or liquid states, the weights of
synaptic connections are fixed and do not require any training. The output weights
are the only sets of weights that require training in RC models. This results in
reducing the computational complexity of RC models compared to traditional
RNNs [9-12].

Equation (1) expresses the states of reservoir nodes,

s(t) =f[Wigs(t = 1) + Wix(e — 1), 1)

where 5(t) is the state of reservoir node at time ¢; x(¢ — 1) corresponds to the
input signal at time ¢ — 1; W}, and W'’ correspond to the weights of randomly
generated reservoir and input connection, respectively; and y represents the esti-
mated output that can be expressed in terms of input and weight connections,
9= W%s(t) + Wit x(t — 1) + Wy (2)

res bias>

where W2 are the output weights of the neurons that form the reservoir layer;

W?¥ correspond to the feedback weights from output layer to reservoir layer; and
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Figure 1.
Structure of reservoir computing.
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Wi is the set of weights for bias values training. The process of nonlinear
mapping is accomplished by the neurons in the reservoir layer. The neurons in the
reservoir layer own two major properties: (1) high dimensionality and (2) forming
a short term memory that spatio-temporal patterns can be memorized. Several
studies have shown that these two properties are satisfied only if the neurons at
the reservoir layer operate at the edge of chaos. Satisfying the echo states

property, is the key to make the reservoir neurons work at the edge of chaos. The
lower computational complexity and the flexible reservoir implementation of

RC models make them very suitable for unconventional computing paradigms
applications.

The DFR is a ring topology of RC systems, where a single artificial neuron and a
delay loop together form the reservoir layer. There are multiple choices available for
the single artificial neuron of the DFR. In this chapter, we introduce spiking neu-
rons as the nonlinear single neuron of the DFR. Spiking neurons are one of the
several mathematical models that are introduced to model the biological neurons.
Spikes are the main signals that the neurons of the brain use for communication.
Hence, the mathematical representation of the biological neurons as spikes tends to
be more biological plausible. Energy efficiency is another motivation to use the
spiking neurons. TrueNorth chip consumes only 70 milliWatts (mW) to run 1 mil-
lion spiking neurons with 256 million synapses [13-15]. The energy efficiency of
spiking neural networks (SNNs) makes them a suitable choice for hardware
implementations of artificial neurons as well [16, 17].

So far, several models for spiking neurons including leaky-integrate-and-fire
(LIF) and the Hodgkin-Huxley have been proposed to mimic the behavior of our
brains’ neurons [18]. The LIF models of spiking neurons have been used more
commonly than other spiking artificial models of neurons due to their simplicity
and ease of hardware implementation [19, 20]. The spiking neurons fire a spike as
soon as a stimulating current is applied on their membrane, which makes the
voltage of the membrane exceeds a certain threshold value. The relationship
between the stimulating current and the voltage of membrane is expressed as
follows:

Tm ddL;n = _(Vm - E) + (Inoise + Is)Rm’ (3)
where V,, is the membrane voltage; 7,, = R,,C,, corresponds to the neuron’s
time constant; C,, and R,, are the capacitance and the resistance of the membrane,
respectively; E represents the resting voltage; I, is noise current; and I, is stimulus

current [21]. We set R,, to 1 mega ohms and C,, = 10 nano Farads (nF).

In Figure 2, the topology of our proposed spiking DFR is demonstrated. There
are multiple blocks in this structure. The input block is where the smart grids’
measurements are received. These measurements have to be first encoded before
getting processed by DFR. There are two major types of encoding schemes for
spiking neurons, namely rate encoding and temporal encoding [22]. Rate encoding
has been vastly studied in the literature. However, recent studies have shown that
temporal encoding schemes are more efficient and are superior to rate encoding
schemes. The exact time that spike fires is used for temporal encoding of spikes.
However, in rate encoding schemes, the number of the spikes that are fired by the
neuron is used to encode the stimulus.

It has been shown in several experiments that temporal encoding is more likely
to be the encoding scheme, which is leveraged by biological neurons. The neurons
in the lateral geniculate nucleus, retina, and the visual cortex respond to the stimuli
with milliseconds (ms) precision. The computational complexity of temporal
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Figure 2.
Spiking delayed feedback reservoir computing.

encoding schemes has also made them superior to rate encoding approaches [23].
Therefore, in this chapter, we focus on temporal encoding schemes.

After the smart grids’ measurements are encoded, the encoded data is then
converted to the analog current. This current is next fed in to the nonlinear node,
which in our case, is a LIF neuron. For each current signal, its corresponding spike
train is generated by the LIF neuron, and this spike train goes through a delay loop.
The delay loop along with the LIF neuron forms the reservoir layer of DFR. We
repeat this process as long as the corresponding reservoir states of each smart grid’s
measurements are generated. The interspike intervals (ISI) of each spike trains are
used as the training feature of the readout layer [24]. In this chapter, a multi-layer
perceptron (MLP) is used as the readout layer. The features extracted in the reser-
voir layer are used for training the MLP layer. For each class of data, i.e.,
compromised and uncompromised, a proper label is assigned. We consider 1 as the
label of compromised samples, and 0 for uncompromised samples.

Equation (4) expresses the governing equation for DFR,

% = —x(t) + F(x(t — 7),1(t), 0), (4)

where F is a differentiable nonlinear function; 7 is the delay loop, which is a
hyperparameter that requires tuning; x(t) corresponds to the reservoirs states of
DFR; and I(z) is the input stimulus current signal along with a masking scheme. The
total delay time, 7, is divided into N equidistant delay units within the delay loop.
Dividing the total delay into N equidistant delay units is expressed as follows:

7= N0, (5)

where 0 represents the time interval between reservoir virtual nodes. Unlike the
conventional RC model, the number of nonlinear nodes of DFR is drastically
reduced, due to the ring topology of DFR. The weights of the output MLP layer are
the only weights that undergo the training process [16].

DFRs have drawn a lot of attentions due to their capability to map the data from
low dimensional space to high dimensional space. As it can be seen in Figure 3, by
mapping the data from low dimensional space to high dimensional space, the non-
linearly separable data becomes linearly separable. The chaos theory through
Lyapunov analysis has shown that delay systems can show high dimensional
behavior if the delay value is tuned properly such that the delay system operates at
the edge of chaos. The Lyapunov dimension of a delay chaos system directly is
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Figure 3.
High dimensional mapping of data using DFR.

determined by to the delay value [25]. In this chapter, we will examine the effect of
delay value on the performance of DFR while detecting the dynamic hidden attacks
in smart grids.

In this chapter, we will also look at symbol detection in multiple-input multiple-
output orthogonal frequency division multiplexing (MIMO-OFDM) systems. In
wireless communication systems, multicarrier access techniques are realized
through OFDM. In fact, frequency-selective fading channels are converted to mul-
tiple flat-fading subchannels [26-28]. Spectral efficiency, transceiver structure,
channel capacity, and robustness against interference are all improved as a result of
applying OFDM in wireless communication systems [29-33]. MIMO systems are
also extensively leveraged in different wireless communication systems including
HSPA+(3G), WiMAx(4G), and long term evolution (4G LTE). By using MIMO
systems, the capacity of wireless link is improved through the transmission of
symbols on multiple paths. The system which is realized through the combination
of MIMO and OFDM systems is called a MIMO-OFDM system [34-38]. A MIMO-
OFDM system has shown to be very effective in utilizing the benefits of both MIMO
and OFDM systems.

In order to detect the transmitted symbols accurately at the receiver (Rx), it is
very essential to estimate the wireless channel state information (CSI) precisely
[39-41]. CSI estimation is one of the major challenges of MIMO-OFDM systems.
There are generally two major approaches for CSI estimation. The first approach
leverages blind channel estimation to obtain the statistical properties of the channel
[42]. The second category of CSI estimation techniques is based on training the
symbols sent by transmitter (Tx) and received by (Rx) [29, 43, 44]. Training-based
CSI estimation techniques have been adopted in many advanced communication
systems including 3GPP LTE/LTE-Advanced. In the former category of CSI estima-
tion techniques, no computational overhead is inferred, but they are good only for
the channels that are varying very slowly with respect to time [45]. The latter
category, i.e., training-based category can be applied for any channel regardless of
their statistical properties. Therefore, the learning-based techniques including arti-
ficial neural networks have been vastly studied in literature [46-48] as the wireless
channel estimation mechanism. RNNs have also been studied in [49-52] for CSI
estimation and symbol detection. Due to the difficulties of training, the conven-
tional RNNs, we introduce echo state networks (ESN) for symbol detection and CSI
estimation in MIMO-OFDM wireless communication systems.

2. Problem formulation of smart grids attack detection

The state and topology of smart grids are the two major targets that are manip-
ulated by the adversaries [53]. The state of the smart grids is the key factor in
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determining the measurements values. A linear function H and the environment
noise are the other two factors that determine the measurements values.

2z = Hx +n, (6)

where z is the measurement vector that represents the real parts of the line flows
and bus injections; H is a linear function; x is the state vector, and n is the environ-
ment noise [53]. Equation (6) can be written as follows in case the meters are
compromised by an adversary,

v Z=2z+a, 7
Z=Hx+n+a,
where a is the attack vector. The attack represented in Eq. (7) is an observable
attack. The attack can also be hidden by the attacker. In this chapter, we consider
the attacks as hidden dynamic attacks. The hidden attack is defined as a = Hc, and
Eq. (6) is reformulated as follows,

Z=Hx+mn+ Hc

H(x +c¢) +n, ®

Z

where ¢ is the desired state of the adversary, where the attacker wants to drift
the normal state of the smart grid toward its desired state by hiding it in the H
matrix. Hidden attacks are more challenging to be detected. The adversaries launch
dynamic attacks such that the state of the smart grid system is drifted toward their
desired state gradually. Dynamic attacks are defined as a function of time as the
adversary achieves its desired state gradually and through time. In single-period
attacks, the variations of the attacks magnitude are sudden and abrupt, and are
more easily detected. The formulation of dynamic attack used in this chapter is as
follows:

Z(t) = Hx(t) +n + a(t). 9)

The dynamic attack 4(z) is time dependent, and we also assume that the adver-
sary has access to H matrix. Thus, the attack can be performed as hidden or
unobservable. In hidden attacks, the attack a(t) can be expressed as a(t) = He(t),
and ¢(t) is defined as follows:

c(t) = Acos(2xf t) x N(0,1), (10)

where A is the magnitude of attack; cos is cosine function; f, corresponds to the
frequency of attack and we set that equal to 1 in this chapter, and N(0,1) is a
normally distributed vector in which its mean is zero and its variance is 1.

Z(t) = H(x + Acos(2af t) x N(0,1)) +mn. (11)

MATPOWER is a publicly available toolbox [54] that can be used to simulate the
smart grids. In this chapter, we use MATPOWER to simulate the meters of a smart
grid with 14 buses. There are totally 34 different meters in an IEEE-14 bus smart
grid. We assume that the level of the access that the adversary can have to the
meters of the system can range from 0 to 34. The level of access is defined as the
number of meters that can be compromised by the attacker. In this chapter, the
dataset that we use for train, test, and validation is assumed to be unbalanced.
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A dataset is called unbalanced when the ratio of compromised and uncompromised
samples is not equal. In this chapter, it is assumed that 80% of the samples are
uncompromised and 20% are compromised. Totally, 10,000 samples for training
and 10,000 samples for test and validation are generated using MATPOWER.

3. Attack detection performance of DFR

The performance metrics for evaluation are accuracy and F1. Accuracy and F1
are defined as:

Accuracy = (TP + TN) /(TP + TN + FP + FN), (12)

" Precision x Recall
Precision + Recall’

F1=2 (13)

where Precision = 75 and Recall = 75t and TP, TN, FP, and FN correspond

to the number of true positive, true negative, false positive, and false negative
samples, respectively.

Accuracy of attack detection for three different methods and magnitude of
attacks, A = 0.1, 1, and 10.

In order to evaluate the performance of our proposed spiking DFR model, we
compare our results with a MLP and a SNN. The MLP is trained using
backpropagation algorithm and SNN is trained using precise spike driven (PSD)
algorithm. In PSD, temporal encoding is leveraged as the encoding scheme. PSD is
used to learn the hetero-associations that exist in spatio-temporal spike patterns and
is introduced in [21]. As it can be seen in Figures 4 and 5, spiking DFR + MLP
outperforms both MLP and SNN in terms of accuracy and F1. That is due to the fact
that the spiking DFR + MLP is capable to map the data from low dimensional space
to high dimensional space, and also captures the spatio-temporal correlation that
exists between different components of smart grids. Based on our simulation
results, the average accuracy of attack detection is increased up to 94.6% when the
combination of spiking neurons, DFR, and MLP is realized in a single platform. This
improvement is observed for all different magnitude of attacks and number of
compromised measurements. In our baseline model where only SNNs are used, the
average accuracy is 77.92%. This improvement implies that the average accuracy is
improved about 17% through our introduced hybrid spiking DFR and MLP model.
F1 measure shows even more significant improvement brought about. F1 that is
achieved through combination of spiking neurons, DFR, and MLP is 78%. However,
the F1 which is achieved by SNN and PSD algorithm for dynamic attack detection is
about 25%, which means that our introduced model increases the F1 for 53%.
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Figure 4.
Accuracy of attack detection for three different methods and magnitude of attacks, A = 0.1, 1, and 10.
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3.1 Delay effect on the performance of DFR

As it was mentioned in Section 1, the DFRs cannot show high dimensional behav-
ior unless the delay value is tuned properly that the DFR operates at the edge of chaos.
At this part, we show that delay value can significantly affect the performance of DFR
for hidden dynamic attack detection on smart grids. Figure 6 demonstrates the
performance of DFR for different values of delay. As it can be seen in Figure 6, for
delay equal to 40 milliseconds (ms), the performance of spiking DFR + MLP achieves
the highest value in terms of F1 and accuracy. However, for delay value equal to
10 ms, the lowest performances are obtained. This observation implies that only for a
proper delay value, the spiking DFR + MLP can operate at the edge of chaos and show
high dimensional behavior. The phase portrait behavior of DFR with respect to
varying the delay time is shown in Figure 7. The dynamic behavior of the delay
systems can be tracked through phase portraits and chaotic or periodic behavior of
the system can be demonstrated. It is suggested in [25] that if the delay of dynamic
system is tuned properly, it can show high dimensional behavior. We also investigate
the solution of the delay differential equation (DDE) to further explore the dynamic
behaviors of our introduced model. As demonstrated in Figure 7, DDE is leveraged to
model the dynamic behavior of nonlinear function while the delay is varying.

Figure 7 shows that varying the delay value can shift the behavior of delay
system from periodic to edge of chaos region and completely chaotic.

3.2 Complexity analysis

In this section, the complexity of our approach in terms of training time is
analyzed. The computational complexity of the introduced spiking DFR + MLP
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Phase portraits of DFR.

Algorithm Training time

Spiking DFR + MLP 16.69 s

MLP 32s

SNN 90 s
Table 1.

Computational complexity analysis.

is associated with calculating the state of the reservoir layer, and updating the
weights of readout layer during training. In the introduced spiking DFR model,
the weights of input and reservoir layers are fixed and do not undergo any
training. That is the fact that makes DFRs significantly computationally effi-
cient compared to other types of RNNs. In traditional RNNs, all the hidden
layers require to be trained. Due to the training of all hidden layers, the RNNs
are very difficult to train. The measure of complexity is equivalent to the total
number of floating-point operations (FLOPs). The training time of RC-based
learning techniques correspond to the complexity of model as well [55]. In order
to evaluate the computational complexity of our proposed model, the training
time of our model is compared with the baseline approaches, i.e., MLP and SNN.
Table 1 presents the training times (complexity) of spiking DFR + MLP, MLP,
and SNN.

The SNN which is trained by PSD algorithm shows the highest computational
complexity, as it can be seen in Table 1. The spiking DFR + MLP and MLP rank as
the second and third computationally complex algorithms, respectively. As it can be
seen in Figure 2, there are some building blocks in the spiking DFR + MLP. There-
fore, the computational complexity of spiking DFR + MLP is higher than a simple
MLP. Temporal encoding, spike to current, and reservoir blocks are the blocks that
exist in our introduced model. However, the superiority of our model in terms of
performance makes it justified for us to use this model as the attack detection
platform in smart grids.
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4. Reservoir computing-based symbol detection
4.1 Received signal

We assume there are N, antennas at Rx; and N, antennas at Tx. The received
signal can be expressed as:

Zh @xz (t) (14)

where n(t) is the additive noise; @ stands for the convolution operation;

h;(t) € CN~*1 is the channel from the ith Tx antenna to the Rx; and x;(¢) is the
associated transmitted signal, which is defined as:

N

= i Zg t —pT siln ,p]e’”("fﬁf) (15)

p=0n=0

where 7 is the index of subcarrier; p is the index of time instance; f, is the carrier
frequency; s[n, p] is modulation symbols; f, is the frequency space between each
subcarrier component; N, is the number of subcarriers; and g(¢) is the waveform
function with finite time support which is usually selected as:

40 :{1 te (0, T]

0 otherwise

The channel model is defined according to the ray-tracing principle

h(t):=) apa(6;)8(t — 7) (16)
k

where k is the index of channel taps; 0, stands for the angle of arrival (DoA);
is the associated path gain; and 7, is the delay parameter.

4.2 Symbol detection framework

In symbol detection, we aim to estimate s[z, p| belonging to all transmission
antennas and time channel use, where the general framework is shown in Figure 8.
For this problem, the interference from different antennas and OFDM symbols
need to be canceled out. Rather than estimating the underlying channel informa-
tion, in our approach, the reservoir computing network RC is applied to y(t) to
retrieve the transmitted waveform. At the learning stage, the objective is written as:

I‘Pme(RC(y ), {xi(®)};) (17)

out

where L is the loss function. Through learning the output weight of RC, it yields
an interference cancellation manner, which can recover the transmitted signals.
Meanwhile, this relies on a symbol level synchronization among multiple antennas.
Alternatively, the symbol detection can be learned through a decomposed manner.
Following this way, we can rewrite the received signal model (14) as:

y(t) = ho(0)@x1(2) + > k() @x;(2) +n(2) (18)
jk
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Symbol detection framework.

where k is the index of interested user; and the remained terms are treated as the
interference to the k th user. Given a user index k, the symbol detection is
conducted by learn a RC by solving

%é?L(RCk (), xe(2)). (19)

The symbol detection requires learning k& RCs, correspondingly. The trained RCs
generate estimated symbols for each stream independently.

Moreover, an input buffer can be incorporated to further improve the symbol
detection performance as proposed in [31]. To this end, the input of RC at time #; is

a batch {y(t)}tﬁT where T is the length of the buffer.

t=tg

4.3 One layer learning

We consider the special case when the output is only with one layer. According

to the dynamic equation of inner states, denoted as {s(t) ’tT:ﬂ(; ! where T, is the

11
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length of the training data [56], by stacking the states into a matrix
S:=[s(0),s(1), -+, (T, — 1)]. The output weights can be updated according to

min || WS — Xl (20)

where X € CV*T« is the target waveform at transmitter side, in which N denotes
the number of streams; and W is the output layer to be learned. Accordingly, the
target waveform X can be chosen as the time domain presentation of scattered

pilots or comb pilots. For the target of scattered pilots, the (i,t) th entry of X is
defined as

5i(6) = S gt~ pT,)sfn, ple=Cro s (21)

p=0neQ,

where Q, stands for the index of the sub-carriers selected as pilots in the pth
OFDM symbol. Specially, for the comb pilots, Qp is defined as all the subcarriers at a
certain OFDM symbol or several subarriers across all OFDM symbols.

For solving the problem (20), W can be calculated once whole batch of training
data are collected, which is through the following pseudo-inverse operation

W =XS* (22)

or thorough an online version, such as gradient descent or recursive least squares
[57]. For multiple output layers, it follows the same method as multiple layers feed-
forward neural networks via the forward backward propagation procedure [58].

4.4 Simulation results

In Figure 9, it demonstrates the BER performance of reservoir computing-based
symbol detection methods: simple echo state networks (ESN) and echo state net-
works with windows (WESN) to the conventional methods: linear minimum mean

4*4 MIMO-OFDM 16QAM
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Figure 9.
BER comparison of veservoir computing-based symbol detection methods (ESN and ESN) to conventional
methods (LMMSE and sphere decoding).
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squared error (LMMSE) and sphere decoding (SD). For the conventional methods,
the CSI is obtained by LMMSE channel estimation [59, 60]. Here, we also consider
the impact by PA non-linearity at the transmitter side. When the transmitted signal
goes throughout the nonlinear region of PA, the signal suffers strong distortion,
which can lead to a poor BER performance. Meanwhile, from this figure, we can
observe the learning-based methods perform the best at low SNR regime and
nonlinear region. This is because conventional methods rely on accurate CSI, which
cannot be obtained in these two cases, while learning-based methods are robust
against the model-based methods.

5. Conclusion

In this chapter, the emerging applications of spiking DFRs and ESNs were
explored. We introduced the combination of spiking neurons, DFRs, and MLPs as
the main platform to detect FDI attacks in smart grids. Our simulation results
showed that spiking DFR + MLP outperforms SNN, and MLP in terms of accuracy
and F1, respectively. The combination of DFRs and spiking neurons is capable of
mapping the data to high dimensional space and capturing the spatio-temporal
correlations, which exist between different components of smart grids. The effect
of delay value on the performance of DFR was also studied in this chapter. We
showed that DFRs can show high dimensional behaviors only for the delay values
that make them operate at the edge of chaos. The computational complexity of our
introduced model was also studied. In the use case of ESN for MIMO-OFDM symbol
detection, we see this learning-based framework can perform better than conven-
tional channel model-based methods when the obtained channel information is
imperfect or model mismatch exists. The cost of learning is very few, i.e., it does not
require a large size of pilots, which permits the application of this technique in
practical system.

Acknowledgements
The work of K. Hamedani, L. Liu and Z. Zhou are supported in part by the U.S.

National Science Foundation under grants ECCS-1802710, ECCS-1811497,
CNS-1811720, and CCF-1937487.

Author details

Kian Hamedani*, Zhou Zhou, Kangjun Bai and Lingjia Liu
Electrical and Computer Engineering Department, Virginia Tech, Blacksburg, USA

*Address all correspondence to: hkian@vt.edu

IntechOpen

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited. [@)ey |

13



Intelligent System and Computing

References

[1] LiJ, Liu L, Zhao C, Hamedani K,
Atat R, Yi Y. Enabling sustainable cyber
physical security systems through
neuromorphic computing. IEEE

Transactions on Sustainable Computing.
2017;3(2):112-125

[2] Atat R, Liu L, Chen H, Wu J, Li H,
Yi Y. Enabling cyber-physical
communication in 5g cellular networks:
Challenges, spatial spectrum sensing,
and cyber-security. IET Cyber-Physical
Systems: Theory and Applications. 2017;
2(1):49-54

[3] Atat R, Liu L, Ashdown ], Medley MJ,
Matyjas JD, Yi Y. A physical layer
security scheme for mobile health
cyber-physical systems. IEEE Internet
of Things Journal. 2017;5(1):295-309

[4] LiY, Ng BL, Trayer M, Liu L.
Automated residential demand
response: Algorithmic implications of

pricing models. IEEE Transactions on
Smart Grid. 2012;3(4):1712-1721

[5] Atat R, Liu L, Wu J, Ashdown J, Yi Y.
Green massive traffic offloading for
cyber-physical systems over
heterogeneous cellular networks. ACM/

Springer Journal of Mobile Networks
and Applications. 2018;24(4):1-9

[6] Atat R, Liu L, Wu ], Li G, Ye C,
Yang Y. Big data meet cyber-physical
systems: A panoramic survey. IEEE
Access. 2018;6:73603-73636

[7] Atat R, Liu L, Yi Y. Privacy
protection scheme for ehealth systems:
A stochastic geometry approach. In:
2016 IEEE Global Communications
Conference (GLOBECOM); IEEE; 2016.

pp. 1-6

[8] Wang X, Liu L, Zhu L, Tang T. Joint
security and QoS provisioning in train-
centric CBTC systems under sybil
attacks. IEEE Access. 2019;7:
91169-91182

14

[9] Mosleh S, Sahin C, Liu L, Zheng R,
YiY. An energy efficient decoding
scheme for nonlinear MIMO-OFDM
network using reservoir computing. In:
2016 International Joint Conference on
Neural Networks (IJCNN); IEEE; 2016.
pp. 1166-1173

[10] Zhao C, Danesh W, Wysocki BT,
Yi Y. Neuromorphic encoding system
design with chaos based CMOS analog
neuron. In: 2015 IEEE Symposium on
Computational Intelligence for Security
and Defense Applications (CISDA);
IEEE; 2015. pp. 1-6

[11] Zhao C, LiJ, Liu L, Koutha LS, Liu J,
Yi Y. Novel spike based reservoir node
design with high performance spike
delay loop. In: Proceedings of the 3rd
ACM International Conference on
Nanoscale Computing and
Communication; ACM; 2016. p. 14

[12] Bay K, An Q, YiY. Deep-DFR: A
memristive deep delayed feedback
reservoir computing system with hybrid
neural network topology. In:
Proceedings of the 56th Annual Design
Automation Conference 2019; ACM,;
2019. p. 54

[13] Esser SK, Merolla PA, Arthur JV,
Cassidy AS, Appuswamy R,
Andreopoulos A, et al. Convolutional
networks for fast, energy-efficient
neuromorphic computing. Proceedings
of the National Academy of Sciences.
2016;113(41):11441-11446

[14] Li J, Zhao C, Hamedani K, Yi Y.
Analog hardware implementation of
spike-based delayed feedback reservoir
computing system. In: 2017
International Joint Conference on
Neural Networks (IJCNN); IEEE; 2017.
pp. 3439-3446

[151 LiJ, Bay K, Liu L, Yi Y. A deep
learning based approach for analog
hardware implementation of delayed



The Novel Applications of Deep Reservoir Computing in Cyber-Security and Wireless...

DOI: http://dx.doi.org/10.5772/intechopen.89328

feedback reservoir computing system.
In: 2018 19th International Symposium
on Quality Electronic Design (ISQED);
IEEE; 2018. pp. 308-313

[16] Bay K, Li ], Hamedani K, Yi Y.
Enabling an new era of brain-inspired
computing: Energy-efficient spiking
neural network with ring topology. In:
2018 55th ACM/ESDA/IEEE Design
Automation Conf. (DAC); 2018. pp. 1-6

[17] Zhao C, Hamedani K, LiJ, Yi Y.
Analog spike-timing-dependent
resistive crossbar design for brain
inspired computing. IEEE Journal on
Emerging and Selected Topics in
Circuits and Systems. 2017;8(1):38-50

[18] HuJ, Tang H, Tan KC, Li H, Shi L. A
spike-timing-based integrated model for
pattern recognition. Neural
Computation. 2013;25(2):450-472

[19] Zhao C, Wysocki BT, Thiem CD,
McDonald NR, Li ], Liu L, et al. Energy
efficient spiking temporal encoder
design for neuromorphic computing
systems. IEEE Transactions on Multi-
Scale Computing Systems. 2016;2(4):
265-276

[20] Hamedani K, Liu L, Atat R, Wu ],
Yi Y. Reservoir computing meets smart
grids: Attack detection using delayed
feedback networks. IEEE Transactions
on Industrial Informatics. 2017;14(2):
734-743

[21] Yu Q, Tang H, Tan KC, Li H.
Precise-spike-driven synaptic plasticity:
Learning hetero-association of

spatiotemporal spike patterns. PLoS
ONE. 2013;8(11):e78318

[22] Zhao C, LiJ, An H, Yi Y. Energy
efficient analog spiking temporal
encoder with verification and recovery
scheme for neuromorphic computing
systems. In: 2017 18th International
Symposium on Quality Electronic
Design (ISQED); IEEE; 2017.

pp. 138-143

15

[23] C. Zhao, B. T. Wysocki, Y. Liu, C. D.
Thiem, N. R. McDonald, and Y. Yi,
“Spike-time-dependent encoding for
neuromorphic processors,” ACM
Journal on Emerging Technologies in
Computing Systems, vol. 12, no. 3,

pp. 23:1-23:21, Sep. 2015

[24] Zhao C, YiY, LiJ, Fu X, Liu L.
Interspike-interval-based analog spike-
time-dependent encoder for
neuromorphic processors. IEEE
Transactions on Very Large Scale
Integration (VLSI) Systems. 2017;25(8):
2193-2205

[25] Hegger R, Bunner MJ, Kantz H,
Giaquinta A. Identifying and modeling
delay feedback systems. Physical
Review Letters. 1998;81(3):558

[26] She C, Yang C, Liu L. Energy-
efficient resource allocation for MIMO-
OFDM systems serving random sources
with statistical QoS requirement. IEEE
Transactions on Communications. 2015;
63(11):4125-4141

[27] Almosa H, Mosleh S, Perrins E,

Liu L. Downlink channel estimation
with limited feedback for FDD multi-
user massive MIMO with spatial channel
correlation. In: 2018 IEEE International
Conference on Communications (ICC);
IEEE; 2018. pp. 1-6

[28] Mosleh S, Liu L, Ashdown JD,
Perrins E, Turck K. Content-based user
association and MIMO operation over
cached Cloud-RAN networks. arXiv
preprint arXiv:1906.11318; 2019

[29] Tse D, Viswanath P. Fundamentals
of Wireless Communication. Cambridge
University Press; 2005

[30] Shafin R, Liu L, Zhang J, Wu Y-C.
DoA estimation and capacity analysis
for 3-D millimeter wave massive-
MIMO/FD-MIMO OFDM systems. IEEE
Transactions on Wireless
Communications. 2016;15(10):
6963-6978



Intelligent System and Computing

[31] Zhou Z, Liu L, Chang H-H. Learn to
demodulate: MIMO-OFDM symbol
detection through downlink pilots.
arXiv preprint arXiv:1907.01516; 2019

[32] Atat R, Ma J, Chen H, Lee U,
Ashdown J, Liu L. Cognitive relay
networks with energy and mutual-
information accumulation. In: IEEE
INFOCOM 2018-IEEE Conference on
Computer Communications Workshops
(INFOCOM WKSHPS); IEEE; 2018.

pp. 640-644

[33] Mahmood FE, Perrins ES, Liu L.
Energy consumption vs. bit rate analysis
toward massive MIMO systems. In: 2018
IEEE International Smart Cities
Conference (ISC2); IEEE; 2018. pp. 1-7

[34] Porwal R, Agrawal H, Vyas R.
MIMO OFDM space time coding-spatial
multiplexing increasing performance
and spectral efficiency in wireless
systems. International Journal for

Scientific Research and Development.
2014;2(06):2321-0613

[35] Shafin R, Liu L, Li Y, Wang A,

Zhang J. Angle and delay estimation for
3-D massive MIMO/FD-MIMO systems
based on parametric channel modeling.

IEEE Transactions on Wireless
Communications. 2017;16(8):5370-5383

[36] Shafin R, Liu L, Zhang J. DoA
estimation and RMSE characterization
for 3D massive-MIMO/FD-MIMO
OFDM system. In: 2015 IEEE Global
Communications Conference
(GLOBECOM); IEEE; 2015. pp. 1-6

[37] Shafin R, Jiang M, Ma S, Piazzi L,
Liu L. Joint parametric channel
estimation and performance
characterization for 3D massive MIMO
OFDM systems. In: 2018 IEEE
International Conference on
Communications (ICC); IEEE; 2018.

pp. 1-6

[38] Shafin R, Liu L. DoA estimation and
performance analysis for multi-cell

16

multi-user 3D mmwave massive-MIMO
OFDM system. In: 2017 IEEE Wireless
Communications and Networking
Conference (WCNC); IEEE; 2017.

pp. 1-6

[39] Liu L, Chen R, Geirhofer S,

Sayana K, Shi Z, Zhou Y. Downlink
MIMO in LTE-advanced: SU-MIMO vs.
MU-MIMO. IEEE Communications
Magazine. 2012;50(2):140-147

[40] Mahmood FE, Perrins ES, Liu L.
Modeling and analysis of energy
consumption for MIMO systems. In:
2017 IEEE Wireless Communications
and Networking Conference (WCNC);
IEEE; 2017. pp. 1-6

[41] Shafin R, Liu L, Zhang JC. On the
Channel Estimation for 3D Massive
MIMO Systems. E-LETTER; 2014

[42] Ozdemir MK, Arslan H. Channel
estimation for wireless OFDM systems.

IEEE Communication Surveys and
Tutorials. 2007;9(2):18-48

[43] Shafin R, Liu L, Ashdown J,
Matyjas J, Zhang J. On the channel
estimation of multi-cell massive FD-
MIMO systems. In: 2018 IEEE
International Conference on
Communications (ICC); IEEE; 2018.

pp. 1-6

[44] Shafin R, Chen H, Nam YH, Hur S,
Park ], Reed ], et al. Self-tuning
sectorization: Deep reinforcement
learning meets broadcast beam
optimization. arXiv preprint arXiv:
1906.06021; 2019

[45] Shafin R, Liu L. Multi-cell multi-
user massive FD-MIMO: Downlink
precoding and throughput analysis.
IEEE Transactions on Wireless
Communications. 2018;18(1):487-502

[46] Liodakis G, Arvanitis D,
Vardiambasis I. Neural network-based
digital receiver for radio



The Novel Applications of Deep Reservoir Computing in Cyber-Security and Wireless...

DOI: http://dx.doi.org/10.5772/intechopen.89328

communications. WSEAS Transactions
on Systems. 2004;3(10):3308-3313

[47] Cai H, Zhao X-h. MIMO-OFDM
channel estimation based on neural
network. In: 2010 6th International
Conference on Wireless
Communications Networking and
Mobile Computing (WiCOM); IEEE;
2010. pp. 1-4

[48] Shafin R, Liu L, Chandrasekhar V,
Chen H, Reed J, et al. Artificial
intelligence-enabled cellular networks:
A critical path to beyond-5g and 6g.
arXiv preprint arXiv:1907.07862; 2019

[49] Sarma KK, Mitra A. Modeling MIMO
channels using a class of complex
recurrent neural network architectures.

AEU International Journal of Electronics
and Communications. 2012;66(4):322-331

[50] Routray G, Kanungo P. Rayleigh
fading MIMO channel prediction using
RNN with genetic algorithm. In:
International Conference on
Computational Intelligence and
Information Technology; Springer;
2011. pp. 21-29

[51] Chang H-H, Song H, Yi Y, Zhang ],
He H, Liu L. Distributive dynamic
spectrum access through deep
reinforcement learning: A reservoir
computing-based approach. IEEE
Internet of Things Journal. 2018;6(2):
1938-1948

[52] Mahmood F, Perrins E, Liu L.
Energy-efficient wireless
communications: From energy modeling
to performance evaluation. IEEE

Transactions on Vehicular Technology.
2019;68(8):7643-7654

[53] Kim J, Tong L, Thomas RJ. Dynamic
attacks on power systems economic
dispatch. In: 2014 48th Asilomar
Conference on Signals, Systems and
Computers; IEEE; 2014. pp. 345-349

[54] Zimmerman RD, Murillo-
Sanchez CE, Thomas RJ, et al.

17

Matpower: Steady-state operations,
planning, and analysis tools for power
systems research and education. IEEE
Transactions on Power Apparatus and
Systems. 2011;26(1):12-19

[55] Mosleh S, Liu L, Sahin C, Zheng YR,
Yi Y. Brain-inspired wireless
communications: Where reservoir
computing meets MIMO-OFDM. IEEE
Transactions on Neural Networks and
Learning Systems. 2017;29(10):
4694-4708

[56] Shafin R, Liu L, Ashdown J,
Matyjas J, Medley M, Wysocki B, et al.
Realizing green symbol detection via
reservoir computing: An energy-
efficiency perspective. In: 2018 IEEE
International Conference on
Communications (ICC); IEEE; 2018.

pp. 1-6

[57] Jaeger H. Adaptive nonlinear system
identification with echo state networks.
In: Advances in Neural Information
Processing Systems; 2003. pp. 609-616

[58] Hecht-Nielsen R. Theory of the
backpropagation neural network. In:

Neural Networks for Perception.
Elsevier; 1992. pp. 65-93

[59] Cheng L, Wu Y-C, Ma S, Zhang ],
Liu L. Channel estimation in full-
dimensional massive MIMO system
using one training symbol. In: 2017 IEEE
18th International Workshop on Signal
Processing Advances in Wireless
Communications (SPAWC); IEEE;
2017. pp. 1-5

[60] Danesh W, Zhao C, Wysocki BT,
Medley MJ, Thawdar NN, Yi Y. Channel
estimation in wireless OFDM systems
using reservoir computing. In: 2015
IEEE Symposium on Computational

Intelligence for Security and Defense
Applications (CISDA); IEEE; 2015.

pp- 1-5



