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Chapter

Static and Dynamic Photovoltaic
Cell/Module Parameters
Identification
Sid-Ali Blaifi and Bilal Taghezouit

Abstract

The accurate parameters extraction is an important step to obtain a robust PV
outputs forecasting for static or dynamic modes. For these aims, several approaches
have been proposed for photovoltaic (PV) cell modeling including electrical circuit-
based model, empirical models, and non-parametrical models. Moreover, numerous
parameter extraction methods have been introduced in the literature depending on
the proposed model and the operating mode. These methods can be classified into
two main approaches including automatic numerical and analytical approaches.
These approaches are commonly applied in the static mode, whereas they can be
employed for dynamic parameters extraction. In this chapter, as a first stage, the
static parameters extraction for both single and double diodes models is exposed
wherein Genetic Algorithm and outdoor measurements are considered for fixed
irradiation and temperature. In the second stage, a dynamic parameters extraction
is carried out using Levenberg-Marquardt algorithm, where 1 day profile outdoor
measurement is considered. After that, the robustness of the proposed approaches is
evaluated and the parameters obtained by the static method and that given by the
dynamic technique are compared. The test is carried out using 3 days with different
weather conditions profiles. The obtained results show that the parameters extrac-
tion by dynamic techniques gives satisfactory performances in terms of agreement
with the real data.

Keywords: photovoltaic module, static parameters extraction, dynamic
parameters extraction, empirical model, electrical model

1. Introduction

The increasing development of PV technologies brought out their potential to
provide the energy abundance across the world. Hence, they have been interested
by several research groups in the purpose to improve their behavior and extend
their life-time. Meanwhile, giving an accurate forecasting of the PV outputs
behavior has been always a real issue related to their nonlinearity. Two modes can
characterize the PV module in terms of modeling, the first one is the static mode
wherein the obtained model is characterized and validated for fixed weather
conditions (irradiation and temperature), while the second is the dynamic mode
where the validation is carried out using variable weather conditions. In this
context, several models of the PV cell/module have been introduced in the
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literature based mainly on several approaches including electrical, empirical, and
non-parametrical modeling. For the non-parametrical models, two approaches
are introduced namely, Artificial Neural Network (ANN) and Neuron-Fuzzy
based models. The accuracy and the robustness of these approaches rely strongly
on the richness of the training dataset in terms of scenarios. Neuron-Fuzzy tech-
niques has been used to predict cell short-circuit current and open-circuit voltage
for the static representation [1]. The ANN-based technique is introduced to
model the PV array power for the embedded systems implementation [2]. This
technique has been tested for dynamic mode dealing [3]. The ANN technique is
also used for the prediction of the PV cell/module voltage directed to amorphous
silicon PV technology wherein the obtained network has been tested by real
dynamic data [4].

In the empirical or the analytical approaches, several models have been proposed
to estimate accurately both static and dynamic modes of PV cell/modules. An
analytical model is proposed by [5] based on manufacturer characteristic. This
model provides acceptable results for both static and dynamic working. Another
model has been introduced by Sandia National Laboratory [6], which is widely
employed for PV cell/model forecasting especially for the large-scale arrays. Other
empirical models have been proposed in order to estimate the PV array power
under uniform shading [7, 8].

In the electrical approaches, two models widely prevail owing to their
simplicity based on equivalent circuits namely: single (SDM) and double (DDM)
diodes-based models. These models can deal with both static and dynamic
modes with an acceptable accuracy. Besides, several enhancements have
been introduced in these models to minimize parameters number and give
more simplicity [9, 10]. The expressions of both photo-generation and diode
saturation currents have been improved to give more accuracy in the
dynamic working [11].

All models possess unknown parameters, which should be identified according
to the module used in the practice. For this end, numerous approaches have been
introduced in the literature including analytical and automatic numerical methods.
The analytical methods usually rely on specific points on the I-V curve and on some
value given by manufacturer. However, a significant error can be engendered if one
of more of selected points is incorrect [12].

Owing to their adequate results, automatic numerical methods are prevail in PV
models parameters extraction either through the use of deterministic algorithms
such as: Newton model modified with Levenberg [13], Levenberg-Marquardt [14],
Simulated Annealing algorithm (SA) [15], Pattern Search (PS) [16], Nelder-Mead
Simplex algorithm (NMS) [17], and hybrid Nelder-Mead and modified particle
swarm optimization [18] or by introducing metaheuristic algorithms such as:
Genetic Algorithms (GA) [19], Particle Swarm Optimization (PSO) [20–26],
Cuckoo Search (CS) [27], Artificial Bee Colony (ABC) [26, 28], and Artificial Bee
Swarm (ABS) [29]. Moreover, other algorithms have been introduced like (FPA)
[30, 31], hybrid Bee Pollinator Flower Pollination Algorithm (BPFPA) [31, 32],
Harmony Search (HS) [33], Artificial Fish Swarm Algorithm (AFSA) [34], and
other algorithms. The majority of the aforementioned algorithms have been applied
for static parameters extraction.

Numerical algorithms have been also applied for dynamic parameters
extraction wherein the identification process is carried out using variables weather
conditions [35, 36].

In this chapter, modeling and parameters extraction of PV cell/module are
detailed. Where, comparison study among three models by applying static and
dynamic identification using out-door measurement.
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2. PV cell/module modeling

The PV cell presents outputs variation, which depends on weather conditions
namely, irradiation and temperature. As illustrated in Figure 1, for load variation
from open circuit to short circuit, the PV cell shows nonlinear characteristic that
possess a maximum point of power. For an optimal working, the load should be
adapted at this point. In this section, three PV cell models will be employed and
improved using automatic parameters extraction namely: the empirical Sandia
model and both single and double diodes electrical models.

2.1 Sandia model

This empirical model given by SANDIA National Laboratories provides rela-
tively accurate dynamic forecast for PV cell/module by describing the thermal, the
electrical, and the optical characteristics. Also, this model can be destined for any
technology and can be adapted with any scale of PV arrays. Furthermore, its sim-
plicity can qualify it to be used for real-time online prediction. Expressions (1)–(4)
describe the variation of Impp, Vmpp, and Pmpp, respectively.

Imp ¼ Imp_STC C0Ee þ C1E
2
e

� �

1þ αmp T � TSTCð Þ
� �

(1)

Vmp ¼ Vmp_STC þ C2Ns � δ Tð Þ � ln Eeð Þ þ C3Ns δ Tð Þ ln Eeð Þð Þ2 þ βmp T � TSTCð Þ

(2)

δ Tð Þ ¼
n� k� T þ 273:15ð Þ

q
(3)

Pmp ¼ Imp � Vmp (4)

where, C0–3 are empirical parameters to be identified, Imp_STC, Vmp_STC are the
current and the voltage in the maximum power point under standard test condition,
Ee is the effective irradiation, K is the Boltzmann constant, q is the electron charge,
δ(T) is the thermal voltage, αmp and βmp are, respectively, the current and the
voltage temperature coefficient [36].

Figure 1.
PV characteristic for different irradiation and temperature. (a) Current versus voltage for different irradiation;
(b) Power versus voltage for different irradiation; (c) Current versus voltage for different temperature; (d)
Power versus voltage for different temperature.
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2.2 Single diode based model (SDM)

This physical model is based on the electrical approach illustrated in Figure 2
wherein the PV cell is composed of: a photo-generation current source and a diode
while joule losses are represented by two serial and parallel resistors.

From this electrical representation, expression (5) and (6) can be obtained to
describe the evolution of both current and voltage. The output current is expressed
as a sum of the photo-generation current Iph, the diode current Id, and the shunt
current Ish.

I ¼ Iph � Id � Ish (5)

Id ¼ I0 exp
q V þ RsIð Þ

nKT

� �

� 1

� �

(6)

Ish ¼
V þ RsI

Rsh
(7)

where, K is the constant of Boltzmann, q is the electron charge, T is the cell
temperature, n is the diode ideality factor, and I0 is the current saturation due to
diffusion and recombination.

After the substitution of Eqs. (6) and (7) in (5), the following expression is
obtained:

I ¼ Iph � I0 exp
q V þ RsIð Þ

nKT

� �

� 1

� �

�
V þ RsI

Rsh
(8)

Rs, Rsh, and n are parameters to be identified in the static study and can be
adjusted in the dynamic study.

Diode saturation current I0 is expressed in Eq. (9) function of the cell tempera-
ture and the energy band-gap [11].

I0 ¼
Isc � T3 � exp �

q�Eg

KT

� 	

exp q�Voc

nKTr

� 	

� 1
� 	

� Tr
3 � exp �

q:Egr

KTr

� 	 (9)

Eq. (10) describes the evolution of the energy band-gap Eg as function of the cell
temperature.

Eg ¼ Eg0 �
α� T2

β þ T

� �

(10)

where Eg0 and Egr are the energy band-gap of the silicon at 0°C and at the
reference temperature Tr, respectively, α and β are constants of the material.

Figure 2.
Single diode equivalent circuit.
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The photo-generation current is given by Eq. (11) as a function of the irradiation
and the cell temperature.

Iph ¼
G

1000
Isc þ µ T � Trð Þ½ � (11)

where G is the input irradiation, T is the cell temperature, Isc is the module
short-circuit current, and μ is the coefficient temperature/short-circuit current
(given by the manufacturer) [11].

Eg0, α, β, μ, Isc, and Voc are parameters to be identified in the dynamic study.

2.3 Double diode-based model

From the electrical representation illustrated in Figure 3, the PV cell can be
represented by a source of current that represents the photo-generation, two diodes
and both parallel and serial resistances representing the loss of energy inside the
cell.

After applying nodes law, the output current is expressed as sum of: photo-
generation current Iph, shunt current Ish and the diodes currents Id1 and Id2
(Eqs. (12)–(15)).

I ¼ Iph � Id1 � Id2 � Ish (12)

Id1 ¼ I01 exp
q V þ RsIð Þ

n1KT

� �

� 1

� �

(13)

Id2 ¼ I02 exp
q V þ RsIð Þ

n2KT

� �

� 1

� �

(14)

Ish ¼
V þ RsI

Rsh
(15)

In which I01–2 are currents saturation of the two diodes that resulted from
diffusion and recombination, n1–2 are ideally factors.

By substituting Eqs. (13)–(15) in (12), final description of the output current
versus the voltage is obtained which is expressed in Eq. (16) [11].

I ¼ Iph � I01 exp
q V þ RsIð Þ

n1KT

� �

� 1

� �

� I02 exp
q V þ RsIð Þ

n2KT

� �

� 1

� �

�
V þ RsI

Rsh

(16)

n1–2 and Rs, Rsh are parameters which will be identified in the static study and
they can be adjusted in the dynamic study.

Eqs. (17) and (18) express the evolution saturation currents of the diodes I01–2
versus energy band-gap Eg and cell temperature [11].

Figure 3.
Double diodes equivalent circuit.
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I01 ¼
Isc � T3 � exp �

q�Eg1

KT

� 	

exp q�Voc

n1KTr

� 	

� 1
� 	

� Tr
3 � exp �

q�Egr

KTr

� 	 (17)

I02 ¼
Isc � T3 � exp �

q�Eg2

KT

� 	

exp q�Voc

n2KTr

� 	

� 1
� 	

� Tr
3 � exp �

q�Egr

KTr

� 	 (18)

The photo-generation current is represented by the same expression of the single
diode model (Eq. (11)).

Parameters Eg01–2, α1–2, β1–2, μ, Isc and Voc will be identified in the dynamic
study.

3. Static parameters extraction of PV module

For fixed irradiation and temperature, a static parameters extraction will be
done to extract five parameters in SDM and seven parameters in DDM. A numerical
stochastic optimization algorithm is used in this identification. This algorithm
namely, Genetic Algorithm (GA), is employed to minimize the cost function given
in Eq. (19) which expresses the root mean square error (RMSE) between the
measured PV module I(v) characteristic and that given by the models. For this and,
outdoor static measurements have been carried out using the peak measuring
device tracer (PVPM 2540C), whose characteristics are illustrated in Table 1. This
device has been programed to provide both I(V) and P(V) curves of 101 samples
per 1 min.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1
f Vm, I,Pð Þ2

r

(19)

where I is the simulated current, Vm is the measured voltage, N is the number of
sample in I(V) characteristics. The error between the measured and simulated I(V)
characteristics for the aforementioned models are expressed in Eqs. (20) and (21).

f Vm, I,Pð Þ ¼ Iph � I0 exp
q Vm þ RsIð Þ

nKT

� �

� 1

� �

�
Vm þ RsI

Rsh
� Im (20)

f Vm, I,Pð Þ ¼ Iph � I01 exp
q Vm þ RsIð Þ

n1KT

� �

� 1

� �

� I02 exp
q Vm þ RsIð Þ

n2KT

� �

� 1

� �

�
Vm þ RsI

Rsh
� Im

(21)

Application DC

voltage

DC

current

Temperature Irradiance Measuring

period single

measurement

I-V

curve

samples

PV modules

and small strings

25/50/

100/250 V

2/5/10/

40 A

�40°C to

+120°C with Pt1000

0–1300 (W/m2)

(standard-sensor)

0.02–2 (s) 101

Table 1.
PVPM2540C characteristics.
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3.1 Genetic Algorithm

The Genetic Algorithm (GA) is a stochastic algorithm imitated from the biolog-
ical genetic process used to find an approximate solution for optimization problems.
Like in the natural concept, the chromosome is the holder of the genes that the child
can probably get from his parents. By analogy, these genes represent the variables
(parameters) of the function to be minimized. Five steps can characterize the GA
namely, generation of initial population, evaluation of fitness, selection, crossover
and mutation [37, 38].

3.1.1 Initial population

The process starts by the generation the initial population of N chromosome
coded in binary. Each vector chromosome is formed of group of parameters in
which its length M is given in Eq. (22) wherein n is the number of parameters and
Nb is the length of the sub-string (number of bits) of each parameter as shown in
Figure 4. The length of the integer part given by the vector Conv (Eq. (23)) is used
to limit the research domain in which, Pi (Eq. (24)) is the parameter value in
decimal code [37, 38].

M ¼ n�Nb (22)

Conv ¼ 2ni 2ni�1
…20 2�1

…2 ni�Nbþ1ð Þ
h i

(23)

Pi ¼ a0 a1:::aNb�1

� �

� ConvT (24)

3.1.2 Fitness

In this stage, the parameters values that have been randomly generated and
decoded in decimal base will be substituted in the cost function to be optimized.
The fitness is the solution of the parameters in the RMSE (x) function calculated in
Eq. (19). Its value is mathematically expressed in Eq. (23) [37, 38].

Fitness xð Þ ¼
1

1þ RMSE xð Þ
(25)

3.1.3 Selection

The chromosomes that will participate as parents to generate a new child are
chosen in this step. Any chromosome in the generated population can be chosen
however, the individual that presents a good fitness have a high probability. The
technique used for the chromosome choice is the roulette wheel illustrated in
Figure 5, wherein the selection probability Ps, expressed in Eq. (24), is calculated,
consists of a cumulative sum of the fitness of each chromosome orderly relative to
the sum of all fitness. After that, the process generates a random drawing probabil-
ity Pr. Hence, the first chromosome corresponds to Pr < Ps is chosen for the next
steps (crossover and Mutation).

Figure 4.
Chromosome string.
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Ps ið Þ ¼

Pi
k¼1Fitness kð Þ

PN
j¼1Fitness jð Þ

(26)

where, k is an integer counter that varies from 1 to the current chromosome, and
j is an integer counter that varies from 1 to the population size N [37, 38].

3.1.4 Crossover

After selecting the chromosomes, the algorithm gives birth to new children by
performing a crossover between each two chromosomes. For this end, a drawing
probability Pr is generated and compared with the crossover probability Pc (usually
high probability). Hence, the parents chromosomes that corresponds to Pr < Pc will
be chosen for child generation. If not, the same chromosomes are kept. As illus-
trated in Figure 6, the crossover by point is used wherein the bits after the point
randomly chosen are swapped [37, 38].

Figure 5.
Roulette wheel example.

Figure 6.
Crossover process.

Figure 7.
Mutation process.
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3.1.5 Mutation

In this step, the algorithm introduces a change in some characters of the selected
chromosomes in order to expand the search space if the initial population does not

Description SANYO mono-crystalline

Cell number 96

Cell type Mono-crystalline

Cell size 156 � 156 mm

PV module dimension 1319 � 894 � 35 mm

Nominal power 180 W

Open circuit voltage Voc 66.4 V

Short circuit current Isc 3.65 A

Voltage Vmpp 54 V

Current Impp 3.33 A

Nominal operating temperature NOCT 45 � 2°C

Temperature coefficient (Pmax) �0.33%/°C

Temperature coefficient (Isc) 1.10 mA/°C

Temperature coefficient (Voc) �0.173 V/°C

Table 2.
PV modules characteristics.

Figure 8.
(a) Pictures for I-V experimental platform and (b) synoptic scheme for I-V measurement.
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fall in the optimal solution. In the binary coding, the selected bit will change from 1
to 0 and vice versa as described in Figure 7. The mutation has low probability Pm in
which, it will be affected for characters that correspond to Pr < Pm in which, Pr is
the drawing probability (randomly generated) [37, 38].

Our system is formed of mono-crystalline PV module SANYO technology with
the characteristics listed in Table 2, peak measuring tracer and the necessary sen-
sors. The experimental platform is illustrated in both Figure 8a and b.

After running of GA for 1000 cycles with the parameters listed in Table 3 for
both SDM and DDM using outdoor measurement of the systems, wherein extracted
parameters are listed in Table 4. Figure 9a and b illustrate the agreement between
the measured and simulated I(V) and P(V) characteristics for SDM model whose

GA parameters Value

Number of cycle 1000

Population length 500

Crossover probability 0.7

Mutation probability 0.2

Table 3.
The GA parameters.

The electrical parameter Iph [A] I0 [A] n Rs [Ω] Rsh [KΩ]

The identified value 3.0195 49591e�005 1.874*96 0.3273 8.1514

Table 4.
The obtained parameters for SDM.

Figure 9.
Matching between measured and simulated characteristics for SDM. (a) I(V) and (b) P(V).

The electrical

parameter

Iph
[A]

I01 [A] I02 [A] n1 n2 Rs

[Ω]

Rsh

[KΩ]

The identified value 3.0289 6.1035e�005 3.8147–006 1.3658*96 1.9179*96 0.1017 5.992

Table 5.
The obtained parameters for DDM.
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obtained parameters are summarized in Table 5. Figure 10a and b show the agree-
ment between the measured and simulated I(V) and P(V) characteristics for DDM
model whose extracted parameters are summarized in Table 6.

Some parameters will be identified again in the dynamic study including the
parameters involved in I0 and Iph equations, while the remaining will be adjusted to
give more accuracy under variable weather conditions.

4. Dynamic parameters extraction of PV module

In this section, dynamic parameters identification will be described wherein the
process is done by using 1 day profile of measurement. This allows to improve the
nominal values given by the manufacturer, which can cause a significant error due
to operating conditions and the consumed lifetime. Moreover, parameters obtained
by static method can be adjusted by dynamic identification. For this end, automatic
parameters adjustment using Levenberg-Marquardt optimization algorithm is
employed.

As illustrated in Figure 11, the main idea is to take both PV module model and
the MPPT as a single system with three outputs namely, Impp, Vmpp, and Pmpp. These
outputs will be compared with 1 day profile of outdoor measurements. The process
consists in minimizing the error between the model outputs and the real data. The
whole system has been implemented in Matlab/Simulink tool.

Figure 10.
Matching between measured and simulated characteristics for DDM. (a) I(V) and (b) P(V).

E ΔE

NS NL ZE PL PS

NS PS PS PL PS PS

NL PS PL PL PL PS

ZE NL NL ZE PL PL

PL NS NL NL NL NS

PS NS NS NL NS NS

Table 6.
The inference table.
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For Sandia model, the process is carried out without the use of MPPT consider-
ing that this model has been established to the dynamic forecasting.

4.1 The MPPT used

An Accurate fuzzy logic MPPT algorithm is employed in our system (for SDM
and DDM) in order to get satisfactory results in terms of precision and accuracy.

Figure 11.
Dynamic parameters extraction process.

Figure 12.
Fuzzy logic algorithm steps.
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The algorithm is used to control a DC/DC boost converter for the purpose to keep
the PV module working at the maximum point of power. Mamdani inference model
is used with two inputs namely, the error E and the variation of the error ΔE. The
calculation of these attributes is expressed in Eqs. (27)–(30).

ΔPpv nð Þ ¼ Ppv nð Þ � Ppv n� 1ð Þ (27)

ΔVpv nð Þ ¼ Vpv nð Þ � Vpv n� 1ð Þ (28)

Figure 13.
(a) Error membership; (b) variation of error membership; and (c) duty cycle membership.
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E nð Þ ¼
ΔPpv nð Þ

ΔVpv nð Þ
(29)

ΔE nð Þ ¼ E nð Þ � E n� 1ð Þ (30)

Three steps can characterize the fuzzy algorithm; the first one is the
fuzzification process that consists on the conversion of the numerical inputs
values (E and ΔE) into linguistic values by the substitution in the membership
functions. The second step is the inference process, which is considered as the main
stage in the fuzzy algorithm wherein the relation between the inputs and the
output is done. The third step is the defuzzification where the process converts the
linguistic decision into numerical output. Figure 12 describes briefly the fuzzy
processing steps [39].

SDM parameters Boundaries DDM parameters Boundaries Sandia parameters Boundaries

n [0, 2]*96 n1, n2 [0, 2]*96 C0 [0, 2]

Rs [Ω] [0, 1] Rs [Ω] [0, 1] C1 [�1, 1]

Rsh [Ω] [0, 104] Rsh [Ω] [0, 104] C2 [�10, 10]

Eg0 [0, 1] Eg01–2 [0, 2] C3 [�10, 50]

A [0, 1] α1–2 [0, 1] αImp [°C
�1] [0, 1]

B [0, 104] β1–2 [0, 104] βVmp [V/°C] [�1, 0]

μ [0, 1] μ [0, 1] n

Isc [3, 3.7] Isc [3, 3.7]

Voc [60, 66.8] Voc [60, 66.8]

Table 7.
Lower and upper boundaries selected for each model parameters.

SDM

parameters

Values DDM

parameters

Values Sandia

parameters

Values

n 105.73/96 n1, n2 90.73/96; 73.39/

96

C0 1.058

Rs [Ω] 0.82495 Rs [Ω] 0.3219 C1 0.020

Rsh [Ω] 8.371 � 103 Rsh [Ω] 4.9664 � 103 C2 �0.341

Eg0 [ev] 1.4525 Eg01–2 [ev] 1.649; 1.31 C3 �9.997

α 6.56 � 10�4 α1–2 0.0018; 0.0132 αImp [°C
�1] 2.53 � 10�14

β 126.11 β1–2 694.84; 1020.76 βVmp [V/°C] �0.203

μ 0.0121 μ 0.0112 n 1.221

Isc 3.671 Isc 3.629

Voc 66.208 Voc 65.527

Table 8.
Dynamic extracted parameters.
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For both inputs and output, five trapezoidal and triangular membership func-
tions have been employed namely: NS (negative strong), NL (negative low), ZE
(zero), PL (positive low) and PS (positive strong). The center of gravity based
method is used for the defuzzification to provide the control duty cycle after
applying the Mamdani inference model given in Table 6. Figure 13a, b and d
describes the used membership functions [39].

4.2 Simulation study

The Levenberg-Marquardt algorithm is implemented using 1 day profile of
outdoor real measurement of dynamic PV outputs (Pmpp, Impp and Vmpp). The
process consists in minimizing the error between simulated outputs of both
SDM and DDM and 8 h of real data (09:00 am–05:00 pm). The peak measuring
device tracer (PVPM 2540C) has been programmed to provide 1 sample per
minute. Table 7 lists the lower and upper limits search of the extracted
parameters. The extracted parameters using the dynamic method are summarized
in Table 8. The inputs measurement of the irradiation and the temperature are
illustrated in Figure 14a and b, respectively. Satisfactory results have been
obtained in terms of matching between the real data and the simulated outputs
Pmpp, Impp and Vmpp for SDM, DDM and Sandia as shown in Figure 15a–c,
respectively.

Figure 14.
Eight hours profile (09:00 am–05:00 pm). (a) Irradiation and (b) temperature.
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5. Experimental validation

In this section, a validation with an unseen data is carried out to test and
compare the effectiveness of the proposed enhancement. The three developed
models will be compared with real measurement profile (09:00 am–05:00 pm) of
irradiation and temperature for different weather conditions. Wherein, the SDM
and DDM models using the developed parameters are compared with the former
nominal parameters listed in Table 9, Sandia model and the real data. Three differ-
ent skies of real measurement have been used for this validation namely, clear day,

Figure 15.
Eight hours profile (09:00 am–05:00 pm) of: measured output VS obtained output for SANYO mono-
crystalline. (a) Measured Pmpp vs obtained Pmpp from: SDM, DDM and Sandia, (b) measured Impp vs
obtained Impp from: SDM, DDM and Sandia and (c) measured Vmpp VS obtained Vmpp from: SDM, DDM
and Sandia.
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Parameters Value

Eg0 1.16 eV

α 4.73 � 10�4

β 1000

μ 1.10 mA/°C

Isc 3.65 A

Voc 66.4 V

Table 9.
Nominal parameters.

Figure 16.
Eight hours profile (09:00 am–05:00 pm) of: measured Pmpp vs obtained Pmpp from: SDM, SDM with nominal
parameters, DDM, DDM with nominal parameters and Sandia. (a) clear day, (b) semi-cloudy day and (c)
cloudy day.
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semi-cloudy day and cloudy day. The matching in the power (Pmpp) between and
the real data and SDM and DDMwith nominal parameters, SDM and DDMwith the
new parameters and Sandia model is illustrated in Figure 16a–c for clear day, semi-
cloudy day and cloudy day respectively. Besides, the agreement in the voltage and
the current (Vmpp and Impp) for these models with the real data is shown in
Figure 17a–c and Figure 18a–c, respectively.

Figure 17.
Eight hours profile (09:00 am–05:00 pm) of: measured Impp vs obtained Impp from: SDM, SDM with nominal
parameters, DDM, DDM with nominal parameters and Sandia. (a) clear day, (b) semi-cloudy day and (c)
cloudy day.
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It is clearly found that an improved agreement has been shown by models with
new parameters compared to that given by the nominal parameters and the static
method.

For more clarity, the hourly power efficiency given by the presented models and
the real data has been calculated. It consists on the average of the power during 1 h
versus the optimal PV module power (Eq. (31)) [40].

Hourly efficiency ¼

PN
k¼1PMPP kð Þ=N

PPV_optimal
(31)

in which, N is the number samples per hour.

Figure 18.
Eight hours profile (09:00 am–05:00 pm) of: measured Vmpp vs obtained Vmpp from: SDM, SDMwith nominal
parameters, DDM, DDM with nominal parameters and Sandia. (a) clear day, (b) semi-cloudy day and (c)
cloudy day.
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Figure 19a–c show the bar-graph of the hourly power efficiency of the proposed
models for the three weather conditions, namely the clear day, semi-cloudy day and
cloudy day, respectively. The enhanced models present higher hourly power effi-
ciency versus models with the former parameters and those given by the static
technique. Furthermore, root mean square error (RMS) and the mean absolute
error (MAE) between the real data and the studied models are calculated by
Eqs. (19) and (32) to show the enhancement of the proposed method.

MAE ¼
1

N

X

N

i¼1

Simulated output�Measured outputj j

Measured output
(32)

Figure 19.
Eight hours profile (09:00 am–05:00 pm) of: measured hourly efficiency vs obtained hourly efficiency from:
SDM, SDMwith nominal parameters, DDM, DDMwith nominal parameters and Sandia. (a) Clear day, (b)
semi-cloudy day, and (c) cloudy day.
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where N is the number of samples [41].
The aforementioned results show clearly that the extracted parameters of the PV

module using dynamic techniques present more accuracy compared with the static
method and the parameters given by the manufacturer. Indeed, the parameters
obtained by the static method are clearly improved for variable weather conditions
(irradiation and temperature), which is confirmed using different skies. Table 10
summarizes the calculated RMS and MAE errors values which show obviously that
the developed models present advantages comparing with real outdoor data of
different weather conditions.

6. Conclusion

In this chapter, both dynamic and static parameters identification methods have
been highlighted and compared with real measurement. The SDM and DDM nom-
inal parameters involved in I0 and Iph equations have been developed by dynamic
method. This improved result has been compared with that given by the static
technique and Sandia model versus out-door real data for different skies (clear day,
semi-cloudy day and cloudy day). It was found that SDM and DDM based on the
parameters extracted by dynamic method give satisfactory accuracy, which is con-
firmed by some calculated indicator such as: the hourly efficiency and both root
mean square error (RMS) and the mean absolute error (MAE). This allows to solve
modeling problems of PV module that apply for several applications such as fault
detection.

Day Weather Error

[%]

Current Voltage

SDM SDMnp DDM DDMnp Sandia SDM SDMnp DDM DDMnp Sandia

22/01/

2018

Clear

day

RMS 0.72 1.12 0.69 0.93 0.68 1.48 2.21 1.63 2.34 1.49

MAE 4.31 5.05 4.24 5.12 4.38 1.27 4.07 1.77 3.70 1.17

29/01/

2018

Semi-

cloudy

RMS 0.22 0.45 0.24 0.32 0.23 3.30 9.10 6.53 7.87 1.13

MAE 3.14 5.40 2.96 4.35 2.85 1.50 5.34 2.37 4.76 0.57

28/01/

2018

Cloudy

day

RMS 0.43 0.48 0.47 0.31 0.52 9.05 8.77 12.2 12.3 1.83

MAE 4.38 6.62 5.02 3.93 5.60 2.06 4.63 4.05 6.18 0.77

Day Weather Error [%] Power

SDM SDMnp DDM DDMnp Sandia

22/01/2018 Clear day RMS 3.65 8.49 3.45 4.34 3.79

MAE 4.24 6.79 3.74 4.44 4.51

29/01/2018 Semi-cloudy RMS 2.48 4.30 2.48 4.30 0.82

MAE 5.14 11.7 4.58 10.3 2.33

28/01/2018 Cloudy day RMS 5.35 4.82 5.51 5.24 2.79

MAE 1.37 1.56 1.55 1.57 5.63

Table 10.
Calculated RMS (%) and MAE (%).
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