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1. Introduction 

Student evaluation is the process of determining the performance levels of individual 

students in relation to educational learning objectives. A high quality evaluation system 

certifies, supports, and improves individual achievement and ensures that all students 

receive a fair evaluation in order not to constrain students' present and future prospects. 

Thus, the system should regularly be reviewed and improved to ensure that it is suitable, 

fair, impartial and beneficial to all students. It is also desirable that the system is transparent 

and automation measures should be embedded in the evaluation. Fuzzy reasoning has 

proven beneficial to infer scores of students (e.g. Saleh & Kim, 2009). However, in order to 

improve the reliability and robustness of the system, Gaussian membership functions (MFs) 

are proposed as an alternative to the traditional triangular MFs. 

Since its introduction in 1965 by Lotfi Zadeh (1965), the fuzzy set theory has been widely 
used in solving problems in various fields, and recently in educational evaluation. Biswas 
(1995) presented two methods for evaluating students’ answer scripts using fuzzy sets and a 
matching function; a fuzzy evaluation method and a generalized fuzzy evaluation method. 
Chen and Lee (1999) presented two methods for applying fuzzy sets to overcome the 
problem of rewarding two different fuzzy marks the same total score which could result 
from Biswas’ method (1995). Echauz and Vachtsevanos (1995) proposed a fuzzy logic 
system for translating traditional scores into letter-grades. Law (1996) built a fuzzy structure 
model for an educational grading system with its algorithm aimed at aggregating different 
test scores in order to produce a single score for an individual student. He also proposed a 
method to build the MFs of several linguistic values with different weights. Wilson, Karr 
and Freeman (1998) presented an automatic grading system based on fuzzy rules and 
genetic algorithms. Ma and Zhou (2000) proposed a fuzzy set approach to assess the 
outcomes of Student-centered learning using the evaluation of their peers and lecturer. 
Wang and Chen (2008) presented a method for evaluating students’ answer scripts using 
fuzzy numbers associated with degrees of confidence of the evaluator. From the previous 
studies, it can be found that fuzzy numbers, fuzzy sets, fuzzy rules, and fuzzy logic systems 
are and have been used for various educational grading systems.  
Evaluation strategies based on fuzzy sets require a careful consideration of the factors 

included in the evaluation. Weon and Kim (2001) pointed out that the system for students’ 
Source: Fuzzy Systems, Book edited by: Ahmad Taher Azar,  
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achievement evaluation should consider three important factors of the questions which the 

students answer: the difficulty, the importance, and the complexity. Singleton functions 

were used to describe the factors of each question reflecting the effect of the three factors 

individually, but not collectively. Bai and Chen (2008b) stressed that the difficulty factor is a 

very subjective parameter and may cause an argument about fairness in the evaluation.  

The automatic construction of the grade MFs of fuzzy rules for evaluating student’s learning 
achievement has been attempted (Bai & Chen, 2008a). Also, Bai and Chen (2008b) proposed 
a method for applying fuzzy MFs and fuzzy rules for the same purpose. To solve the 
subjectivity of the difficulty factor embedded in the method of Weon and Kim (2001), Bai 
and Chen (2008b) acquired the difficulty parameter as a function of accuracy of the student’s 
answer script and time used for each question. However, their method still has the 
subjectivity problem, since the resulting scores and rankings are heavily dependent on the 
values of several weights which are assessed by the subjective knowledge of domain 
experts. 
Saleh and Kim (2009) proposed a three node fuzzy logic approach based on Mamdani’s 
fuzzy inference engine and the centre-of-gravity (COG) defuzzification technique as an 
alternative to Bai and Chen’s method (2008b). The transparency and objective nature of the 
fuzzy system makes their method easy to understand and enables teachers to explain the 
results of the evaluation to sceptic students. The method involved conventional triangular 
MFs of fixed parameters which could result in different results when changed. In this 
chapter, the Gaussian MFs are proposed as an alternative and a sensitivity study is 
conducted to get the appropriate values of their parameters for a more robust evaluation 
system. 
The chapter will be organized as follows: In Section 2, a review of the three nodes fuzzy 
evaluation method based on triangular MFs is introduced. In Section 3, Gaussian MFs are 
proposed for a more robust evaluation system. A comparison of the two methods is 
presented in Section 4. Conclusions are drawn in Section 5. 

2. A review of the three nodes fuzzy evaluation system 

The method proposed by Bai and Chen (2008b) has several empirical weights which are 

determined subjectively by the domain expert. Quite different ranks can be obtained 

depending on these weight values. By using this method, the examiners could not easily 

verify how new ranks are acquired and could not persuade sceptical students. Naturally, 

there is no method to determine the optimum values of these weights. Also, the weighted 

arithmetic mean formula used to compute the outputs do not satisfy the concept of fuzzy 

set. To reduce the degree of subjectivity in this method and provide a method based on the 

theory of fuzzy set, Saleh and Kim (2009) proposed a system applying the most commonly 

used Mamdani’s fuzzy inference mechanism (Mamdani, 1974) and center of gravity (COG) 

defuzzification technique. In this way, the system is represented as a block diagram of fuzzy 

logic nodes as shown in Fig. 1. The model of Bai and Chen (2008b) can be considered as a 

simple specific case of the block diagram by replacing each node with a weighted arithmetic 

mean formula. The system consists of three nodes; the difficulty node, the cost node and the 

adjustment node. Each node of the system behaves like a fuzzy logic controller (FLC in Fig. 

1) with two scalable inputs and one output, as in Fig. 2. Each FLC maps a two-to-one fuzzy 

relation by inference through a given rule base. 

www.intechopen.com
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Fig. 1. Block diagram of the three nodes fuzzy evaluation system. 

 

 

Fig. 2. Node representation as a fuzzy logic controller. 

The inputs to the system in the left hand side of Fig. 1 are given by examination results and 
domain experts. Assume that there are n students to answer m questions. From examination 
results, we get an accuracy rate matrix, A, of dimension m x n, which is the student’s scores 
in each question divided by the maximum score assigned to this question 

A = [aij],   m x n, 

where [0, 1]ija ∈  denotes the accuracy rate of student j on question i. We also get a time rate 

matrix, T, of dimension m x n, which is the time used by a student to solve a question 

divided by the maximum time allowed to solve this question 
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T = [tij],   m x n, 

where [0, 1]ijt ∈  denotes the time rate of student j on question i. We are also given a grade 

vector, G, of dimension m x 1 

G = [gi],   m x 1, 

where [1, 100]ig ∈  denotes the assigned maximum score of question i satisfying  

1

100

m

i

i

g

=

=∑  

Based on the accuracy rate matrix, A, and the grade vector G, we obtain the total score 
vector of dimension n x 1, 

 S = ATG = [sj],   n x 1, (1) 

where sj [0, 100]∈ is the total score of student j. The “classical” ranks of students are then 

obtained by sorting the element values of S in descending order. 
Example. Assume that 10 students laid to an exam of 5 questions and the accuracy rate 
matrix, the time rate matrix, and the grade vector are given as follows (Bai & Chen, 2008b; 
Saleh & Kim, 2009): 

0.59 0.35 1 0.66 0.11 0.08 0.84 0.23 0.04 0.24

0.01 0.27 0.14 0.04 0.88 0.16 0.04 0.22 0.81 0.53

0.77 0.69 0.97 0.71 0.17 0.86 0.87 0.42 0.91 0.74

0.73 0.72 0.18 0.16 0.5 0.02 0.32 0.92 0.9 0.25

0.93 0.49 0.08 0.81 0.65 0.93 0.39 0.51 0.97 0.61

A

⎡
⎢

=

⎣

,

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 

0.7 0.4 0.1 1 0.7 0.2 0.7 0.6 0.4 0.9

1 0 0.9 0.3 1 0.3 0.2 0.8 0 0.3

0 0.1 0 0.1 0.9 1 0.2 0.3 0.1 0.4 ,

0.2 0.1 0 1 1 0.3 0.4 0.8 0.7 0.5

0 0.1 1 1 0.6 1 0.8 0.2 0.8 0.2

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

[ ]10 15 20 25 30TG =  

Here, GT denotes the transpose of G. Total score for each individual student is then obtained 
by formula (1) as 

1 2 3 4 5 6 7 8 9 10s s s s s s s s s s  

[ ]67.60 54.05 38.40 49.70 49.70 48.80 46.10 52.30 85.95 49.70TS =  

and thus the “classical” ranks of students is become  

S9 > S1 > S2 > S8 > S4 = S5 = S10 > S6 > S7 > S3, 

www.intechopen.com
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where Sa > Sb means that the score of student a is higher than score of student b and                          
Sa = Sb means that their scores are equal. 

□ 
From the domain expert, we get the importance matrix, P, of dimension m x l which 
describes the degree of importance of each question in the fuzzy domain.  

P = [pik],   m x l, 

where [0, 1]ikp ∈  denotes the degree of importance of question i belonging to the 

importance level k. Here, five levels of importance (l = 5) are represented by five fuzzy sets; k 
= 1 representing the linguistic term “low”, k = 2 representing “more or less low”, k = 3 
representing “medium”, k = 4 representing “more or less high” and k = 5 representing 
“high”. The MFs are shown in Fig. 3. Once crisp values are given as a vector for the 
importance of questions by a domain expert, the values of fuzzy importance matrix or pik’s 
are obtained by the fuzzification. 
 

 

Fig. 3. Triangular membership functions of the five levels. 

It is noted that the same five fuzzy sets, shown in Fig. 3, are applied to represent the 
accuracy, the time rate, the difficulty, the complexity, and the adjustment of questions in the 
fuzzy domain. 
We are also given the complexity matrix of dimension m x l, which is an important factor 
indicating the ability of students to give correct answers of complex questions 

Co = [coik],   m x 1, 

where [0, 1]ikco ∈  denotes the degree of complexity of question i belonging to the 

complexity level k.  
Example. For the above example we get the following, in fuzzy domain, by the domain expert: 

0 0 0 0 1

0 0.33 0.67 0 0

0 0 0 0.15 0.85

1 0 0 0 0

0 0.07 0.93 0 0

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

High
µ(x)

x 
0.3 0.5 

1.0 

0.9 0.1 0.7 1.0 0.0 

Medium

More or less highMore or less low

Low

www.intechopen.com



 Fuzzy Systems 

 

6 

0 0.85 0.15 0 0

0 0 0.33 0.67 0

0 0 0 0.69 0.31

0.56 0.44 0 0 0

0 0 0.7 0.3 0

Co

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

□ 
As a primary step, the inputs from the examination results are averaged and fuzzified based 
on the defined levels (fuzzy sets) in Fig. 3. The average accuracy rate vector of dimension m 
x 1 is obtained as 

A  = [ ia • ],   m x 1, 

 

where ia •  denotes the average accuracy rate of question i which is obtained by 

 
1

,
n

i ij
j

a a n• =
=∑  (2) 

and the average time rate vector of the same dimension m x 1 is obtained as 

T  = [ it • ],   m x 1, 

where it •  denotes the average time rate of question i which is obtained by 

 
1

.
n

i ij
j

t t n• =
=∑  (3) 

Next, by fuzzification, we obtain the fuzzy accuracy rate matrix of dimension m x l, 

FA = [faik],   m x l, 
 

where faik [0, 1]∈ denotes the membership value of the average accuracy rate of question i 

belonging to level k, and the fuzzy time rate matrix of dimension m x l, 

FT = [ftik],   m x l, 
 

where ftik [0, 1]∈  denotes the membership value of the average time rate of question i 

belonging to level k, respectively. 
Example. For the above by formula (2) and formula (3), respectively, we get 
 

[ ]0.45 0.31 0.711 0.47 0.637 ,TA =  

[ ]0.57 0.48 0.31 0.50 0.57 .TT =  

 

Based on the fuzzy MFs in Fig. 3 we obtain the fuzzy accuracy rate matrix and the fuzzy 

time rate matrix as: 

www.intechopen.com



Fuzzy Systems in Education: A More Reliable System for Student Evaluation  

 

7 

0 0.25 0.75 0 0

0 0.95 0.05 0 0

0 0 0 0.945 0.055 ,

0 0.15 0.85 0 0

0 0 0.315 0.685 0

FA

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

0 0 0.65 0.35 0

0 0.1 0.9 0 0

0 0.95 0.05 0 0 .

0 0 1 0 0

0 0 0.65 0.35 0

FT

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

□ 
In the first node, both inputs are given by examination results, whereas in the later nodes, 
one input is the output of its previous node and the other is given by a domain expert. The 
output of each node can be in the form of a crisp value (defuzzified) or in the form of 
linguistic variables (MFs). Each node has two scale factors (SFs in Fig. 1). We can adjust the 
effects of inputs by varying the values of scale factors. Here, we let both scaling factors have 
the same value of unity assuming equal influence of each input on the output. Each fuzzy 
node proceeds in three steps: 
Step 1 (Fuzzification). In this step, if given in crisp sets, inputs are converted into membership 
values in the fuzzy sets shown in Fig. 3. Triangular MF is the commonly used due to its 
simplicity and easy computation.  
Step 2 (Inference). Here, inference is performed based on the given rule base, in the form of 
IF–THEN rules. We use Mamdani’s max-min inference mechanism which is the most 
commonly used inference mechanism to produce fuzzy sets for defuzzification (1974). In 
Mamdani’s max-min mechanism, implication is modelled by means of minimum operator, 
and the resulting output MFs are combined using maximum operator. 
The inference mechanism can be written into the form: 

 
( ){ }

( ){ }1 2
1 2 1 2

, ,
, ( , )

max min , ,ik i l i l
l l k l l

fa ft
=ℜ

=α  (4) 

where ikα is the output of inference (i.e. the fire-strength) of question i in fuzzy set k. A 

matrix of dimension m x l is then obtained as 

[ ]ik=α α ,   m x l, 

Step 3 (Defuzzification). In this step, fuzzy output values are converted into a single crisp 
value or final decision. Here, the COG method is applied. The crisp value of question i is 
obtained by 

 . ( ) ( ) ,i

x x

y x x dx x dx= ∫ ∫μ μ  (5) 

where integrals are taken over the entire range of the output where µ(x) is obtained from 
step 2. By using the COG method, a computable and reliable crisp value can be obtained. 
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The proposed system has been implemented using the Fuzzy Logic Toolbox™ 2.2.7 by 
MathWorks (http://www.mathworks.com/products/fuzzylogic). 
In order to obtain the adjustment vector, each of the three nodes follows the above scheme. 
The difficulty node has two inputs comprising the accuracy rate and the time rate, and one 
output displaying the difficulty. The cost node has two inputs comprising difficulty and 
complexity, and one output displaying the cost. Likewise, the adjustment node has two 
inputs comprising cost and importance, and one output displaying the resulting adjustment. 
The adjustment vector, W, is then used to obtain the adjusted grade vector of dimension m x 1, 
 

[ ]iG g=# # ,   m x 1, 

where ig#  is the adjusted grade of question i, 

 (1 ).i i ig g w= ⋅ +#  (6) 

Then, the obtained value is scaled to its total grade (i.e. 100) by using the formula 

 
m m

i i j j
j j

g g g g= ⋅∑ ∑# # #  (7) 

Finally, we obtain the adjusted total scores of students by 

 .TS A G=# #  (8) 

New and modified ranks of students are then obtained by sorting element values of S#  in 

descending order. 
Example. By referring to Fig. 1, the average values of A and T in the difficulty node are 
computed using formula (2) and formula (3) and then fuzzified, in step 1, to obtain the fuzzy 
matrices FA and FT, respectively. Next, as an example for step 2, the output for question 1 in 
level 4 (fuzzy set “more or less high”) is computed based on the rule base given in Table 1a. 
The computation uses the Mamdani’s fuzzy interference mechanism and is obtained by 
formula (7) as the following: 

( ){ }
( ){ }1 2

1 2 1 2

14 1, 1,
, ( , ) 4

max min ,l l
l l l l

fa ft
ℜ =

=α                                

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ){ }1 21, 1,

1, 2 , 1,3 , 2 ,3 , 2 ,4 , 3 ,4 , 3 ,5 , 4 ,5
max min ,l lfa ft=    

( ) ( ) ( ){max min 0,0 , min 0, 0.65 , min 0.25, 0.65 ,=

( ) ( ) ( ) ( )}min 0.25,0.35 , min 0.75,0.35 , min 0.75,0 , min 0, 0  

{ }max 0,0, 0.25, 0.25,0.35,0 , 0=  

0.35=  

By the same procedure, we obtain the inference output, the fire-strength of the difficulty 
matrix as: 

0 0 0.65 0.35 0

0 0.05 0.1 0.9 0

0.055 0.945 0 0 0

0 0 0.85 0.15 0

0 0.65 0.35 0.315 0

D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

α  
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In Step 3, we use COG to compute the crisp value of the difficulty of question 1 by formula (8) 
as 0.576, as illustrated in Fig. 4. Likewise, we compute the crisp values of other questions as 

[ ]0.576 0.653 0.299 0.538 0.456 .TD =  

 

 

Fig. 4. Fuzzification, Mamdani’s max-min inference, and COG to compute the difficulty of 
question 1. 

The surface view of the relation of the rule base in Table 1a is shown in Fig. 5. 

 

Fig. 5. Surface view of rule base in Table 1a for the difficulty (left) and rule base in Table 1b 
for the cost (right). 
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(a) Difficulty 

Time rate 
Accuracy 

1 2 3 4 5 

1 3 4 4 5 5 

2 2 3 4 4 5 

3 2 2 3 4 4 

4 1 2 2 3 4 

5 1 1 2 2 3 

 

(b) Cost 

Complexity 
Difficulty 

1 2 3 4 5 

1 1 1 2 2 3 

2 1 2 2 3 4 

3 2 2 3 4 4 

4 2 3 4 4 5 

5 3 4 4 5 5 

 

(c) Adjustment 

Importance 
Cost 

1 2 3 4 5 

1 1 1 2 2 3 

2 1 2 2 3 4 

3 2 2 3 4 4 

4 2 3 4 4 5 

5 3 4 4 5 5 

 
1: “Low”, 2: “more or less low”, 3: “medium”, 4: “more or less high” and 5: “high”. 

Table 1. A fuzzy rule base to infer the difficulty, cost, and adjustment  

At the next cost node, in Step 1, the crisp values of D obtained at the previous node are 
fuzzified to obtain the fuzzy difficulty matrix as: 

0 0 0.622 0.378 0

0 0 0.236 0.764 0

0.003 0.997 0 0 0 .

0 0 0.811 0.189 0

0 0.221 0.779 0 0

FD

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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In Step 2, based on the rule base given in Table 1b, we obtain the inference output (i.e. the 
fire-strength) of the cost matrix as a function of the fuzzy difficulty and fuzzy complexity 
matrices by formula (7) as: 

0 0.622 0.378 0.15 0

0 0 0.236 0.67 0

0 0.003 0.994 0.31 0 .

0 0.56 0.189 0 0

0 0.221 0.7 0.3 0

E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

α  

In Step 3, the crisp values of cost are obtained as 

[ ]0.424 0.642 0.568 0.354 0.514 .TC =  

The surface view of the rule base in Table 1b is shown in Fig. 5. 
At the final adjustment node, in Step 1, the crisp values of C obtained at the previous node 
are fuzzified to obtain the fuzzy cost matrix as 

0 0.38 0.62 0 0

0 0 0.289 0.711 0

0 0 0.661 0.339 0

0 0.733 0.267 0 0

0 0 0.931 0.069 0

FC

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

In Step 2, based on the rule base given in Table 1c, we obtain the inference output (i.e. the 
fire-strength) of the adjustment matrix as a function of the fuzzy cost and fuzzy importance 
matrices by formula (7) as: 

0 0 0 0.62 0

0 0.289 0.33 0.67 0

0 0 0 0.661 0.339 .

0.733 0.267 0 0 0

0 0.07 0.93 0.069 0

W

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

α  

The surface view of the rule base in Table 1c for the adjustment is typically that of effort 
shown in Fig. 5. In Step 3, the crisp values of adjustment are obtained as: 

[ ]0.7 0.552 0.749 0.177 0.5 .TW =  

Finally, we get the fuzzified adjustment matrix as: 

 

0 0 0 1 0

0 0 0.742 0.258 0

0 0 0 0.754 0.246

0.617 0.383 0 0 0

0 0.002 0.998 0 0

FW

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Now, the adjusted grades are obtained using formula (9) as 

[ ]17 23.272 34.829 29.415 44.990 .TG =#  

After scaling to the total score of the manuscript (i.e., 100) using formula (10), we have: 

[ ]11.371 15.566 23.296 19.675 30.092 .TG =#  

The new total scores of the students are then obtained using formula (11) as: 

S1         S2         S3         S4          S5        S6         S7         S8         S9         S10 

[ ]67.15 53.17 42.10 52.19 48.31 51.81 48.47 49.27 85.23 51.49 ,TS =#  

With the new ranks being 

S9 > S1 > S2 > S4 > S6 > S10 > S8 > S7 > S5 > S3. 

 □ 

3. Three nodes system based on Gaussian membership functions 

The three nodes fuzzy evaluation system described in Section 2 is based on triangular MF’s 
which are the simplest MF’s formed using straight lines. Triangular MFs are defined by 
three parameters and there is no way to acquire its optimum values. It was noted that when 
theses parameters are changed slightly, different ranking orders are obtained which could 
impair the system’s reliability. In order to avoid losing reliability and having a robust 
system, the system should be able to give the same ranking orders without changing 
students’ scores and for various values of these parameters. As an alternative approach, 
Gaussian MF’s are proposed. Gaussian MF’s are suitable for problems which require 
continuously differentiable curves and therefore smooth transitions, whereas the triangular 
do not posses these abilities. Gaussian MF’s are defined by two parameters which is one 
parameter less than that of the triangular MF’s. The tuning of a reduced number of 
parameters will result in a reduced Degree Of Freedom (DOF) and hence a more robust 
system. Gaussian MF’s is defined as 

 ( )
( )21

2 ,
i i

i

x c

A x e
− −

=
σ

μ  (9) 

Where ci is the center (i.e., mean) of the ith fuzzy set and σi is the width (i.e., standard 
deviation) of the ith fuzzy set, which have by nature, infinite support (i.e., every control 
point influences the whole calculations of the output) (Lohani et al., 2007). Therefore, for 
Gaussian MF’s with wide widths it is possible to obtain a membership degree to each fuzzy 
set greater than 0 and hence every rule in the rule base fires. Consequently, the relationship 
between input and output can be described accurate enough. Here, the centres of the five 
Gaussian MF’s are chosen to be the same as that of the triangular MFs shown in Fig. 3 (i.e. 
[0.1 0.3 0.5 0.7 0.9]). Gaussian MF’s of the five levels for  = 0.1 are shown in Fig. 6. From Fig. 
6, it is obvious that Gaussian MF’s provide more continuous transition from one interval to 
another and hence provides smoother control surface from the fuzzy rules. The surface view 
of the rule base in Table 1a and b for Gaussian MFs of  = 0.1 are shown in Fig. 7. 
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Fig. 6. Gaussian membership functions of the five levels for  = 0.1. 

 

Fig. 7. Surface view of rule base in Table 1a (left) and in Table 1b (right) for Gaussian MFs of 
 = 0.1. 

Example. The width of the Gaussian MF’s, , is varied between 0.05 and 12 in steps of 0.05 

and the three nodes fuzzy system based on Gaussian MF’s is applied to the same example 

introduced in Section 2. The new total scores of the students are then obtained using 

formula (11) as shown in Table 2. 

The mean of the new scores of the 10 students is computed for each value of the 

membership width, , and is shown in Fig. 8. From the figure, it is obvious that the mean of 

the new scores is equal to the mean of the classical scores obtained using formula (1) for 

membership width of 4.0 and higher. Although the new scores, rounded to two digits, are 

equal, the system is still able to give the correct ranking order of the students with equal 

total scores. 
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 1> 2> 3> 4> 5> 6> >7 >8 >9 10 

9 1 2 10 4 6 5 7 8 3 
0.05 

84.59 65.00 52.58 51.43 50.80 50.22 48.31 48.30 48.16 43.22 

9 1 2 4 6 10 8 5 7 3 
0.10 

84.36 64.27 53.24 52.12 51.78 51.43 49.49 48.44 48.31 41.77 

9 1 2 4 6 10 8 5 7 3 
0.15 

84.54 64.55 53.59 51.49 50.93 50.89 50.44 48.65 47.80 40.91 

9 1 2 8 4 10 6 5 7 3 
0.20 

84.66 64.61 53.78 51.12 50.87 50.44 50.13 48.96 47.26 40.09 

9 1 2 8 4 10 6 5 7 3 
0.25 

84.74 64.61 53.87 51.52 50.49 50.18 49.67 49.17 46.90 39.57 

9 1 2 8 4 10 6 5 7 3 
0.30 

84.79 64.61 53.93 51.74 50.26 50.03 49.40 49.31 46.68 39.25 

9 1 2 8 4 10 5 6 7 3 
0.35 

84.83 64.61 53.96 51.89 50.12 49.94 49.41 49.24 46.54 39.04 

9 1 2 8 4 10 5 6 7 3 
4.0~12.0 

84.95 64.60 54.05 52.30 49.70 49.70 49.70 48.80 46.10 38.40 

Table 2. New total scores and new ranking orders of 10 students using the three fuzzy nodes 
system based on Gaussian MF’s 

 

Fig. 8. Mean scores of the 10 students ranked using classical method (dotted line) and the 
three nodes fuzzy system based on Gaussian MF’s (solid line). 

□ 

4. Comparison of the methods 

The ranking order has been obtained when the three nodes fuzzy system based on 
triangular MF’s are applied to students with equal total scores. When the three nodes fuzzy 
system based on triangular membership functions is applied to all students, new scores and 
hence new rankings are obtained. When the three nodes system based on Gaussian 
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membership of width of 4.0 is applied to all students, the resultant new total scores of 
students rounded to two digits are equal to that of the classical scores but with new ranking 
orders. Ranking orders and scores of students are shown in Table 3. 
 

Ranking 
method 

1> 2> 3> 4> 5> 6> >7 >8 >9 10 

9 1 2 8 4= 5= 10= 6 7 3 
Classical 

84.95 64.60 54.05 52.30 49.70 49.70 49.70 48.80 46.10 38.40 

9 1 2 8 4 10 5 6 7 3 3 nodes based 
triangular (3) 84.95 64.60 54.05 52.30 52.19 51.49 48.31 48.80 46.10 38.40 

9 1 2 4 6 10 8 7 5 3 3 nodes based 
triangular (10) 85.23 67.15 53.17 52.19 51.81 51.49 49.27 48.47 48.31 42.10 

9 1 2 8 4 10 5 6 7 3 3 nodes based 
Gaussian (10) 84.95 64.60 54.05 52.30 49.70 49.70 49.70 48.80 46.10 38.40 

 
(3): Applied to 3 students with equal score, (10): applied to 10 (i.e. all) students 

Table 3. Ranking orders and new scores obtained by the three methods. 

From Table 3 it is seen that the same ranking order has been obtained when the three nodes 
fuzzy system based on triangular MF’s is applied to only students with total scores and the 
three nodes fuzzy system based on Gaussian MF’s applied to all students. The varying of 
the parameters of the triangular MF’s results in different scores and different ranking orders 
while the same scores and the same ranking orders are obtained for Gaussian MF’s of 
various widths. 

5. Conclusions 

In this chapter, we proposed Gaussian MF’s to represent the fuzzy sets (i.e., levels) 
representing the importance, the complexity and the difficulty of the questions given to 
students. Results show that using Gaussian MFs with a width value (i.e., standard 
deviation) of 0.4 and higher provide a more reliable evaluation system which is able to 
provide new ranking orders without changing students’ total scores. Gaussian MFs provide 
smooth transition between levels and provides a way to fire the maximum number of rules 
in the rule base and hence a more accurate representation of the input-output relationship is 
achieved. Gaussian MF’s also provides a system with less degree of freedom and hence 
more robustness. The proposed three nodes fuzzy evaluation system based on Gaussian 
MF’s provides a new ranking order while keeping the scores of students unchanged. The 
system is implemented by using the Fuzzy Logic Toolbox™ 2.2.7 by MathWorks®. 
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