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1. Introduction 

Over the past two decades, there has been a rapidly growing interest in approximating a 
nonlinear system by a Takagi-Sugeno (T-S) fuzzy model (Takagi & Sugeno, 1985). In 
general, this model is represented by using a set of fuzzy rules to describe a global nonlinear 
system in terms of a set of local linear models which are smoothly connected by fuzzy 
membership functions. Based on the T-S fuzzy model, recently, various fuzzy controllers 
have been developed under the so-called parallel-distributed compensation (PDC) scheme 
(in which each control rule is distributively designed for the corresponding rule of a T-S 
fuzzy model) and have been widely and successfully applied in fields ranging from 
aerospace to process control. The reason is because the fuzzy model-based control method 
provides a natural, simple and effective design approach to complement other nonlinear 
control techniques that require special and rather involved knowledge. Below are listed the 
main features of T-S model-based fuzzy control method: 
1. It does not require severe structural assumptions on the plant model. 
2. It preserves well-understood linear intuition. 
3. It is naturally compatible with decompositions of the overall control problem. The 

decompositions are typically not hierarchical, and the interactions of sub-problems are 
captured by physical variables that are typically state variables in a more complete 
model of the overall system. 

4. It enables control systems to respond rapidly to changing operating conditions. For this 
reason, it is important that the selected physical variables reflect changes in plant 
dynamics as operating conditions change. 

In fact, the T-S model-based fuzzy control method (of divide and conquer type) constructs a 
nonlinear controller, with certain required dynamic properties, by combining, in some 
sense, the members of appropriate family of linear time-invariant controllers. Here, 
nonlinear control design task is broken into a number of linear sub-problems, which enable 
linear design methods to be applied to nonlinear problems. Within the general framework of 
the T-S fuzzy model-based control method, a flurry of research activities have quickly 
yielded many important results on the design of fuzzy control systems by means of the 
following Lyapunov function approaches: 
1. Common quadratic Lyapunov function approach (Tanaka & Sugeno, 1992; Tanaka et al, 

1996; Wang et al, 1996; Cao & Frank, 2000; Assawinchaichote, 2004). 
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2. Piecewise Lyapunov function approach (Cao et al, 1996; Cao et al, 1997; Cao et al, 1999; 
Han et al, 2000; Feng, 2003; Feng, 2004; Chen et al, 2005). 

3. Fuzzy weighting-dependent Lyapunov function approach (Tanaka et al, 2001; Park & 
Choi, 2001; Choi & Park, 2003; Kim & Park 2008; Kim et al, 2009). 

The basic idea of these approaches is to design a feedback controller for each local model 
and to construct a global controller from the local controller in such a way that global 
stability of the closed-loop fuzzy control system is guaranteed. In the context of these 
approaches, various studies have attempted to tackle the robust control problem (Tanaka et 
al, 1996; Chen et al, 1999; Tsai & Li, 2009), performance-oriented control problem (Chen et al, 
2000; Xiaodong & Qingling, 2003; Zhou et al, 2005), networked control problem (Hwang & 
Chang, 2008; Jiang & Han, 2008; Gao et al, 2009), and delayed system control problem (Cao 
& Frank, 2000; Chen et al, 2005; Wu, 2008). 

A. T-S fuzzy model and control synthesis 

In general, it is not possible to exactly reformulate a nonlinear system as a T-S fuzzy system. 
However, it is possible to over-bound the nonlinear system in the sense that every solution 
to the nonlinear system is a solution to the T-S fuzzy system (but not vice versa). Thus, rather 
conservative results are expected in the procedure of modeling the T-S fuzzy system. 
Moreover, since the T-S fuzzy model is not unique, there may be a potential in reducing the 
conservatism occurring when approximating the nonlinear system. Hence, one always 
needs to discuss how to non-conservatively construct the T-S fuzzy model for the given 
nonlinear system. As a result, various methods for the reformulation of nonlinear systems 
into T-S fuzzy systems have been presented in the literature (Tanaka & Wang, 2001; and 
references therein). In this chapter, we would like to introduce a geometric method for some 
particular nonlinearities: sector nonlinearity, saturation nonlinearity, and fault nonlinearity 
(see Section 2). 
Meanwhile, based on the aforementioned Lyapunov function approaches, numerous 
investigations and researches have been carried out to develop the T-S model-based fuzzy 
control system. Here, it should be noted that recent research efforts have focused on using 
the PLF or FWLF approach when establishing a feedback control law since the CQLF 
approach leads to over-conservative design solutions for a large number of T-S fuzzy 
subsystems. Thus, we shall also focus on taking advantage of the FWLF approach to derive 
less conservative conditions for the solvability of the stabilization problem (for lack of space, 
the PLF approach will be not discussed in this chapter). 

B. Main issues 

Most stabilization conditions based on the FWLF are formulated in terms of parameterized 
linear matrix inequalities (PLMIs), which causes the following primary practical difficulty: 
the PLMI-based condition involves an infinite number of LMI-based conditions and thus the 
task of establishing a controller is intractable numerically. This arises because the PLMI-
based condition must be satisfied for every allowable parameter value that leads to 
uncountably many conditions since there is a continuum of parameter values. To overcome 
this difficulty, Becker et al (1993) proposed an approximate, ad hoc approach whereby the 
parameter space is divided into a fine grid, and a controller is designed so that the 
solvability conditions are satisfied at a finite number of parameter values. However, it 
should be noted that there appears to be little guidance as to how perform the gridding. 
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Moreover, for a particular grid spacing, the number of grid points required grows extremely 
rapidly as the number of parameters increases. Hence, despite the relative efficiency of the 
available numerical algorithms for solving linear matrix inequalities (LMIs), the utility of 
this approach with present computing facilities is strictly limited to systems with a small 
number of parameters (less than three or four). 

To deal with this problem, we shall select an appropriate structure for variables, say 

( ( ))tθX , of the PLMI-based condition under consideration in such a way that the variables 

are polynomially dependent on parameters denoting fuzzy weighting functions, say ( )i tθ : 

 
1 2 1 2

1 2=1 =1 =1

( ( )) = ( ) ( ) ( )
g g

g

r r r

i i i i i i
i i i

t t t tθ θ θ θ∑ ∑ ∑ AA AX X  (1) 

subject to 
=1

( ) = 1
r

ii
tθ∑  and ( ) 0i tθ ≥ , = 1, ,i rA . In particular, for simplicity of presentation, 

we shall take the following two cases into consideration in this chapter: 
 

Affine Parameter Dependence (APD): 

 
=1 =1

( ( )) = ( ) , . . ( ) = 1, ( ) 0, = 1, , ,
r r

i i i i
i i

t t s t t t i rθ θ θ θ ≥∑ ∑ AX X  (2) 

Quadratic Parameter Dependence (QPD): 

 
=1 =1 =1

( ( )) = ( ) ( ) , . . ( ) = 1, ( ) 0, = 1, , ,
r r r

i j ij i i
i j i

t t t s t t t i rθ θ θ θ θ ≥∑∑ ∑ AX X  (3) 

In fact, the use of (1) yields a polynomially parameter-dependent condition such as  

 
1 2 1 2

1 2=1 =1 =1

0 < ( ) ( ) ( )
p p

p

r r r

i i i i i i
i i i

t t tθ θ θ∑ ∑ ∑ AA A L  (4) 

subject to 
=1

( ) = 1
r

ii
tθ∑  and ( ) 0i tθ ≥ , = 1, ,i rA . Thus, the condition in (4) naturally reduces 

to a feasibility problem with a finite number of conditions as follows: 

 
1 2 1 20 < , , , , [1, ].i i i p

p
i i i r∀ ∈A AL  (5) 

However, it is very conservative to use (5) to numerically solve the feasible problem of (4): 
Thus, we shall propose an efficient relaxation technique to reduce the conservatism caused 
by the use of (5) (see Section 3), which may achieve better system performances compared 
with those of other techniques appeared in the literature (Tanaka et al, 1998; Kim & Lee, 
2000; Xiaodong & Qingling, 2003; Tuan et al, 2001; Teixeira, 2003; Sala & Arino# , 2007; Fang 
et al, 2006). 

C. Organization 
This chapter is organized as follows: Section 2 gives the information on the T-S fuzzy system 
description and its modeling. Further, Section 3 illustrates about the parameterized linear 
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matrix inequality (PLMI) and introduces our main relaxation technique in detail. Based on 
CQLFs and FWLFs, Section 4 gives the LMI-based stabilization conditions, derived using the 
proposed relaxation technique in Section 3, for a class of T-S fuzzy systems. 

Notation and symbols 

We collect here, for ease of reference, a list of the main notation and symbols that represent 
the same meaning throughout the chapters. 

nR                     denotes the n-dimensional real space. 
1/ 2|| ||= ( )Tx x x    is taken to be the standard Euclidian norm. 

2 2= [0, )+ ∞L L  denotes the Lebesgue space consisting of square-integrable functions on 

           [0, )∞ . 

diag(A,B)         denotes a diagonal matrix with diagonal entries A and B. 

A⊕B              stands for the Kronecker sum of two matrices A and B, which is the same as 
           diag(A,B) 

(∗)                   is used, in symmetric block matrices, as an ellipsis for terms that are induced 
           by symmetry. 

X ≥ Y                mean that X – Y is positive semi-definite, respectively. 
X > Y                mean that X – Y is positive definite, respectively. 
Tr(Q)                returns the sum of the diagonal elements of the matrix Q. 

2. T-S fuzzy system description and modeling 

T-S fuzzy systems have recently received much attention in the engineering field, such as 

chemical processes, robotics systems, automatic systems, aerospace or vehicle systems, and 

manufacturing processes, owing to their ability to represent the nonlinear system and their 

systematic means of computing feedback controllers. 

A. T-S fuzzy system description 

The ith rules of the T-S fuzzy models are of the following forms: 
Model Rule i : IF 1( )η t  is 1iF  and … and ( )ηs t  is isF , THEN 

 
( ) = ( ) ( )

, = 1,2, , ,
   ( ) = ( )

i i

i

x t A x t B u t
for i r

y t C x t

∇ +⎧
⎨
⎩

A  (6) 

where the consequent subsystems in (6) represent linear systems in local operating regions; 

ijF  denotes a fuzzy set; 1( ), , ( )st tη ηA  denote the premise variables of the model; r denotes 

the number of IF - THEN rules; ( ) xnx t ∈R , ( ) unu t ∈R , ( ) yn
y t ∈R  denote the state, the 

input, the measured output, respectively; and ∇ represents the derivative operator for 

continuous-time and the forward operator for discrete-time systems. Here, it is assumed 

that the premise variables not not explicitly depend on the control input u(t). This 

assumption is needed to avoid a complicated defuzzification process of fuzzy controller, 

under which the overall fuzzy model is inferred as 

 
( ) = ( ( )) ( ) ( ( )) ( )

   ( ) = ( ( )) ( )

x t A t x t B t u t

y t C t x t

θ θ
θ

∇ +⎧
⎨
⎩

 (7) 
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where 

 
=1

( ( )) ( ( ))
= ( ) ,

( ( )) 0 0

r
i i

i
ii

A t B t A B
t

C t C

θ θ
θ

θ

Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑  (8) 

 
=1

=1

( ( ))
( ) = ( ( )) = ,  ( ( )) = ( ( ))

( ( ))

s
i

i i i ij jr
j

i
i

g t
t t g t f t

g t

η
θ θ η η η

η
∏

∑
 (9) 

in which Ai, Bi, and Ci are real constant matrices with appropriate dimensions, the notation 

1( ) = [ ( ), , ( ) ]T s
st t tη η η ∈A R , and ( ( ))ij jf tη  denotes the grade of membership of ( )j tη  in ijF , 

and 1( ) = [ ( ), , ( ) ] r
rt t tθ θ θ ∈A R . Moreover, let ( ( )) 0ig tη ≥ , for = 1, ,i rA , and 

=1
( ( )) > 0

r
ii

g tη∑  for all time t. Then, we can claim that ( ( )) 0i tθ η ≥ , for = 1, ,i rA , and 

=1
( ( )) = 1

r
ii

tθ η∑  for all time t. 

As shown in (8), the T-S fuzzy system is defined as linear systems whose dynamics depend on 
time-varying parameters θi(t) referred to as the scheduling or weight sequence. Further, it is 
worth pointing out that the parameters θi(t) are generally subject to the following constraints:  
 

Continuous-Time Case: 

 min max
=1

( ) = ( ) ,
r

i
i

t tθ θ θ θ
Δ⎛ ⎞

≤ ≤⎜ ⎟⎜ ⎟
⎝ ⎠
∑  (10) 

 ( ) , f  = 1, , ,i i it or i rα θ β≤ ≤ A  (11) 

 ( ) , f  = 1, , .i i it or i rμ θ ν≤ ≤$ A  (12) 

Discrete-Time Case: 

 min max
=1

( ) = ( ) ,
r

i
i

t tθ θ θ θ
Δ⎛ ⎞

≤ ≤⎜ ⎟⎜ ⎟
⎝ ⎠
∑  (13) 

 , f  = 1, , ,i i i or i rα θ β≤ ≤ A  (14) 

 | ( ) ( 1)| , f  = 1, , .i i it t or i rθ θ δ− − ≤ A  (15) 

Remark 1 In general, the parameter θi(t) is a function of time t, states x(t), and inputs u(t). 
Except for the actuator nonlinearity (see Section 2-B), the parameter θi(t) is mostly associated 
with the state of the system in (7). 

B. T-S fuzzy model construction 

Nonlinear dynamic models for mechanical systems can be readily obtain by, for example, 
the Lagrange method and the Newton-Euler method. In such cases, we can represent the 
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Fig. 1. (a) Global sector nonlinearity; and (b) local sector nonlinearity. 

given nonlinear dynamical models as T-S fuzzy systems by using the idea of “sector 

nonlinearity”, “saturation nonlinearity”, or a combination of them. Prior to modeling an T-S 

fuzzy system, we need to simplify the original nonlinear model as much as possible. The 

procedure is important for practical applications since it always leads to the reduction of the 

number of the parameters θi(t), which plays an important role in reducing the effort for 

analysis and design of control systems. 

Sector Nonlinearity: 

Consider a simple nonlinear system ( ) = ( ( ))x t f x t∇ , where (0) = 0f . The goal of the sector 

nonlinearity approach is to find the global sector such that 1 2( ) = ( ( )) [  ] ( )x t f x t x tκ κ∇ ∈  (see 

Fig. 1- (a)). This approach guarantees an exact T-S fuzzy model construction. However, note 

that it is sometimes difficult to find global sectors for general nonlinear systems. Thus, we 

consider local sector nonlinearity. This is reasonable as variables of physical systems are 

always bounded. Fig.1- (b) shows the local sector nonlinearity, where two lines become the 

local sectors under 1 2( ) [ , ]x t t t∈ . The T-S fuzzy model exactly represents the nonlinear 

system in the “local” region, that is, 1 2( ) [ , ]x t t t∈ , which is described as follows: 

 
2

=1

( ) = ( ( )) = ( ) ( ),i i
i

x t f x t t a x tθ∇ ∑  (16) 

where 

 22
1

1 2 1 2

( ( )) ( )
( ) = = ,

( ) ( )

f x t a x tw
t

w w a x t a x t
θ

−
+ −

 (17) 

 11
2

1 2 1 2

( ) ( ( ))
( ) = = .

( ) ( )

a x t f x tw
t

w w a x t a x t
θ

−
+ −

 (18) 

In addition, we can claim that 1 2( ) ( ) = 1.t tθ θ+ , 1( ) 0tθ ≥ , and 2( ) 0tθ ≥ . 
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Saturation Nonlinearity: 

Saturation nonlinearity is usually caused by limits on component size, properties of 

materials, and available power. Most actuators present saturation characteristics. For 

example, the output torque of a two-phase servomotor cannot increase infinitely and tends 

to saturate, due to the properties of the magnetic material. Similarly, valve-controlled 

hydraulic servomotors are saturated by the maximum flow rate. To address the saturation 

problem, three methods are exploited: the circle method (which basically deals with 

saturation as a sector-bounded nonlinearity), the so-called linear analysis method which 

consists in determining a region in which a linear controller does not saturate, and the 

polytopic representation method proposed by Hu and Lin (2001). This chapter will 

introduce the third method. 

Consider the following saturation function: 

 ( ( )) = ( ( ), ),f u t sat u t u  (19) 

where the notation ( , )sat u u  means 

 1( , ) = [ ] , = ( )min{ ,| |},T
n i i i i

u
sat u u s s s sign u u uA  (20) 

in which unu∈R  denotes the saturation level, sign returns the signs of the corresponding 

argument, and ui and iu  denote the i-th element of unu∈R  and unu∈R , respectively. 

From the following lemma (Hu & Lin, 2001), we can obtain a T-S fuzzy model for the 

saturation nonlinearity: 

Lemma 1 Let G  be the set of u un n×  diagonal matrices whose diagonal elements are 1 or 0. 

Suppose that | |i iv u≤  for all = 1, , ui nA , where iv  and iu  denote the i-th element of 
unv∈R  and unu∈R , respectively. Then  

 ( )
2 2

=1 =1

( ( ), ) = ( ) ( ) ( ) , ( ) = 1, ( ) 0,

u un n

i i i i i
i i

sat u t u t G u t G v t t tθ θ θ+ ≥∑ ∑  (21) 

where Gi denote all elements of G , =i iG I G− .                                                                              ■ 

In particular, for the case of = 1un , the parameters are given as  

 2 2
1 2 1

1 2 1 2

( ( ), ) ( ( ) ( ))
( ) = , ( ) = 1 ( ).

( ) ( ) ( ) ( )

sat u t u G u t G v t
t t t

G G u t G G v t
θ θ θ

− +
−

− + −
 (22) 

Fault-Related Nonlinearity:  

The actuator fault can be modeled as follows:  

 ( ( )) = ( ) = ( ) ( ),Ff u t u t t u tΛ  (23) 

where ( ) =tΛ diag 1 2{ ( ), ( ), ,  
unt tλ λ λA  with ( ) 1i ii tλ λ λ≤ ≤ ≤ ,  [1, ]ui n∈ . Obviously, when 

0 < 1iiλ λ≤ ≤ , it corresponds to the case of partial fault of the i-th actuator. When 

= = 1iiλ λ , it implies that there is no fault in the i-th actuator. Define that the matrix set 
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Fig. 2. Saturation nonlinearity. 

{ }1 2= | = { , , , }, = , [1, ] ,i i i i in ij i uiu
diag or j nλ λ λ λ λ λ

Δ
Λ Λ ∈AS  

where = 1,2, ,2 un li −A  and ( )ul n≤  is the number of the actuators without faults. Then, it is 

obvious that 

2

=1

( ( )) = ( ) ( ).

un l

i i
i

f u t t u tθ
−

Λ∑  

Here, let us assume that ( )Fu t  is measurable. Then, in the case of = 1un − ` , the parameters 

can be calculated as follows: 

 2 1
1 2

1 2 1 2

( ) ( ) ( ) ( )
( ) = , ( ) = .

( ) ( ) ( ) ( )

F Fu t u t t u t
t t

u t u t
θ θ− Λ Λ −

Λ − Λ Λ − Λ
 (24) 

Remark 2: Since the actuator fault often act as the source of instability in many control 

systems, the study of reliable control has recently received a considerable amount of 

attention in control engineering. In particular, three different approaches to address the 

actuator fault problem have appeared in the literature from the 1980s: pole region 

assignment (Zhao & Jiang, 1998), algebraic Riccati equation approach (Yang et al, 2001), and 

linear matrix inequality (LMI) approach (Liao et al, 2002; Wu & Zhang, 2006), which achieve 

various reliability goals for linear systems. 

3. PLMI description and relaxation technique 

Solving the PLMIs is solving an infinite number of LMIs and is an extremely difficult 

problem. To overcome it, we shall take all the fuzzy weighting-dependent variables to be of 

polynomially parameter dependent structure, and then we shall propose an efficient 

relaxation technique (Kim & Park, 2008; and Kim et al, 2009) that can replace the PLMIs into 

a finite number of LMIs. 

www.intechopen.com



Control of T-S Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Function  

 

49 

A. Parameterized Linear Matrix Inequality (PLMI) 

The LMI technique is well-known as a unifying framework for formulating and solving 

problems in control theory. The main advantage of this technique is that complicated 

control problem can be solved very efficiently with interior point methods (Nesterov & 

Nemirovski, 1994). A simple feasibility problem in semi-definite programming (SDP) is to 

find a solution to the following LMI: 

 0
=1

( ) = < 0,
s

i i
i

F x F x F+∑  (25) 

 

where the xi's are the decision variables and the Fi's are given real symmetric matrices. A 

more complicated generalization of (25) has the following form: 
 

 0
=1

( ( )) = ( ) ( ) ( ) < 0,
s

i i
i

F x F x Fθ θ θ θ+∑  (26) 

 

where rθ ∈R  is an additional parameter allowed to take any value in a compact set Γ (the 

compact Γ is typically polytopic). One calls (26) parameterized linear matrix inequality 

(PLMI) to stress the connection with the LMI control theory literature. The goal of (26) is to 

find ( )ix θ  such that (26) holds for any admissible value of θ, but it is very difficult to 

numerically solve the PLMI in (26) because of the following:   

1. It is infinite-dimensional since the ( )ix θ  are obtained in the infinite- dimensional space 

of the functions of θ.  
2. This is an infinitely constrained LMI problem for which each constraint corresponds to 

a given point in the range of θ.  
Thus, to overcome the difficulties arising from dimensionality, one needs a systematic 

technique that can turn an PLMI problem into a standard LMI problem. Motivated by the 

concern, we shall also deal with the problem by selecting an appropriate structure for the 

parameter-dependent variable ( )θX  to find a finite number of solvable LMIs from the PLMI 

(refer to Section 1). 

B. Relaxation technique 

In the case of adopting the structure in (1) for the analysis and synthesis of T-S fuzzy 

systems, the relaxation technique plays an important role in finding a less conservative set 

of solutions since the stability and stabilization conditions are generally of the following 

structure: 

 
1 1

1 =1 =1 =1

( ) ( ) > 0, ( ) = 1, ( ) 0, = 1, , .
p p

p

r r r

i i i i i i
i i i

t t t t i rθ θ θ θ ≥∑ ∑ ∑AA A AL  (27) 

 

Without loss of generality, the following two statements are equivalent in the case where 

p=1: 
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=1 =1

) ( ) > 0, ( ) = 1, ( ) 0,
r r

i i i i
i i

i t subject to t tθ θ θ ≥∑ ∑L  (28) 

 )  > 0, = 1, , . iii i r∀ AL  (29) 

However, in the case where p=2: 

 
1 2 1 2 1 1

1 2 1=1 =1 =1

( ) ( ) > 0, ( ) = 1, ( ) 0,
r r r

i i i i i i
i i i

t t subject to t tθ θ θ θ ≥∑ ∑ ∑L  (30) 

we cannot conclude that (30) is equivalent to 

 
1 2 1 2> 0, , = 1, , . i i i i r∀ AL  (31) 

Of course, if (31) holds, then (30) also holds, but (31) leads to very conservative results with 

respect to (30). Thus, to reduce the conservatism caused by (31), various relaxation schemes 

have appeared in the literature (Tanaka et al, 1998; Kim & Lee, 2000; Xiaodong & Qingling, 

2003; Tuan et al, 2001; Teixeira, 2003; Sala & Arino# , 2007; Fang et al, 2006). 

In this section, we shall introduces an useful relaxation technique for Cases 1 to 3, which is 

made by incorporating some additional constraints on parameters into the interactions 

among the T-S fuzzy subsystems. 

Henceforth, for a simple description, we use the following notations: = ( )i i tθ θ , = ( )i i tθ θ$ $ , 

= ( 1)i i tθ θ− − , and = ( 1)i i tθ θ+ + . 
 

Case 1 (Continuous-time): 
Consider the following codition with quadratic dependence for θi(t): 

 ( )
1

2
0

=1 =1 =1 =1 = 1

0 < ( ( ))=
r r r i r

T T
i i i i ii i j ij i j ij

i i i j j i

tθ θ θ θ θ θ θ
−Δ

+

⎛ ⎞
⎜ ⎟+ + + + +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑L L L L L L L  (33) 

subject to, for , [1, ]i j r∈ , j i≠ , 

 
=1

( 1) = 1, ( 2) 0 , ( 3) 0 .
r

i i i i j
i

C C Cθ θ β θ θ≤ ≤ ≤∑  (34) 

By the S-procedure (Boyd et al, 1994) and Finsler's lemma (de Oliveira & Skelton, 2001; Fang 
et al, 2004), the condition in Case 1 can be written as follows: 

 0 < ( ( )) ( ( )),t tθ θ−L N  (35) 

where 0 ( ( ))tθ≤ N  is given by  

 ( )1 1 2 3
=1 =1 =1,

( ( )) = ( ) ,
r r r

T T T
i i i ij ij ij

i i j j i

tθ
≠

+ + Λ + Λ + Ξ + Ξ∑ ∑ ∑N C C C C  (36) 

in which 1C , 2iC , and 3ijC  are from (C1), (C2), and (C3), respectively:  
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 [ ]1 1
1 0 10 = ,

T

r

r r

I I I

I I I
S S S

I I I

θ θ

θ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

5 A
B B B

C  (37) 

 2
2 30 , 0 .i i i i ij i jθ β θ θ θ≤ − + ≤5 5C C  (38) 

 

Here, note that the relaxation variables S0, Si, Λi, and Ξij are in c cn n×R  and should satisfy 

that 0 < T
i iΛ + Λ  and 0 < T

ij ijΞ + Ξ . Further, with some algebraic manipulations, the 

constraint, 0 ( ( ))tθ≤ N , can be rewritten as follows: 

 ( )
1

2
0

=1 =1 =1 =1 = 1

0 ( ( )) = ,
r r r i r

T T
i i i i ii i j ij i j ij

i i i j j i

t N N N N N Nθ θ θ θ θ θ θ
−

+

⎛ ⎞
⎜ ⎟≤ + + + + +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑N   (39) 

 

where 0 0 0= TN S S+ , 0=i i i iN S Sβ Λ − + , ( ) ( )= T T
ii i i i iN S S− Λ + Λ − + , ( )=ij i jN S S− +  

( )ij ji+ Ξ + Ξ . Hence, the condition in (35) becomes, for all , [1, ]m r∈` , 

 ( )
1

2
0

=1 =1 =1 =1 = 1

0 < ,
r r r i r

T T
i i i i i i j ij i j ij

i i i j j i

θ θ θ θ θ θ
−

+

⎛ ⎞
⎜ ⎟Γ + Γ + Γ + Δ + Φ + Φ
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑  (40) 

where 

  

(41)

 

As a result, the condition in (40) boils down to  

 [ ] [ ]1 10 < ,
T

r rI I I I I Iθ θ θ θ#A AL  (42) 

where  

  

(43)
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Proposition 1 The condition in (33) subject to (C1) and (C2) holds if the following conditions 

hold: for all , [1, ]i j r∈ , j i≠ , 

 0 < , 0 < , 0 < .T T
i i ij ijΛ + Λ Ξ + Ξ#L  (44) 

Case 2 (Continuous-time): 

Consider the following condition with quadratic dependence θi(t) and θ$ ( )i t : 

( ) ( ) 2
0

=1 =1 =1

0 < ( ( ), ( ))
r r r

T T
i i i i i i i ii

i i i

t tθ θ θ θ θ+ + + + +∑ ∑ ∑
% %$ $5L L L L L L L  

( )
1

2

=1 =1 =1 =1 =1 = 1

r r r r i r
T T

i ii i j ij ij i j ij i j ij
i i j i j j i

θ θ θ θ θ θ θ
−

+

⎛ ⎞
⎜ ⎟+ + + + +
⎜ ⎟
⎝ ⎠

∑ ∑∑ ∑ ∑ ∑
%$ $L L L L L  

 
1

=1 =1 = 1

r i r
T

i j ij i j ij
i j j i

θ θ θ θ
−

+

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
% %$ $ $ $L L  (45) 

subject to, for , [1, ]i j r∈ , j i≠ , 

 
=1

( 1) = 1, ( 2) 0 , ( 3) 0 , ( 4) .
r

i i i i j i i i
i

C C C Cθ θ β θ θ ρ θ ν≤ ≤ ≤ ≤ ≤∑ $  (46) 

By the S-procedure (Boyd et al, 1994) and Finsler's lemma (de Oliveira & Skelton, 2001; Fang 
et al, 2004), the condition in Case 2 can be written as follows: 

 0 < ( ( ), ( )) ( ( ), ( )),t t t tθ θ θ θ−$ $L N  (47) 

where 0 ( ( ), ( ))t tθ θ≤ $N  is given by 

 ( ) ( )1 1 2 3 4
=1 =1 =1, =1

( ( ), ( )) = ( ) ,
r r r r

T T T T
i i i ij ij ij i i i

i i j j i i

t t Z Zθ θ
≠

+ + Λ + Λ + Ξ + Ξ + +∑ ∑ ∑ ∑$N C C C C C   (48) 

in which 1C , 2iC , 3ijC , and 4iC  are from (C1), (C2), (C3), and (C4), respectively: 

 [ ]1 1
1 0 10 = ,

T

r

r r

I I I

I I I
S S S

I I I

θ θ

θ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

5 A
B B B

C  (49) 

 2 2
2 3 40 , 0 , 0 ( ) .i i i i ij i j i i i i i i iθ β θ θ θ θ ρ ν θ ρν≤ − + ≤ ≤ − + + −$ $5 5 5C C C  (50) 

Here, note that the multiplier variables S0, Si, Λi, Zi and Ξij are in c cn n×R  and should satisfy 

that 0 < T
i iΛ + Λ , 0 < T

i iZ Z+  and 0 < T
ij ijΞ + Ξ . Further, with some algebraic manipulations, 

the constraint 0 ( ( ))tθ≤ N  can be represented as follows: 
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( ) ( ) 2
0

=1 =1 =1

0 ( ( ), ( )) =
r r r

T T
i i i i i i i ii

i i i

t t N N N N N Nθ θ θ θ θ≤ + + + + +∑ ∑ ∑$ $N  

1
2

=1 =1 =1 = 1

,
r r i r

T
i ii i j ij i j ij

i i j j i

N N Nθ θ θ θ θ
−

+

⎛ ⎞
⎜ ⎟+ + +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑$  

 

where ( )0 0 0 =1
=

rT T
i i i ii

N S S Z Zρν+ − +∑ , 0=i i i iN S Sβ Λ − + , = ( )i i i iN Zρ ν+ , 

( ) ( )= T T
ii i i i iN S S− Λ + Λ − + , ( )= T

ii i iN Z Z− + , and ( ) ( )=ij i j ij jiN S S− + + Ξ + Ξ . Hence, the 

condition in (47) becomes, for all , [1, ]m r∈` , 

( ) ( ) 2
0

=1 =1 =1

0 <
r r r

T T
i i i i i i i i

i i i

θ θ θΓ + Γ + Γ + Γ + Γ + Δ∑ ∑ ∑
% %$  

( )
1

2

=1 =1 =1 =1 =1 = 1

r r r r i r
T T

i i i j ij ij i j ij i j ij
i i j i j j i

θ θ θ θ θ θ θ
−

+

⎛ ⎞
⎜ ⎟+ Δ + Π + Π + Φ + Φ
⎜ ⎟
⎝ ⎠

∑ ∑∑ ∑ ∑ ∑
%$ $  

 
1

=1 =1 = 1

,
r i r

T
i j ij i j ij

i j j i

θ θ θ θ
−

+

⎛ ⎞
⎜ ⎟+ Φ + Φ
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
% %$ $ $ $  (51) 

 

where 

  

(52) 

 
As a result, the condition (51) boils down to  

1 1 1 10 < ,
T

r r r rI I I I I I I I I Iθ θ θ θ θ θ θ θ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
$ $ # $ $A A A AL  

 

where  
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(53)

 
Proposition 2 The condition in (45) subject to (C1) - (C4) holds if the following conditions 

hold: for all , [1, ]i j r∈ , j i≠ , 

 0 < , 0 < , 0 < , 0 < .T T T
i i ij ij i iZ ZΛ + Λ Ξ + Ξ +#L  

Case 3 (Discrete-time): 

Consider the following condition with quadratic dependence θi(t) and θ −$ ( 1)i t : 

( ) ( )θ θ θ θ θ−− + + + + +∑ ∑ ∑
% %

5 2
0

=1 =1 =1

0 < ( ( 1), ( ))
r r r

T T
i i i i i i i ii

i i i

t tL L L L L L L  

( )
1

2

=1 =1 =1 =1 =1 = 1

( )
r r r r i r

T T
i ii i j ij ij i j ij i j ij

i i j i j j i

θ θ θ θ θ θ θ
−

− −

+

⎛ ⎞
⎜ ⎟+ + + + +
⎜ ⎟
⎝ ⎠

∑ ∑∑ ∑ ∑ ∑
%
L L L L L  

 
1

=1 =1 = 1

r i r
T

i j ij i j ij
i j j i

θ θ θ θ
−

− − − −

+

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
% %
L L  (55) 

subject to, for , [1, ]i j r∈ , j i≠ , 

=1 =1

( 1) = 1, = 1, ( 2) 0 , 0 ,
r r

i i i i i i
i i

C Cθ θ θ β θ β− −≤ ≤ ≤ ≤∑ ∑  

 ( 3) 0 , 0 , ( 4)| | 1.i j i j i i iC Cθ θ θ θ θ θ δ− − −≤ ≤ − ≤ ≤  (56) 

By the S-procedure (Boyd et al, 1994) and Finsler's lemma (de Oliveira and Skelton, 2001; 
Fang et al, 2004), the condition in Case 3 can be written as follows:  

 0 < ( ( 1), ( )) ( ( 1), ( )),t t t tθ θ θ θ− − −L N  (57) 

where 0 ( ( 1), ( ))t tθ θ≤ −N  is given by  

 1 1 2 2
=1 =1

( ( 1), ( )) = ( ) ( )
r r

T T T
i i i i i i

i i

t tθ θ− + + Λ + Λ + Λ + Λ∑ ∑
% % %

N C C C C  
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 ( ) ( ) ( )3 3 4
=1 =1, =1 =1, =1

,
r r r r r

T T T
ij ij ij ij ij ij i i i

i j j i i j j i i

Z Z
≠ ≠

+ Ξ + Ξ + Ξ + Ξ + +∑ ∑ ∑ ∑ ∑
% % %

C C C   (58) 

in which 1C , 2iC , 2

%
iC , 3ijC , 3

%
ijC and 4iC   are from (C1)–(C4):  

 

0 0

1 1
1 1

1

1 1
1 1

0

00 = ,

0

0

TT T T

T T

T Tr r
r r

r rr r

I IX YI I
I II X Y

I II X Y
I I IR S

II IR S

θ θ

θ θ

θ θ

θ θ

− −

− −

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

B BB B B B
5

B B B BB B

C  (59) 

 2 2
2 20 , 0 ( ) ,i i i i i i i iθ β θ θ β θ− −≤ − + ≤ − +

%
5 5C C  (60) 

 2 2 2
3 3 40 , 0 ,0 2 ( ) .ij i j ij i j i i i i i iθ θ θ θ δ θ θ θ θ− − − −≤ ≤ ≤ − + −

%
5 5 5C C C   (61) 

Here, note that the multiplier variables X0, Xi, Y0, Yi, Ri, Si, Λi, Λ
%
i , Ξij, Ξ

%
ij , and Zi are in 

c cn n×R  and should satisfy that 0 < T
i iΛ + Λ , 0 < T

i iΛ + Λ
% %

, 0 < T
ij ijΞ + Ξ , 0 < T

ij ijΞ + Ξ
% %

, and 

0 < T
i iZ Z+ . Further, with some algebraic manipulations, the constraint 0 ( ( 1), ( ))t tθ θ≤ −N  

can be rewritten as follows: 

( ) ( ) 2
0

=1 =1 =1

0 ( ( 1), ( )) =
r r r

T T
i i i i i i i ii

i i i

t t N N N N N Nθ θ θ θ θ−≤ − + + + + +∑ ∑ ∑N  

( )
1

2

=1 =1 =1 =1 =1 = 1

( )
r r r r i r

T T
i ii i j ij ij i j ij i j ij

i i j i j j i

N N N N Nθ θ θ θ θ θ θ
−

− −

+

⎛ ⎞
⎜ ⎟+ + + + +
⎜ ⎟
⎝ ⎠

∑ ∑∑ ∑ ∑ ∑  

1

=1 =1 = 1

,
r i r

T
i j ij i j ij

i j j i

N Nθ θ θ θ
−

− − − −

+

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑  

 where  

2
0 0 0 0 0 0

=1

= ( ) ( ) ( ), = ,
r

T T T
i i i i i i i i

i

N X X Y Y Z Z N X Y Xδ β+ + + + + + − + Λ∑  

0= , = ( ) ( ) ( ),T T T
i i i i i ii i i i i i iN R S Y N X X Z Zβ+ − + Λ − + − Λ + Λ − +

%
 

2 , =
= ( ) ( ) ( ), = ,

,
i i iT T T

ii i i i i i i ij
i j

R Y Z j i
N S S Z Z N

R Y j i

− − +⎧⎪− + − Λ + Λ − + ⎨ − − ≠⎪⎩

% %
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= , = .ij i j ij ji ij i j ij jiN X X N S S− − + Ξ + Ξ − − + Ξ + Ξ
% %

 

Hence, the condition (35) becomes, for all , [1, ]m r∈` , 

( ) ( ) 2
0

=1 =1 =1

0 <
r r r

T T
i i i i i i i i

i i i

θ θ θ−Γ + Γ + Γ + Γ + Γ + Δ∑ ∑ ∑
% %

 

( )
1

2

=1 =1 =1 =1 =1 = 1

( )
r r r r i r

T T
i i i j ij ij i j ij i j ij

i i j i j j i

θ θ θ θ θ θ θ
−

− −

+

⎛ ⎞
⎜ ⎟+ Δ + Π +Π + Φ + Φ
⎜ ⎟
⎝ ⎠

∑ ∑∑ ∑ ∑ ∑
%

 

 
1

=1 =1 = 1

,
r i r

T
i j ij i j ij

i j j i

θ θ θ θ
−

− − − −

+

⎛ ⎞
⎜ ⎟+ Φ + Φ
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
% %

 (62) 

where 0 0 0= NΓ −L , =i i iNΓ −L , =i i iNΓ −
%%
L , =i ii iiNΔ −L , =i ii iiNΔ −

%%
L , =ij ij ijNΦ −L , 

=ij ij ijNΦ −
%%
L , =ij ij ijNΠ −L . As a result, the condition in (62) boils down to  

1 1 1 10 < ,
T

r r r rI I I I I I I I I Iθ θ θ θ θ θ θ θ− − − −⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

#A A A AL  

where  

  

(63)

 

Proposition 3 The condition in (55) subject to (C1) - (C4) holds if the following conditions 

hold: for all  , [1, ]i j r∈ , j i≠ , 

 0 < , 0 < , 0 < , 0 < , 0 < , 0 < .T T T T T
i i i i ij ij ij ij i iZ ZΛ + Λ Λ + Λ Ξ + Ξ Ξ + Ξ +

% % % %#L  (64) 

4. Stabilization of T-S fuzzy systems 

A.  Lyapunov function 

Based on the modeled T-S fuzzy systems (see Section 2), various feedback controllers have 
been recently developed under the well-known relaxation techniques (see Section 3), by 
taking advantage of Lyapunov functions, such as CQLF, PLF, and FWLF (refer to Section 1). 
The common quadratic Lyapunov function (CQLF) is given as follows:  
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 ( ( )) = ( ) ( ), > 0,TV x t x t Px t P  (65) 

and the fuzzy weighting-dependent Lyapunov function (FWLF) can be written as follows:  

 ( ( )) = ( ) ( ( )) ( ), ( ( )) > 0.TV x t x t P t x t P tθ θ  (66) 

As mentioned in Section 1, since, for a large number of T-S fuzzy subsystems ( , , )i i iA B C , the 

former approach leads to over-conservative design solutions, recent research efforts have 

focused on using the latter approach when establishing a feedback controller that ensures 

the stability of the closed-loop system. 

When using the FWLF approach for stabilization of continuous-time T-S fuzzy systems, one 

needs to assume that the upper and lower bounds of ( )tθ$  are measurable and the matrix 

inverse is computed in real time. Since it is very strict to make the assumptions, one has 

made less use of the FWLF in continuous-time F-S fuzzy systems, compared with the 

discrete-time case. Furthermore, since it is impractical to fully measure the rate vector ( )tθ$ , 

the controller should be constructed only by the current-time information on parameters, 

which leads to an inflexible result for more changeable T-S fuzzy systems. In the discrete-

time case, on the other hand, it is possible to make a feedback control law dependent not 

only on the current-time parameters but also the one-step-past parameters. 

Now, let us consider the matrix ( ( ))P tθ  of the following form: 
 

FWLF with APD (FWLF-APD): 

 
=1 =1

( ( )) = ( ) , > 0, ( ) = 1, ( ) 0, = 1, , ,
r r

i i i i i
i i

P t t P P t t i rθ θ θ θ ≥∑ ∑ A  (67) 

FWLF with QPD (PDLF-QPD): 

 
=1 =1 =1

( ( )) = ( ) ( ) , > 0, ( ) = 1, ( ) 0, = 1, , .
r r r

i j ij ij i i
i j i

P t t t P P t t i rθ θ θ θ θ ≥∑∑ ∑ A  (68) 

B. Stabilization of continuous-time T-S fuzzy systems 

Consider a T-S fuzzy system described by the following differential equation: 

 ( ) = ( ( )) ( ) ( ( )) ( ),x t A t x t B t u tθ θ+$  (69) 

where ( ) xnx t R∈  and ( ) unu t R∈  denote the state and control input, respectively; and 

 0 0
=1 =1

( ( )) = ( ) , ( ( )) = ( ) .
r r

i i i i
i i

A t A t A B t B t Bθ θ θ θ+ +∑ ∑  (70) 

For the stabilization of (69), consider the following fuzzy weighting-dependent state-
feedback controller: 

 ( ) = ( ( )) ( ).u t F t x tθ  (71) 
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Then, the closed-loop system under (71) is described as follows:  

 ( )( ) = ( ( )) ( ( )) ( ( )) ( ).x t A t B t F t x tθ θ θ+$  (72) 

Stabilization using CQLF:  

In the case where ( )tθ  is measurable with known bounds but the full information on ( )tθ$  is 

unknown, the CQLF approach is valuable and applicable to T-S fuzzy systems. 

Theorem 1: (PLMI-based condition) Suppose that there exist matrices > 0P  and ( ( ))F tθ  such 

that 

 ( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ( )) < 0,T T TPA t F t B t A t P B t F tθ θ θ θ θ θ+ + +  (73) 

where 1=P P−  and ( ( )) = ( ( ))F t F t Pθ θ . Then, the closed-loop system in (72) is asymptotically 

stable for all admissible grades. Moreover, the controller is reconstructed as follows: 

 1( ( )) = ( ( )) .F t F t Pθ θ −  (74) 

Proof The proof is straightforward, and hence is omitted here.                                                   ■ 
In the following, we shall derive a finite number of LMIs from (73). To this end, let us first 
consider 

 0
=1

( ( )) = ( ) .
r

i i
i

F t F t Fθ θ+∑  (75) 

Then, we can obtain the following theorem with the help of the relaxation technique in Case 1.  

Theorem 2: (LMI-based condition) Suppose that there exist matrices > 0P , 0F , iF , S0, Si, Λi, 

and Ξij such that 

  

(76)

 

 0 , 0 , , [1, ], .T T
i i ij ji i j r j i≤ Λ + Λ ≤ Ξ + Ξ ∀ ∈ ≠  (77) 

Then, the closed-loop system in (72) is asymptotically stable for all admissible grades 
satisfying the constraints (34). Moreover, the controller is given by 

 1
0

=1

( ( )) = ( ) .
r

i i
i

F t F t F Pθ θ −⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
∑   (78) 

Proof  The condition in (73) is equivalent to  

( )0 < ( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ,T T Tt PA t F t B t A t P B t F tθ θ θ θ θ θ θ− + + +5L  
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 which can be rewritten by (70) and (75) into  

 ( )
1

2
0

=1 =1 =1 =1 = 1

0 < ( ) ( ) ( ) ( ) ( ) ( ) ,
r r r i r

T T
i i i i ii i j ij i j ij

i i i j j i

t t t t t tθ θ θ θ θ θ
−

+

⎛ ⎞
⎜ ⎟+ + + + +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑L L L L L L  (79) 

where  

 ( ) ( )0 0 0 0 0 0 0 0 0= , = ,T T T
i i i iA P B F PA F B A P B F B F− + + + − + +L L  (80) 

 ( ) ( )= , = .T T
ii i i i i ij i j j iB F F B B F B F− + − +L L  (81) 

Hence, reminding the relaxation technique in Case 1, we can clearly see that the condition 

( ( )) > 0tθL  subject to (34) is guaranteed by (76) and (77), where 

 0 0 0 0 0= , = ,T
i i i i iS S S SβΓ − − Γ − Λ + −L L  (82) 

 ( ) ( )= ,T T
i ii i i i iS SΔ + Λ + Λ + +L  (83) 

 ( ) ( )= .ij ij i j ij jiS SΦ + + − Ξ + ΞL  (84) 

■ 

Stabilization using FWLF-APD:  

Let us assume that ( )tθ  is measurable and the bounds of ( )tθ$  are given as 

 ( ) , f  = 1, , .i i it or i rρ θ ν≤ ≤$ A  (85) 

Then, in this sense, we can consider a fuzzy weighting-dependent Lyapunov function 

( ( ))V x t  such as 

 ( ( )) = ( ) ( ( )) ( ), ( ( )) > 0,TV x t x t P t x t P tθ θ   (86) 

based on which we can obtain the following PLMI-based stabilization condition.  

Theorem 3: (PLMI-based condition) Suppose that there exist matrices ( ( )) > 0P tθ , ( ( ))P tθ$ , 

and ( ( ))F tθ  such that 

 ( ( )) > ( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ( )),T T TP t P t A t F t B t A t P t B t F tθ θ θ θ θ θ θ θ θ+ + +$   (87) 

where 1( ( )) = ( ( ))P t P tθ θ−  and ( ( )) = ( ( )) ( ( ))F t F t P tθ θ θ . Then, the closed-loop system in (72) is 

asymptotically stable for all admissible grades. Moreover, the controller is given by 

 1( ( )) = ( ( )) ( ( )).F t F t P tθ θ θ−  (88) 

Proof The proof is straightforward, and hence is omitted here.                                                   ■ 
In the following, we shall derive a finite number of LMIs from (87). To this end, let us take 
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=1

( ( )) = ( ) , > 0, > 0.
r

i i i
i

P t P t P P Pθ θ+∑  (89) 

Then, we can obtain the following theorem with the help of the relaxation scheme in Case 2.  

Theorem 4: (LMI-based condition) Suppose that there exist matrices > 0P , > 0iP , 0F , iF , S0, 

Si, Λi, Ξij and Zi such that 

   

(90)

 

 0 , 0 , 0 , , [1, ], .T T T
i i ij ij i iZ Z i j r j i≤ Λ + Λ ≤ Ξ + Ξ ≤ + ∀ ∈ ≠  (91) 

Then, the closed-loop system in (72) is asymptotically stable for all admissible grades 
satisfying the constraints (46). Moreover, the controller is given by 

 

1

0
=1 =1

( ( )) = ( ) ( ) .
r r

i i i i
i i

F t F t F P t Pθ θ θ
−

⎛ ⎞⎛ ⎞
+ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑  (92) 

Proof The condition in (87) is equivalent to 

0 < ( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ( ))T T Tt P t P t A t F t B tθ θ θ θ θ θ− −$5L  

( ( )) ( ( )) ( ( )) ( ( )),A t P t B t F tθ θ θ θ− −  

 

which can be rewritten by (70), (75), (89) into  

 ( ) ( ) 2
0

=1 =1 =1

0 < ( ) ( ) ( )
r r r

T T
i i i i i i i ii

i i i

t t tθ θ θ+ + + + +∑ ∑ ∑
% %$L L L L L L  

 
1

=1 =1 = 1

( ) ( ) ( ) ( ) ,
r i r

T
i j ij i j ij

i j j i

t t t tθ θ θ θ
−

+

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑L L   (93) 

where 

 ( )0 0 0 0 0 0 0= ,T T TA P B F PA F B− + + +L   (94) 
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 ( )0 0 0
1

= , = ,
2

i i i i i i iA P A P B F B F P− + + +
%

L L   (95) 

 ( )= ,T T T
ii i i i i i i i iA P B F P A F B− + + +L   (96) 

 ( )= .ij i j i j j i j iA P B F A P B F− + + +L   (97) 

Hence, reminding the relaxation technique in Case 2, we can clearly see that the condition 

( ( )) > 0tθL  subject to (46) is guaranteed by (90) and (91), where 

 0 0 0 0 0
=1

= ( ), = ,
r

T T
i i i i i i i i i

i

S S Z Z S Sρν βΓ − − + + Γ − Λ + −∑L L   (98) 

 ( ) ( )= ( ) , = ,T T
i i i i i i ii i i i iZ S Sρ νΓ − + Δ + Λ + Λ + +

%%
L L   (99) 

 ( ) ( )= , = .T
i i i ij ij i j ij jiZ Z S SΔ + Φ + + − Ξ + Ξ

%
L   (100) 

■ 

C. Stabilization of discrete-time LPV systems 

Consider the following discrete-time T-S fuzzy systems: 

 ( 1) = ( ( )) ( ) ( ( )) ( ),x k A k x k B k u kθ θ+ +   (101) 

where ( ) xnx k R∈  and ( ) unu k R∈  denote the state and control input, respectively; ( )θ k  

denotes the time-varying parameter vector; and 

 
=1 =1

( ( )) = ( ) , ( ( )) = ( ) .
r r

i i i i
i i

A k k A B k k Bθ θ θ θ∑ ∑  (102) 

For the stabilization of (101), we shall consider a state-feedback controller dependent not 

only the current-time parameter vector ( )θ k  but also on the one-step-past vector ( 1)θ −k  

for time k: 

 ( ) = ( ( 1), ( )) ( ).u k F k k x kθ θ−  (103) 

Remark 3: The reason for using both ( )θ k  and ( 1)θ −k  in (103) is twofold. One is to enhance 

the causality between the control gain and the Lyapunov function whose forward difference 

is a function of ( )θ k  and ( 1)θ −k . The other is to use the information existing between 

( 1)θ −k  and ( )θ k  as well as the instant information ( )θ k  when performing the control 

action (Choi & Park, 2003; Kim et al, 2004). 
As a result, the resulting closed-loop system under (103) is described as follows: 

 ˆ( 1) = ( ( 1), ( )) ( ),x k A k k x kθ θ+ −   (104) 
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where 

 ˆ ( ( 1), ( )) ( ( )) ( ( )) ( ( 1), ( )).A k k A k B k F k kθ θ θ θ θ θ− + −5   (105) 

Stabilization using CQLF:  

First, let us consider a common quadratic Lyapunov function ( ( ))V x k : 

 ( ( )) = ( ) ( ), > 0,TV x k x k Px k P  (106) 

whose forward difference along the closed-loop system trajectories is given by 

 ( ( )) = ( ( 1)) ( ( )) = ( 1) ( 1) ( ) ( ).T TV x k V x k V x k x k Px k x k Px kΔ + − + + −   (107) 

Then, the stabilization condition for the closed-loop system in (104) is readily given as follows: 

 ˆ ˆ0 < ( ( 1), ( )) ( ( 1), ( )).TP A k k PA k kθ θ θ θ− − −   (108) 

Theorem 5: (PLMI-based condition) Suppose that there exist matrices P  and ( ( 1), ( ))F k kθ θ−  

such that 

 
( )

0 < ,
( ( )) ( ( )) ( ( 1), ( ))

P

A k P B k F k k Pθ θ θ θ
⎡ ⎤∗
⎢ ⎥+ −⎣ ⎦

 (109) 

where 1=P P−  and ( ( 1), ( )) = ( ( 1), ( ))F k k F k k Pθ θ θ θ− − . Then, the closed-loop system in (104) 

is asymptotically stable for all admissible grades ( 1)θ −k  and ( )θ k . Moreover, the controller 

is given by 

 1( ( 1), ( )) = ( ( 1), ( )) .F k k F k k Pθ θ θ θ −− −   (110) 

Proof The proof is straightforward, and hence is omitted here.                                                   ■ 
In the following, we shall derive a finite number of LMIs from (109). To this end, let us first 
take 

 
=1 =1

( ( 1), ( )) = ( ( )), ( ( )) = .
r r

i i i i
i i

F k k F F k F k Fθ θ θ θ θ θ− −− +∑ ∑   (111) 

Then, we can obtain the following theorem with the help of the relaxation scheme in Case 1. 

Theorem 6: (LMI-based condition) Suppose that there exist matrices > 0P , iF− , iF , S0, Si, Λi 

and Ξij such that 

  

(112)
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 0 , 0 , , [1, ], .T T
i i ij ji i j r j i≤ Λ + Λ ≤ Ξ + Ξ ∀ ∈ ≠   (113) 

Then, the closed-loop system in (104) is asymptotically stable for all admissible grades 

( 1)θ −k  and ( )θ k . Moreover, the controller is given by 

 

1

1

=1 =1

( ( 1), ( )) = .
r r

i i i i
i i

F k k F F Pθ θ θ θ
−

− − −⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  (114) 

Proof Define 

 
(*)

( ( )) .
( ( )) ( ( ))( ( ( )))

l
l

P
k

A k P B k F F k P
θ

θ θ θ−

⎡ ⎤
⎢ ⎥

+ +⎢ ⎥⎣ ⎦
5L   (115) 

Then, the PLMI-based condition in (109) can be written as follows: 

 
=1

0 < ( ( )),
r

l l
l

kθ θ−∑ L   (116) 

which is equivalent to 0 < ( ( ))l kθL , for all [1, ]l r∈ , that is, 

 ( )
1

( ) ( ) 2
0

=1 =1 =1 =1 = 1

0 < ( ) ( ) ( ) ( ) ( ) ( ) ,
r r r i r

l l T T
i i ii i j ij i j iji i

i i i j j i

k k k k k kθ θ θ θ θ θ
−

+

⎛ ⎞
⎜ ⎟+ + + + +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑L L L L L L   (117) 

where 

 ( )
0

0 00
= , = ,

0 0

l
i

i i l

P

P A P B F−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

+⎢ ⎥⎣ ⎦ ⎣ ⎦
L L  (118) 

 
0 00 ( )

= , = .
00ii ij

i j j ii i B F B FB F

⎡ ⎤∗⎡ ⎤
⎢ ⎥⎢ ⎥ +⎢ ⎥⎣ ⎦ ⎣ ⎦

L L   (119) 

Hence, reminding the relaxation technique in Case 1, we can clearly see that the condition 

0 < ( ( ))l kθL  subject to (34) is guaranteed by (112) and (113), where 

 ( ) ( )
0 0 0 0 0= , = ,l lT

i i ii iS S S SβΓ − − Γ − Λ + −L L   (120) 

 ( ) ( )= ,T T
i ii i i i iS SΔ + Λ + Λ + +L   (121) 

 ( ) ( )= .ij ij i j ij jiS SΦ + + − Ξ + ΞL   (122) 

■ 

Stabilization using FWLF-APD:  

Consider an FWLF ( ( ))V x k  of the following form: 
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 ( ( )) = ( ) ( ( )) ( ), ( ( )) > 0,TV x k x k P k x k P kθ θ   (123) 

whose forward difference along the closed-loop system trajectories is given by 

 ( ( )) = ( 1) ( ( 1)) ( 1) ( ) ( ( )) ( ).T TV x k x k P k x k x k P k x kθ θΔ + + + −   (124) 

Then, the stabilization condition for (104) is readily given as follows: 

 ˆ ˆ0 < ( ( )) ( ( 1), ( )) ( ( 1)) ( ( 1), ( )).TP k A k k P k A k kθ θ θ θ θ θ− − + −  (125) 

Theorem 7: (PLMI-based condition) Suppose that there exist matrices ( ( 1))P kθ + , ( ( ))P kθ , 

and ( ( 1), ( ))F k kθ θ−  such that 

 
( ( )) ( )

0 < ,
( ( )) ( ( )) ( ( )) ( ( 1), ( )) ( ( 1))

P k

A k P k B k F k k P k

θ
θ θ θ θ θ θ

⎡ ⎤∗
⎢ ⎥+ − +⎣ ⎦

 (126) 

where 1( ) = ( )P P−⋅ ⋅  and ( ( 1), ( )) = ( ( 1), ( )) ( ( ))F k k F k k P kθ θ θ θ θ− − . Then, the closed-loop 

system in (104) is asymptotically stable for all admissible grades. Moreover, the controller is 

reconstructed as follows: 

 1( ( 1), ( )) = ( ( 1), ( )) ( ( )).F k k F k k P kθ θ θ θ θ−− −   (127) 

Proof The proof is straightforward, and hence is omitted here.                                                   ■ 

In the following, we shall derive a finite number of LMIs from (126). To this end, let us first 

take 

 
=1

( ( )) = ( ) , > 0, > 0,
r

i i i
i

P k P k P P Pθ θ+∑   (128) 

 
=1 =1

( ( 1), ( )) = ( 1) ( ( )), ( ( )) = ( ) .
r r

i i i i
i i

F k k k F F k F k k Fθ θ θ θ θ θ−− − +∑ ∑   (129) 

Then, we can obtain the following theorem with the help of the relaxation technique in Case 1. 

Theorem 8: (LMI-based condition) Suppose that there exist matrices > 0P , > 0iP , iF− , iF , S0, 

Si, Λi, and Ξij such that 

   

(130)

 

 0 , 0 , , [1, ], .T T
i i ij ji i j r j i≤ Λ + Λ ≤ Ξ + Ξ ∀ ∈ ≠   (131) 
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Then, the closed-loop system in (104) is asymptotically stable for all admissible grades 
satisfying the constraints (34). Moreover, the controller is given by 

 

1

=1 =1 =1

( ( 1), ( )) = ( 1) ( ) ( ) .
r r r

i i i i i i
i i i

F k k k F k F P k Pθ θ θ θ θ
−

−⎛ ⎞⎛ ⎞
− − + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑  (132) 

Proof Define 

 
( ( )) ( )

( ( )) .
( ( )) ( ( )) ( ( ))( ( ( )))

ls
l s

P k
k

A k P k B k F F k P P

θ
θ

θ θ θ θ−

⎡ ⎤∗
⎢ ⎥

+ + +⎢ ⎥⎣ ⎦
5L   (133) 

Then, the PLMI condition (126) can be rewritten as follows: 

 
=1 =1

0 < ( 1) ( 1) ( ( )),
r r

l s ls
l s

k k kθ θ θ− +∑∑ L   (134) 

which is equivalent to 0 < ( ( ))ls kθL , for all , [1, ]l s r∈ , that is, 

 ( )
1

( ) ( ) ( ) 2
0

=1 =1 =1 =1 = 1

0 < ( ) ( ) ( ) ( ) ( ) ( ) ,
r r r i r

s l l T T
i i ii i j ij i j iji i

i i i j j i

k k k k k kθ θ θ θ θ θ
−

+

⎛ ⎞
⎜ ⎟+ + + + +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑L L L L L L   (135) 

where 

 ( ) ( )
0

1
00

2= , = ,
0

0

is l
i

s
i i l

PP

P P
A P B F−

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎢ ⎥+⎣ ⎦

L L   (136) 

 
0 00 ( )

= , = .
00ii ij

i j j i i j j ii i i i A P A P B F B FA P B F

⎡ ⎤∗⎡ ⎤
⎢ ⎥⎢ ⎥ + + ++ ⎢ ⎥⎣ ⎦ ⎣ ⎦

L L   (137) 

Hence, reminding the relaxation technique in Case 1, we can clearly see that the condition 

0 < ( ( ))ls kθL  subject to (34) is guaranteed by (130) and (131), where 

 ( ) ( ) ( ) ( )
0 0 00 0= , = ,s s l lT

i i ii iS S S SβΓ − − Γ − Λ + −L L   (138) 

 ( ) ( )= ,T T
i ii i i i iS SΔ + Λ + Λ + +L   (139) 

 ( ) ( )= .ij ij i j ij jiS SΦ + + − Ξ + ΞL   (140) 

■ 

Stabilization using FWLF-QPD:  

The relevant formulation has been given in our previous research works (Kim & Park, 2008), 

associate with the ∞H  performance. In the derivation, the ∞H  stabilization conditions are 

www.intechopen.com



 Fuzzy Systems 

 

66 

formulated in terms of PLMIs, which are reconverted into a finite set of LMI-based 

conditions with the help of the relaxation technique in Case 3. 
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While several books are available today that address the mathematical and philosophical foundations of fuzzy

logic, none, unfortunately, provides the practicing knowledge engineer, system analyst, and project manager

with specific, practical information about fuzzy system modeling. Those few books that include applications and

case studies concentrate almost exclusively on engineering problems: pendulum balancing, truck

backeruppers, cement kilns, antilock braking systems, image pattern recognition, and digital signal processing.

Yet the application of fuzzy logic to engineering problems represents only a fraction of its real potential. As a

method of encoding and using human knowledge in a form that is very close to the way experts think about

difficult, complex problems, fuzzy systems provide the facilities necessary to break through the computational

bottlenecks associated with traditional decision support and expert systems. Additionally, fuzzy systems

provide a rich and robust method of building systems that include multiple conflicting, cooperating, and

collaborating experts (a capability that generally eludes not only symbolic expert system users but analysts

who have turned to such related technologies as neural networks and genetic algorithms). Yet the application

of fuzzy logic in the areas of decision support, medical systems, database analysis and mining has been

largely ignored by both the commercial vendors of decision support products and the knowledge engineers

who use them.
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