
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



2 

Control Design of Fuzzy Systems with 
Immeasurable Premise Variables 

Jun Yoneyama and Tomoaki Ishihara 
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Japan 

1. Introduction 

The Takagi-Sugeno fuzzy model is described by fuzzy if-then rules which represent local 
linear systems of the underlining nonlinear systems (Takagi & Sugeno, 1985; Tanaka et al., 
1996; Tanaka & Sugeno, 1992) and thus it can describe a wide class of nonlinear systems. In the 
last decade, nonlinear control design methods based on Takagi-Sugeno fuzzy system have 
been explored. Since the stability analysis and state feedback stabilization first made in 
(Tanaka & Sugeno, 1992), system theory and various control schemes for fuzzy systems have 
been developed. Parallel to state feedback control design, observer problems were also 
considered in (Tanaka & Sano, 1994; Tanaka & Wang, 1997; Yoneyama et al., 2000; Yoneyama 
et al., 2001a). When the observer is available, it is known in (Yoneyama et al., 2000) that for 
fuzzy systems, the separation property of designing state feedback controller and observer is 
established. Thus, an output feedback controller for fuzzy systems was proposed in 
(Yoneyama et al., 2001a). Theory was extended to H∞ control (Cao et al., 1996; Chen et al., 2005; 
Feng et al., 1996; Hong & Langari, 1998; Katayama & Ichikawa, 2002; Yoneyama et al., 2001b). 
In spite of these developments in fuzzy system control theory, the separation property holds 
only for a limited class of fuzzy systems where the premise variable is measurable. 
When we consider a fuzzy system, the selection of the premise variables plays an important 
role in system representation. The premise variable is usually given, and hence the output is 
natually selected. In this case, however, a class of fuzzy systems is limited. If the premise 
variable is the state of the system, a fuzzy system can represent the widest class of nonlinear 
systems. In this case, output feedback controller design is difficult because the state variable 
is immeasurable and it is not available for the premise variable of an output feedback 
controller. For this class of fuzzy systems, output feedback control design schemes based on 
parallel distributed compensator (PDC) have been considerd in (Ma et al., 1998; Tanaka & 
Wang, 2001; Yoneyama et al., 2001a) where the premise variable of the controller was 
replaced by its estimate. Furthermore, Linear Matrix Inequality (Boyd et al, 1994) approach 
was introduced in (Guerra et al., 2006). Uncertain system approach was taken for stabilizatin 
and H∞ control of both continuous-time and discrete-time fuzzy systems in 
(Assawinchaichote, 2006; Tanaka et al., 1998; Yoneyama, 2008a; Yoneyama, 2008b). 
However, controller design conditions given in these approaches are still conservative. 
This chapter is concerned with robust H∞ output feecback controller design for a class of 
uncertain continuous-time Takagi-Sugeno fuzzy systems where the premise variable is the 
immeasurable state variable. This class of fuzzy systems covers a general nonlinear system 
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and its output feedback control problem is of practical importance. First, it is shown that 
Takagi-Sugeno fuzzy system with immeasurable premise variables can be written as an 
uncertain linear system, and robust stability with H∞ disturbance attenuation via output 
feedback control for a fuzzy system is converted into the same problem for an uncertain 
linear system. Then, an original robust control problem is shown to be equivalent to 
stailization with H∞ disturbance attenuation problem for nominal system with no 
uncertainty. The discrete-time counterpart of the same robust control problems is also 
considered. Numerical examples of both continuous-time and discrete-time fuzzy systems 
are shown to illustrate our design methods. Finally, an extension to Takagi-Sugeno fuzzy 
time-delay systems is given. The same technique is used to write a fuzzy time-delay system 
as an uncertain linear time-delay system.  

2. Robust output feedback control for uncertain continuous-time fuzzy 
systems with immeasurable premise variables 

We consider robust stability with H∞ disturbance attenuation problems via output feedback 
control for continuous-time Takagi-Sugeno fuzzy systems with immeasurable premise 
variables. We first show that such a fuzzy system can be written as an uncertain linear 
system. Then, robust stability with H∞ disturbance attenuation problem for an uncertain 
system is converted into stability with H∞ disturbance attenuation problem for a nominal 
system. Based on such a relationship, a solution to a robust stability with H∞ disturbance 
attenuation via output feedback control for a fuzzy system with immeasurable premise 
variables is given. Finally, a numerical example illustrates our theory. 

2.1 Fuzzy systems and problem formulation 

In this section, we introduce continuous-time Takagi-Sugeno fuzzy systems with 
immeasurable premise variables. Consider the Takagi-Sugeno fuzzy model, described by 
the following IF-THEN rule: 
 

IF 1ξ  is 1iM  and … and pξ  is ,ipM  

THEN ),()Δ()()Δ()()Δ()( 2211 tuBBtwBBtxAAtx iiiiii +++++=$  

 ),()Δ()()Δ()()Δ()( 1212111111 tuDDtwDDtxCCtz iiiiii +++++=  

 rituDDtwDDtxCCty iiiiii ,,1),()Δ()()Δ()()Δ()( 2222212122 A=+++++=  
 

where ntx ℜ∈)(  is the state, 1)( mtw ℜ∈  is the disturbance, 2)( mtu ℜ∈  is the control input, 
1)( qtz ℜ∈  is the controlled output, 2)( qty ℜ∈  is the measurement output. r  is the number 

of IF-THEN rules. ijM  is a fuzzy set and pξξ ,,1 A  are premise variables. We set 

.][ 1
T

pξξξ A=  We assume that the premise variables do not to depend on ).(tu  

,iA ,1iB ,2iB ,1iC ,2iC ,11iD ,12iD iD21  and iD22  are constant matrices of appropriate 

dimensions. The uncertain matrices are of the form 

 [ ]
1 2 1

1 11 12 2 1 2 3

2 21 22 3

( ) , 1, ,
i i i i

i i i i i i i i

i i i i

A B B H

C D D H F t E E E i r

C D D H

Δ Δ Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ Δ Δ = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ Δ Δ⎣ ⎦ ⎣ ⎦

A  (1) 
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where each jl
i tF ×ℜ∈)(  is an uncertain matrix satisfying ,)()( ItFtF i

T
i ≤  and ,1iH ,2iH ,3iH  

,1iE  iE2  and iE3  are known constant matrices of appropriate dimensions.  

Assumption 2.1 The system ( ,rA ,1rB ,2rB ,1rC ,2rC ,11rD ,12rD ,21rD rD22 ) represents a 

nominal system that can be chosen as a subsystem including the equilibrium point of the 

original system. 

Throughout the chapter, we assume )(tξ  is a function of the immeasurable state ).(tx  Then, 

the state equation, the controlled output and the output equation are defined as follows: 
 

)(tx$ = )},()Δ()()Δ()()Δ()){(( 2211
1

tuBBtwBBtxAAtxλ iiiiii

r

i
i +++++∑

=  

)(tz = )},()Δ()()Δ()()Δ()){(( 1212111111
1

tuDDtwDDtxCCtxλ iiiiii

r

i
i +++++∑

=  

)(ty = )}()Δ()()Δ()()Δ()){(( 2222212122
1

tuDDtwDDtxCCtxλ iiiiii

r

i
i +++++∑

=  

(2) 

 

where  

∏=
∑

=
==

p

j
jijir

i i

i
i xMxǃ

xǃ
xǃ

xλ
11

)()(,
)(

)(
)( 　

 

(3) 

and )(⋅ijM  is the grade of the membership function of .ijM  We assume 

∑ >=≥
=

r

i
ii txǃritxǃ

1
0))((,,,1,0))(( 　　　 A

 

for any ( ).x t  Hence  ( ( ))i x tλ  satisfies 

∑ ==≥
=

r

i
ii txλritxλ

1
1))((,,,1,0))(( 　　　 A

 
(4) 

for any ).(tx  Our problem is to find a control )(⋅u  for the system (2) given the output 

measurements )(⋅y  such that the controlled output )(⋅z  satisfies 

dttwtwǄdttztz TT∫ ∫
∞ ∞

<
0 0

2 )()()()(  (5) 

for a prescribed scalar .0>Ǆ  If such a controller exists, we call it a robust H∞ output 

feedback controller. Here, we consider the robust stabilization and the robust H∞ 

disturbance attenuation of uncertain fuzzy system (2) with the immeasurable premise 

variable. 

2.2 Robust stability of equivalent uncertain systems 

When we consider the H∞ output feedback control problem for fuzzy systems, the selection 
of the premise variables plays an important role.  The premise variable is usually given, and 
so the output is selected as the premise variable. In this case, however, the system covers a 
very limited class of nonlinear systems. When the premise variable is the state of the system, 
a fuzzy system describes a widest class of nonlinear systems. However, the controller design 
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based on PDC concept is infeasible due to the immeasurable premise variable imposed on 
the control law (Tanaka & Wang, 2001; Yoneyama et al., 2001a; Yoneyama et al., 2001b). To 
avoid a difficulty due to the parallel distributed compensation (PDC) concept, we rewrite a 
fuzzy system, and consider a controller design for an equivalent uncertain system. We 

rewrite (2) as an uncertain system. Since ))(( txλi  satisfies (4), we have 

))].(())(())(([1))(( 121 txλtxλtxλtxλ rr −+++−= A
 

It follows from this relationship that 
 

)Δ))(((
1
∑ +
=

r

i
iii AAtxλ = ])())[(()( 1111111 rrrrrrr EtFHAtxλEtFHA +++  

  ])())[(( ,1,1,1,11 rrrrrrrrr EtFHAtxλ −−−−− +++A  

 = AtFHAr
~

)(
~

1+  
 

where 
 

1,,1, −=−= riAAA riir A
 

],[ 112111 rHHHIIIH AA=
 

( )F t =#
 1 1 1 1diag[ ( ( )) ( ( )) ( ( )) ( ) ( ( )) ( )],r r rx t I x t I x t F t x t F tλ λ λ λ−A A  

.][
~

11211,121
TT

r
TTT

rr
T

r
T
r EEEAAAA AA −=  

 

Similarly, we rewrite other matrices and have an equivalent description for (1): 
 

)(tx$ = )()Δ()()Δ()()Δ( 2211 tuBBtwBBtxAA rrr +++++
 

� ),()()( Δ2Δ1Δ tuBtwBtxA ++
 

)(tz = )()Δ()()Δ()()Δ( 1212111111 tuDDtwDDtxCC rrr +++++
 

� ),()()( Δ12Δ11Δ1 tuDtwDtxC ++
 

)(ty = )()Δ()()Δ()()Δ( 2222212122 tuDDtwDDtxCC rrr +++++
 

 � )()()( Δ22Δ21Δ2 tuDtwDtxC ++
 

(6)

 

where 
 

,
~~~

~~~

~~~

)(
~

00

0)(
~

0

00)(
~

00

00

00

ΔΔΔ
ΔΔΔ
ΔΔΔ

22212

12111

21

3

2

1

22212

12111

21

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

DDC

DDC

BBA

tF

tF

tF

H

H

H

DDC

DDC

BBA

 

(7) 

],[ 222212 rHHHIIIH AA=  

],[ 332313 rHHHIIIH AA=  

,,, 111222111 riirriirriir CCCBBBBBB −=−=−=  

,,, 121212111111222 riirriirriir DDDDDDCCC −=−=−=  

,1,,1,, 222222212121 −=−=−= riDDDDDD riirriir A  

,][
~

22221,1112111
TT

r
TTT

rr
T

r
T

r EEEBBBB AA −=  
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,][
~

33231,1222212
TT

r
TTT

rr
T

r
T

r EEEBBBB AA −=  

,][
~

11211,1112111
TT

r
TTT

rr
T

r
T

r EEECCCC AA −=  

,][
~

11211,1222212
TT

r
TTT

rr
T

r
T

r EEECCCC AA −=  

,][
~

22221,11111211111
TT

r
TTT

rr
T

r
T

r EEEDDDD AA −=  

,][
~

33231,11212212112
TT

r
TTT

rr
T

r
T

r EEEDDDD AA −=  

,][
~

22221,12121221121
TT

r
TTT

rr
T

r
T

r EEEDDDD AA −=  

.][
~

33231,12222222122
TT

r
TTT

rr
T

r
T

r EEEDDDD AA −=
 

We note that since the state )(tx  is not measurable, ))(( txλi  is unknown. This implies that 

)(
~

tF  is a time varying unknown function. However, it is easy to see that )(
~

tF  satisfies 

,)(
~

)(
~

ItFtFT ≤  because ,1))((0 ≤≤ txλi ,)()( ItFtF i
T
i ≤ .,,1 ri A=  Hence, we can see (6) as a 

linear system with time varying uncertainties. 
Remark 2.1 Representation (6) has less uncertain matrices than that of (Yoneyama, 2008a; 

Yoneyama, 2008b), which leads to less conservative results. 1H  and A
~

 in (7) are not unique 

and can be chosen such that  ++++= A])())[(()(
~

)(
~

11111111 rrrrrr EtFHAtxEtFHAtFH λ  

].)())[(( ,1,1,1,11 rrrrrrrrr EtFHAtx −−−−− +λ  
This is true for other matrices ,iH 3,2=i  and ,

~
1B ,

~
2B  

,
~

1C ,
~

2C ,
~

11D ,
~

12D ,
~

21D .
~

22D  

Now, our problem of finding a robust stabilizing output feedback controller with H∞ 

disturbance attenuation for the system (2) is to find a controller of the form (8) for the 
uncertain system (6). 
 

)(ˆ tx$ = ),(ˆ)(ˆˆ tyBtxA +
 

)(tu = ).(ˆˆ txC
 

(8) 

 

Definition 2.1 (i) Consider the unforced system (6) with ,0)( =tw .0)( =tu  The uncertain 

system (6) is said to be robustly stable if there exists a matrix 0>X  such that 

0ΔΔ <+ XAXAT

 

for all admissible uncertainties. 
(ii) The uncertain system (6) is said to be robustly stabilizable via output feedback controller 
if there exists an output feedback controller of the form (4) such that the resulting closed-
loop system (6) with (4) is robustly stable. 

Definition 2.2 (i) Given a scalar ,0>Ǆ  the system (6) is said to be robustly stable with H∞ 

disturbance attenuation Ǆ  if there exists a matrix 0>X  such that 

.0

Δ11Δ1

Δ11
2

Δ1

Δ1Δ1ΔΔ
<

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

+

IDC

DIǄXB

CXBXAXA
TT

TT
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(ii) Given a scalar ,0>Ǆ  the uncertain system (6) is said to be robustly stabilizable with H∞ 

disturbance attenuation Ǆ
 
via output feedback controller if there exists an output feedback 

controller of the form (8) such that the resulting closed-loop system (6) with (8) is robustly 
stable with H∞ disturbance attenuation .Ǆ  

Definition 2.3 Given a scalar ,0>Ǆ  the system 
 

)(tx$ = ),()( tBwtAx +

)(tz = )()( tDwtCx +
 

 

is said to be stable with H∞ disturbance attenuation Ǆ  if it is exponentially stable and input-

output stable with (5). 

The following lemma is well known, and we need it to prove our main results. 

Lemma 2.1 (Xie, 1996) Given constant matrices ,TQQ = ,H E  of appropriate dimensions. 

Suppose a time varying matrix )(tF  satisfies .)()( ItFtFT ≤  Then, the following holds 

EEεHH
ε

QEtHFHtFEQ TTTTT ++≤++
1

)()(  

for some .0>ε  

Now, we state our key results that show the relationship between robust stability with H∞ 

disturbance attenuation and stability with H∞ disturbance attenuation. 

Theorem 2.1 The system (6) with 0)( =tw  is robustly stable with H∞ disturbance attenuation 

Ǆ  if and only if for 0>ε  that 

 

)(tx$ = ),(~]0[)( 1
1

1
1 twHεBǄtxA rr

−−+
 

)(~ tz = )(~

00
~

00
~

0

)(
~

11
1

1
1

2
1

11
1

1

1

tw

DεǄ
BεǄ

HεDǄ
tx

Cε
Aε

C

r

rr

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−−

 

is stable with unitary H∞ disturbance attenuation .1=Ǆ  
Proof: The system (6) is robustly stable with H∞ disturbance attenuation Ǆ  if and only if 

there exists a matrix 0>X  such that 

,0
~

)(
~

)
~

)(
~

(

)
~

)(
~

()
~

)(
~

(

)
~

)(
~

()
~

)(
~

()
~

)(
~

()
~

)(
~

(

1122111221

112211
2

1111

122111111111

<

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−++
+−+
+++++

IDtFHDCtFHC

DtFHDIǄXBtFHB

CtFHCBtFHBXAtFHAXXAtFHA

rr

T
r

T
r

T
rrr

T
r

 

which can be written as 
 

0ˆ)(ˆˆˆ)(ˆˆˆ <++ TTT HtFEEtFHA
 

(9) 

 

where 
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,ˆ

111

11
2

1

11

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

+
=

IDC

DIǄXB

CXBXAXA

A

rr

T
r

T
r

T
rrr

T
r

 

,

0

00

0
ˆ

2

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

H

XH

H  ,
)(

~
0

0)(
~

)(ˆ

2

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

tF

tF
tF  .

0
~~

0
~~

ˆ

111

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

DC

BA
E  

 

It can be shown by Lemma 2.1 that there exists 0>X  such that (9) holds if and only if there 

exist 0>X  and a scalar 0>ε  such that 

,0ˆˆˆˆ1ˆ 2
2

<++ EEεHH
ε

A TT

 

which can be written as 

.0

0ˆ
0ˆ

ˆˆˆ

1

1

<

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−

IEε
IHε

EεHεA
T

T

 

Pre-multiplying and post-multiplying the above LMI by 

,

000000

000000

000000

000000

000000

000000

000000
1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

I

I

I

I

I

IǄ
I

 

and its transpose, respectively, we have 

.0
~~

~~

~~

<

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

+

IDC

DIXB

CBXXAXA
TT

T
r

T
r

 

The result follows from Definition 2.1. 

Theorem 2.2 The system (6) with ,0)( =tw 0)( =tu
 
is robustly stable if and only if for 0>ε  

the system 
 

)(tx$ = ),(~)( 1
1 twHεtxAr
−+

)(~ tz = )(
~

txAε
 

 

is stable with unitary H∞ disturbance attenuation .1=Ǆ
 

Proof: The system (6) is robustly stable if and only if there exists a matrix 0>X  such that 

.0)
~

)(
~

()
~

)(
~

( 11 <+++ AtFHAXXAtFHA r
T

r  
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It can be shown by Lemma 2.1 that there exists 0>X  such that the above inequality holds if 

and only if there exist 0>X  and a scalar 0>ε  such that 

,0
~~1 2

112
<+++ AAεXHXH

ε
XAXA TT

r
T
r

 

which can be written as 

.0

0
~

0

~

1
1

1
1

<

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

+
−

−

IAε
IXHε

AεXHεXAXA
T

T
r

T
r

 

The result follows from Definition 2.1. 

2.3 Robust controller design 

Based on the results in the previous section, we consider the design of robust H∞ output 
feedback controller for the system (2). Such a controller can be designed for a nominal linear 
system with no uncertainty. For the following two auxiliary systems: 
 

)(tx$ = ),()(~]00[)( 21
1

1
1 tuBtwHεBǄtxA rrr ++ −−

 

)(~ tz = ),(

~

~

~

)(~

000
~
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~
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~
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~

~

~
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2
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1
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2
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2

1
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D
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DεǄ
DεǄ
BεǄ

HεDǄ
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Cε
Aε
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)(ty = ),()(~]00[)( 223
1

21
1

2 tuDtwHεDǄtxC rrr ++ −−
 

(10) 

 

and 
 

)(tx$ = ),()(]0[)( 21
1 tuBtwHεtxA rr ++ −

 

)(tz = ),(~

~
)(~

~

22

2

2

tu
Dε
Bε

tx
Cε
Aε

⎥
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⎤

⎢
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⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
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⎣
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)(ty = )()(]0[)( 223
1

2 tuDtwHεtxC rr ++ −
 

(11) 

 

where 0>ε  is a scaling parameter, we can show that the following theorems hold.  

Theorem 2.3 The system (6) is robustly stabilizable with H∞ disturbance attenuation with Ǆ
 

via the output feedback controller (8) if the closed-loop system corresponding to (10) and (8) 

is stable with unitary H∞ disturbance attenuation. 
Proof: The closed-loop system (6) with (8) is given by 
 

)(txc$ = ),())(
~

()())(
~

( 211111 twEtFHBtxEtFHA ccccccccc +++
 

)(tz = )()
~

)(
~

()())(
~

( 112211322 twDtFHDtxEtFHC crcccc +++
 

where 
TTT

c xxx ]ˆ[=
 and 
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,ˆ0
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],ˆ[,ˆ,ˆˆˆˆ
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1
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⎦

⎤
⎢
⎣

⎡
==⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=
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H
HCDCC

DB

B
B

CDBACB
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A crrc

r

r
c

rr

rr
c 　　　

 

].ˆ~~
[,~

~
,ˆ~~

ˆ~~
,

)(
~

0

0)(
~

)(
~

1213
21

1
2

222

2
1

3

1
1 CDCE

D

B
E

CDC

CBA
E

tF

tF
tF cccc =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= 　　　

 

On the other hand, the closed-loop system (10) with (8) is given by 

 

)(txc$ = ),(~]0[)( 1
11 twHεBǄtxA cccc
−−+

 

)(~ tz = ).(~

00
~

00

0

)(

11
1

2
1

2
1

11
1

3

1 tw

DεǄ
EεǄ

HεDǄ
tx

Eε
Eε
C

r

c

r

c

c

c

c

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−−

 

The result follows from Theorem 2.1. 

Similar to Theorem 2.3, a robust stabilization is obtained from Theorem 2.2 as follows: 

Theorem 2.4 The system (6) with 0)( =tw  is robustly stabilizable via the output feedback 

controller (8) if the closed-loop system corresponding to (11) and (8) is stable with unitary 

H∞ disturbance attenuation. 

Remark 2.2 Theorem 2.3 shows that a controller that achieves a unitary H∞ disturbance 

attenuation for the nominal system (10) can robustly stabilize the uncertain fuzzy system (6). 

This implies that the same controller can be used to robustly stabilize the fuzzy system (6). 

Similarly, Theorem 2.4 indicates that a controller that achieves a unitary H∞ disturbance 

attenuation .Ǆ  This leads to the fact that the same controller can be used to achieve the 

stability and the prescribed H∞ disturbance attenuation level of the fuzzy system (6). We also 

note that research on an H∞ output feedback controller design has been extensively 

investigated, and a design method of H∞ controllers has already been given. Therefore, the 

existing results on stability with H∞ disturbance attenuation can be applied to solve the 

robust H∞ output feedback stabilization problem for fuzzy systems with the immeasurable 

premise variables. In addition, if there exist solutions to Theorems 2.3 and 2.4, then, 

controllers keep certain robustness. 

2.4 Numerical examples 

We give an illustrative example of designing robust H∞ output feedback controller for a 

continuous-time Takagi-Sugeno fuzzy system with immeasurable premise variables. Let us 

consider the following continuous-time nonlinear system with uncertain parameters. 

 

)(1 tx$ = ),(3.0)()()8.0()(6.0)()2.3( 12121 twtxtxǃtxtxǂ +++−−−

)(2 tx$ = ),(7.0)(2.0)()(1.1)(4.0 1211 tutwtxtxtx ++−
 

)(tz = ,
)(1.0

)(2.0)(3.0 21
⎥
⎦

⎤
⎢
⎣

⎡ +
tu

txtx
 

)(ty = )()(2.0)(3.0 221 twtxtx +−
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where ǂ
 
and ǃ  are uncertain scalars which satisfy 1.0≤ǂ  and ,3.0≤ǃ  respectively. 

Defining ],)()([)( 21 txtxtx =  ])()([)( 21 twtwtw =  and assuming ],1,1[)(2 −∈tx  we have 

an equivalent fuzzy system description 
 

)(tx$ = ,)(
7.0

3.0
)(

02.0

03.0
)())(())((

2

1
112∑

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
++

=i
iiiii tutwtxEtFHAtxλ  

)(tz = ),(
1.0

0
)(

00

2.03.0
tutx ⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
 

)(ty = )(]10[)(]2.03.0[ twtx +−
 

 

where 1 2 2( ( )) ( ( ) 1) / 2,x t x tλ = − + 2 2 2( ( )) ( ( ) 1) / 2x t x tλ = +  and  

　　　　 ,
0

1
,

0

2
,

4.01.1

6.04
,

4.01.1

6.04.2
121121 ⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ −−
=⎥

⎦

⎤
⎢
⎣

⎡
−

−−
= HHAA  

　　　 ]01.0[],01.0[,)(,)( 121121 ==== EE
ǃ
ǃ

tF
ǂ
ǂ

tF  

which can be written as 
 

)(tx$ = ),(
7.0

3.0
)(

02.0

03.0
)()

~
)(

~
( 112 tutwtxAtFHA ⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
++

)(tz = ),(
1.0

0
)(

00

2.03.0
tutx ⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
 

)(ty = )(]10[)(]2.03.0[ twtx +−
 

where  

=⎥
⎦

⎤
⎢
⎣

⎡
= )(

~
,

0010

1201
11 tFH 　 diag 　　 ,

01.0

01.0

02.2

06.1

~
],)()()()([ 2111

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

=AtFtFtλtλ  

It is easy to see that the original system with 0)( =tu  is unstable. Theorem 2.3 allows us to 

design a robust stabilizing controller with H∞ disturbance attenuation 10=Ǆ : 
 

)(ˆ tx$ = ),(
8950.32

7026.48
)(ˆ

3744.135631.8

8920.46351.24
tytx ⎥

⎦

⎤
⎢
⎣

⎡
−

+⎥
⎦

⎤
⎢
⎣

⎡
−
−−

 

)(tu = )(ˆ]1612.904520.37[ tx−−
 

 

This controller is applied to the system. A simulation result with the initial conditions  

,]6.05.0[)0( Tx −= ,]00[)0(ˆ Tx =
 

the noises )1.0sin(1.0)()( 2.0
21 tetwtw t−==  and the 

assumption )10sin()()( 21 ttFtF ==  is depicted in Figures 1 and 2, which show the 

trajectories of the state and control, respectively. It is easy to see that the obtained controller 

stabilizes the nonlinear system. 
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Fig. 1. The state trajectories 

 

Fig. 2. The control trajectory 

3. Robust output feedback control for uncertain discrete-time fuzzy systems 
with immeasurable premise variables 

We now consider the discrete-time counterpart of the previous section. We first show that a 

discrete-time Takagi-Sugeno fuzzy system with immeasurable premise variables can be 

written as an uncertain discrete-time linear system. Then, robust stability with H∞ 

disturbance attenuation problem for such an uncertain system is converted into stability 

with H∞ disturbance attenuation for a nominal system. Based on such a relationship, a 

solution to a robust stability with H∞ disturbance attenuation problem via output feedback 

controller for a discrete-time fuzzy system with immeasurable premise variables is given. 

Finally, a numerical example illustrates our theory. 
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3.1 Fuzzy system and problem formulation 
In this section, we consider discrete-time Takagi-Sugeno fuzzy systems with immeasurable 
premise variables. The Takagi-Sugeno fuzzy model is described by the following IF-THEN 
rules: 
 

IF 1ξ  is 1iM  and … and pξ  is ,ipM  

THEN ),()Δ()()Δ()()Δ()1( 2211 kuBBkwBBkxAAkx iiiiii +++++=+  

 ),()Δ()()Δ()()Δ()( 1212111111 kuDDkwDDkxCCkz iiiiii +++++=  

 rikuDDkwDDkxCCky iiiiii ,,1),()Δ()()Δ()()Δ()( 2222212122 A=+++++=  
 

where nkx ℜ∈)(  is the state, 1)( mkw ℜ∈  is the disturbance, 2)( mku ℜ∈  is the control input, 
1)( qkz ℜ∈  is the controlled output, 2)( qky ℜ∈  is the measurement output. r  is the number 

of IF-THEN rules. ijM  are fuzzy sets and pξξ ,,1 A  are premise variables. We set  
T

pξξξ ][ 1 A=  and )(kξ  is assumed to be a function of ),(kx  which is not measurable. We 

assume that the premise variables do not to depend on ),(ku  and that ,iA  ,1iB  ,2iB  ,1iC  

,2iC  ,11iD  ,12iD
 iD21  and iD22  are constant matrices of appropriate dimensions. The 

uncertain matrices are of the form 

[ ] riEEEkF

H

H

H

DDC

DDC

BBA

iiii

i

i

i

iii

iii

iii

,,1,)(

ΔΔΔ
ΔΔΔ
ΔΔΔ

321

3

2

1

22212

12111

21

A=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
　

 

where jl
i kF ×ℜ∈)(  is an uncertain matrix satisfying IkFkF i

T
i ≤)()( , and ,1iH ,2iH ,3iH ,1iE  

iE2  and iE3  are known constant matrices of appropriate dimensions. 

Assumption 3.1 The system ( ,rA ,1rB ,2rB ,1rC ,2rC ,11rD ,12rD ,21rD rD22 ) represents a 

nominal system that can be chosen as a subsystem including the equilibrium point of the 

original system. 

)(kξ
 
is assumed to be a function of the immeasurable state ).(kx  The state, the controlled 

output and the measurement output equations are defined as follows: 
 

)1( +kx = )},()Δ()()Δ()()Δ()){(( 2211
1

kuBBkwBBkxAAkξλ iiiiii

r

i
i +++++∑

=  

 

)(kz = )},()Δ()()Δ()()Δ()){(( 1212111111
1

kuDDkwDDkxCCkξλ iiiiii

r

i
i +++++∑

=  
(12) 

)(ky = )}()Δ()()Δ()()Δ()){(( 2222212122
1

kuDDkwDDkxCCkξλ iiiiii

r

i
i +++++∑

=  

 

where  

∏=
∑

=
==

p

j
jijir

i i

i
i ξMξǃ

ξǃ
ξǃξλ

11

)()(,
)(

)(
)( 　

 

and )(⋅ijM  is the grade of the membership function of .ijM  We assume 

∑ >=≥
=

r

i
ii kξǃrikξǃ

1
0))((,,,1,0))(( 　　　 A
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for any ( ).ξ k   Hence ( ( ))i ξ kλ  satisfies 
 

∑ ==≥
=

r

i
ii kξλrikξλ

1
1))((,,,1,0))(( 　　　 A

 
(13) 

 

for any ).(kξ  Our problem is to find a control )(⋅u  for the system (1) given the output 

measurements )(⋅y  such that the controlled output )(⋅z  satisfies 
 

∑ ∑<
∞

=

∞

=0 1

2 )()()()(
i i

TT iwiwǄiziz
 

(14) 

 

for a prescribed scalar .0>Ǆ  If such a controller exists, we call it an H∞ output feedback 

controller. Here, we consider the robust stabilization and the robust H∞ disturbance 

attenuation of uncertain fuzzy system (9) with the immeasurable premise variable. 

3.2 Robust stability of equivalent uncertain systems 

Similar to continuous-time case, we rewrite (12) as an uncertain system. Then, the robust 

stability with H∞ disturbance attenuation problem of fuzzy system is converted as the robust 

stability and robust stability with H∞ disturbance attenuation problems of equivalent 

uncertain system. Since ))(( kxλi  satisfies (13), we have 

))].(())(())(([1))(( 121 kxλkxλkxλkxλ rr −+++−= A
 

It follows from this relationship that 
 

)Δ))(((
1
∑ +
=

r

i
iii AAkxλ = ])())[(()( 1111111 rrrrrrr EkFHAkxλEkFHA +++  

 ])())[(( ,1,1,1,11 rrrrrrrrr EkFHAkxλ −−−−− +++A  

= AkFHAr
~

)(
~

1+  
 

where 
 

1,,1, −=−= riAAA riir A
 

],[ 112111 rHHHIIIH AA=
 

( ) diagF k =#
1 1 1 1[ ( ) ( ) ( ) ( ) ( ) ( )],r r rk I k I t F k t F kλ λ λ λ−A A  

.][
~

11211,121
TT

r
TTT

rr
T

r
T
r EEEAAAA AA −=  

 

Similarly, we rewrite ),Δ))((( 11 1 i
r
i ii BBkxλ +∑ =  ,)Δ))(((1 22∑ +=

r
i iii BBkxλ   

,)Δ))(((1 11∑ +=
r
i iii CCkxλ  ,)Δ))(((1 22∑ +=

r
i iii CCkxλ  ,)Δ))(((1 1111∑ +=

r
i iii DDkxλ   

,)Δ))(((1 1212∑ +=
r
i iii DDkxλ  ∑ +=

r
i iii DDkxλ1 2121 )Δ))(((  and ,)Δ))(((1 2222∑ +=

r
i iii DDkxλ  and 

we have an equivalent description for (12): 
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)1( +kx = )()Δ()()Δ()()Δ( 2211 kuBBkwBBkxAA rrr +++++
 

� ),()()( Δ2Δ1Δ kuBkwBkxA ++
 

)(kz = )()Δ()()Δ()()Δ( 1212111111 kuDDkwDDkxCC rrr +++++
 

� ),()()( Δ12Δ11Δ1 kuDkwDkxC ++
 

)(ky = )()Δ()()Δ()()Δ( 2222212122 kuDDkwDDkxCC rrr +++++
 

 � )()()( Δ22Δ21Δ2 kuDkwDkxC ++
 

(15) 

 

where 
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],[ 222212 rHHHIIIH AA=  

],[ 332313 rHHHIIIH AA=  

,,, 111222111 riirriirriir CCCBBBBBB −=−=−=  

,,, 121212111111222 riirriirriir DDDDDDCCC −=−=−=  

,1,,1,, 222222212121 −=−=−= riDDDDDD riirriir A  

,][
~

22221,1112111
TT

r
TTT

rr
T

r
T

r EEEBBBB AA −=  
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~

33231,1222212
TT

r
TTT
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r
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r EEEBBBB AA −=  
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TTT
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r
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r EEECCCC AA −=  
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11211,1222212
TT
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TTT
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r
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r EEECCCC AA −=  

,][
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22221,11111211111
TT

r
TTT

rr
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r
T

r EEEDDDD AA −=  

,][
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33231,11212212112
TT
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TTT

rr
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T

r EEEDDDD AA −=  

,][
~

22221,12121221121
TT
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TTT
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T

r EEEDDDD AA −=  

.][
~

33231,12222222122
TT

r
TTT

rr
T

r
T

r EEEDDDD AA −=  
 

We note that since the state )(kx  is not measurable, ))(( kxλi  are unknown. This implies that 

)(
~

kF  is a time varying unknown function. However, it is easy to see that )(
~

kF  satisfies 

,)(
~

)(
~

IkFkFT ≤  because ,1))((0 ≤≤ kxλi ,)()( IkFkF i
T
i ≤ .3,2,1=i

 
Hence, with Assumption 

3.1, we can see (12) as a linear nominal system with time varying uncertainties. The 

importance on this description is that the system (15) is exactly the same as the system (12). 
Now, our problem of finding an H∞ controller for the system (12) is to find a robustly 

stabilizing output feedback controller with H∞ disturbance attenuation of the form (16) for 

the uncertain system (15). 
 

)1(ˆ +kx = ),(ˆ)(ˆˆ kyBkxA +
 

)(ku = ).(ˆˆ kxC
 

(16) 
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Definition 3.1 (i) Consider the unforced system (12) with ,0)( =kw .0)( =ku  The uncertain 

system (12) is said to be robustly stable if there exists a matrix 0>X  such that 

0ΔΔ <−XXAAT

 

for all admissible uncertainties. 
(ii) The uncertain system (12) is said to be robustly stabilizable via output feedback 
controller if there exists an output feedback controller of the form (16) such that the resulting 
closed-loop system (12) with (16) is robustly stable. 

Definition 3.2 (i) Given a scalar ,0>Ǆ  the system (12) is said to be robustly stable with H∞ 

disturbance attenuation Ǆ  if there exists a matrix 0>X  such that 

.0

0

0

0

0

Δ11Δ1

1
Δ1Δ

Δ11Δ1
2

Δ1Δ

<

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−

IDC

XBA

DBIǄ
CAX

TT

TT

 

(ii) Given a scalar 0>Ǆ , the uncertain system (12) is said to be robustly stabilizable with H∞ 

disturbance attenuation Ǆ  via output feedback controller if there exists an output feedback 

controller of the form (16) such that the resulting closed-loop system (12) with (16) is 

robustly stable with H∞ disturbance attenuation .Ǆ  
The robust stability and the robust stability with H∞ disturbance attenuation are converted 
into the stability with H∞ disturbance attenuation. 

Definition 3.3 Given a scalar ,0>Ǆ  the system 
 

)1( +kx = ),()( kBwkAx +
 

)(kz = )()( kDwkCx +
 

(17) 

 

is said to be stable with H∞ disturbance attenuation Ǆ  if it is exponentially stable and input-

output stable with (14). 
Now, we state our key results that show the relationship between the robust stability and 
the robust stability with H∞ disturbance attenuation of an uncertain system, and stability 
with H∞ disturbance attenuation of a nominal system. 

Theorem 3.1 The system (12) with 0)( =kw  is robustly stable if and only if for 0>ε  the 

system 
 

)1( +kx = ),()( 1
1 kwHεkxAr
−+

 
)(kz = )(

~
kxAε

 
 

where w  and z  are of appropriate dimensions, is stable with unitary H∞ disturbance 

attenuation .1=Ǆ  

Proof: The system (12) is robustly stable if and only if there exists a matrix 0>X  such that 

,0)
~

)(()
~

)(( 1111 <−++ XAkFHAXAkFHA r
T

r  

which can be written as 
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0)()( 11 <++ TTT HkFEEkHFQ
 

(18) 
 

where 
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It follows from Lemma 2.1 that there exists 0>X  such that (18) holds if and only if there 

exist a matrix 0>X  and a scalar 0>ε  such that 

,0
1 2
2

<++ EEεHH
ε

Q TT  

which can be written as 
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Pre-multiplying and post-multiplying 
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The desired result follows from Definition 3.1. 

Theorem 3.2 The system (12) with 0)( =ku
 

is robustly stable with H∞ disturbance 

attenuation Ǆ  if and only if for 0>ε  the system 
 

)1( +kx = ),(~]0[)( 1
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1
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−−+
 

)(~ kz = )(~

00
~

00
~

0

)(
~

~

11
1

1
1

2
1

11
1

1

1

kw

DεǄ
BεǄ

HεDǄ
kx

Cε
Aε

C

r

rr

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−−

 

 

where w~  and z~  are of appropriate dimensions, is stable with unitary H∞ disturbance 

attenuation .1=Ǆ  
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Proof: The system (12) is robustly stable with H∞ disturbance attenuation Ǆ  if and only if 

there exists a matrix 0>X  such that 
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which can be written as 
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It can be shown from Lemma 2.1 that there exists 0>X  such that (19) holds if and only if 

there exist 0>X  and a scalar 0>ε  such that 
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which can be written as 
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Pre-multiplying and post-multiplying the above LMI by 
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we have 
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The result follows from Definition 3.1. 

3.3 Robust controller design 

We are now at the position where we propose the control design of an H∞ output feedback 
controller for the system (12). The controller design is based on the equivalent system (15). 
The design of a robustly stabilizing output feedback controller with H∞ disturbance 
attenuation for the system (15) can be converted into that of a stabilizing controller with H∞ 
disturbance attenuation controllers for a nominal system. For the following auxiliary 
systems, we can show that the following theorems hold. Consider the following systems: 
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and 
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where 0>ε  is a scaling parameter.  

Theorem 3.3 The system (12) is robustly stabilizable with H∞ disturbance attenuation with 

Ǆ  via the output feedback controller (16) if the closed-loop system corresponding to (20) 

and (16) is stable with unitary H∞ disturbance attenuation. 
Proof: The closed-loop system (12) with (16) is given by 
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On the other hand, the closed-loop system (20) with (17) is given by 
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The result follows from Theorem 3.2.  
Similar to Theorem 3.3, a robust stabilization is obtained from Theorem 3.2 as follows: 

Theorem 3.4 The system (12) with 0)( =kw  is robustly stabilizable via the output feedback 

controller (16) if the closed-loop system corresponding to (21) and (16) is stable with unitary 

H∞ disturbance attenuation. 
Remark 3.1 Theorem 3.3 indicates that a controller that achieves a unitary H∞ disturbance 
attenuation for the nominal system (20) can robustly stabilize the fuzzy system (12) with H∞ 

disturbance attenuation .Ǆ  Similar argument can be made on robust stabilization of 

Theorem 3.4. Therefore, the existing results on stability with H∞ disturbance attenuation can 
be applied to solve our main problems. 

3.4 Numerical examples 

Now, we illustrate a control design of a simple discrete-time Takagi-Sugeno fuzzy system 
with immeasurable premise variables. We consider the following nonlinear system with 
uncertain parameters. 
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where ǂ and ǃ  are uncertain scalars which satisfy 1.0≤ǂ  and ,02.0≤ǃ respectively. 

Defining ],)()([)( 21 kxkxkx =  ])()([)( 21 kwkwkw =  and assuming ],1,1[)(2 −∈kx  we 

have an equivalent fuzzy system description 
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where 2
1 2 2( ( )) 1 ( ),x k x kλ = −  2

2 2 2( ( )) ( )x k x kλ = and  
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The open-loop system is originally unstable. Theorem 3.3 allows us to design a robust 

stabilizing controller with H∞ disturbance attenuation 20=Ǆ : 
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Fig. 3. The state trajectories 
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Fig. 4. The control trajectory 

This controller is applied to the system. A simulation result with the initial conditions 

,]3.04.0[)0( Tx −= Tx ]00[)0(ˆ = , the noises ),cos()(1 kekw k−= )sin()(2 kekw k−=  and 

the assumption )sin()()( 21 kkFkF ==  is depicted in Figures 3 and 4, which show the 

trajectories of the state and control, respectively. We easily see that the obtained controller 
stabilizes the system. 

4. Extension to fuzzy time-delay systems 

In this section, we consider an extension to robust control problems for Takagi-Sugeno 
fuzzy time-delay systems. Consider the Takagi-Sugeno fuzzy model, described by the 
following IF-THEN rule: 
 

IF 1ξ  is 1iM  and … and pξ  is ,ipM  

THEN ),()Δ()()Δ()()Δ()()Δ()( 2211 tuBBtwBBhtxAAtxAAtx iiiididiii ++++−+++=$  

 )()Δ()()Δ()()Δ()( 11111111 twDDhtxCCtxCCtz iididiii ++−+++=   

          
),()Δ( 1212 tuDD ii ++  

 )()Δ()()Δ()()Δ()( 21212222 twDDhtxCCtxCCty iididiii ++−+++=
 

       rituDD ii ,,1),()Δ( 2222 A=++ 　　　　　　　　　　　　　　　  
 

where ntx ℜ∈)(  is the state, 1)( mtw ℜ∈  is the disturbance, 2)( mtu ℜ∈  is the control input, 
1)( qtz ℜ∈  is the controlled output, 2)( qty ℜ∈  is the measurement output. r  is the number 

of IF-THEN rules. ijM  is a fuzzy set and pξξ ,,1 A  are premise variables. We set 

.][ 1
T

pξξξ A=  We assume that the premise variables do not to depend on ).(tu  

,iA ,diA ,1iB ,2iB ,1iC ,2iC ,1diC ,2diC ,11iD ,12iD iD21  
and iD22  are constant matrices of 

appropriate dimensions. The uncertain matrices are of the form (1) with ,)(Δ 1 diiidi EtFHA =  

diiidi EtFHC )(Δ 21 =  and diiidi EtFHC )(Δ 32 =  where ,1iH ,2iH iH3  and diE  are known 

constant matrices of appropriate dimensions.  
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Assumption 4.1 The system ( ,rA  ,drA  ,1rB  ,2rB  ,1rC  ,2rC  ,1drC  ,2drC  ,11rD  ,12rD  

,21rD  rD22 ) represents a nominal system that can be chosen as a subsystem including the 

equilibrium point of the original system. 
The state equation, the controlled output and the output equation are defined as follows: 
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i
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)}()Δ( 2222 tuDD ii ++  

(22) 

 

where ))(( txλi  is defined in (3) and satisfies (4). Our problem is to find a control )(⋅u  for the 

system (22) given the output measurements )(⋅y  such that the controlled output )(⋅z  

satisfies (5) for a prescribed scalar .0>Ǆ  Using the same technique as in the previous 

sections, we have an equivalent description for (22): 
 

)(tx$ = )()Δ()()Δ()()Δ()()Δ( 2211 tuBBtwBBhtxAAtxAA rrddrr ++++−+++
 

� ),()()()( Δ2Δ1ΔΔ tuBtwBhtxAtxA d ++−+
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 � )()()()( Δ22Δ21Δ2Δ2 tuDtwDhtxCtxC d ++−+
 

(23) 

 

where ,
~

)(
~Δ 1 dd AtFHA = ,

~
)(

~Δ 111 dd CtFHC = ,
~

)(
~Δ 212 dd CtFHC = and other uncertain matrices 

are given in (7). As we can see from (23) that uncertain Takagi-Sugeno fuzzy time-delay 
system (22) can be written as an uncertain linear time-delay system. Thus, robust control 
problems for uncertain fuzzy time-delay system (22) can be converted into those for an 
uncertain linear time-delay system (23). Solutions to various control problems for an 
uncertain linear time-delay system have been given(for example, see Gu et al., 2003; 
Mahmoud, 2000) and hence the existing results can be applied to solve robust control 
problems for fuzzy time-delay systems. 

5. Conclusion 

This chapter has considered robust H∞ control problems for uncertain Takagi-Sugeno fuzzy 
systems with immeasurable premise variables. A continuous-time Takagi-Sugeno fuzzy 
system was first considered. Takagi-Sugeno fuzzy system with immeasurable premise 
variables can be written as an uncertain linear system. Based on such an uncertain system 
representation, robust stabilization and robust H∞ output feedback controller design method 
was proposed. The same control problems for discrete-time counterpart were also 
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considered. For both continuous-time and discrete-time control problems, numerical 
examples were shown to illustrate our design methods. Finally, an extension to fuzzy time-
delay systems was given and a way to robust control problems for them was shown. 
Uncertain system approach taken in this chapter is applicable to filtering problems where 
the state variable is assumed to be immeasurable. 
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