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Silver Nanoparticles Offer 
Effective Control of Pathogenic 
Bacteria in a Wide Range of Food 
Products
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and Gerardo Pavel Espino-Solis

Abstract

According to the Food and Agriculture Organization (FAO), food wastage 
still causes massive economic loss. A major role in this loss is played by the 
activities of microbial organisms. Treatments such as heat and irradiation can 
reduce microorganisms in fruits and vegetables and hence reduce postharvest 
loss. However, some of these treatments can injure the fruit. Effective chemi-
cal treatments against bacterial infestations can result in resistance. A more 
recent method is the use of silver nanoparticles. These can act in a number of 
ways including at cellular level by inhibiting the cell wall synthesis, by binding 
to the surface of the cell membrane and by interposing between the DNA base 
pairs, and by inhibiting biofilm formation, affecting the thiol group of enzymes, 
affecting bacterial peptides and hence interfering with cell signaling and attach-
ing to the 30S ribosome subunit. A ground-breaking way to survey the effects of 
the silver nanoparticles on bacterial populations is by flow cytometry. It allows 
measurement of many characteristics of single cells, including their functional 
characteristics such as viability and cell cycle. Bacterial viability assays are used 
with great efficiency to evaluate antibacterial activity by evaluating the physical 
rupture of the membrane of the bacteria.

Keywords: prevention of postharvest food losses, FAO, fruit pathogens

1. Introduction

1.1 Postharvest pathogens of fruit

Postharvest spoilage of fruits can be caused by a large number of bacterial 
species. Some of the most important are Enterobacter cloacae, Erwinia herbicola, 
Lelliottia amnigena, Pantoea ananatis, Pantoea agglomerans, Pantoea allii, Enterobacter 
aerogenes, Pseudomonas fluorescens and Streptomyces sp. [1–6]. A wide range of fungal 
species is similarly involved [2, 7–9].

If adequate postharvest handling and storage practices are not employed, 
postharvest decays of fruit and vegetables can cause losses of 50% or more [7].  
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The main triggers for invasion by microorganisms are physiological changes that 
activate ethylene synthesis or that cause changes to the cuticle or cell walls (loosen-
ing), or declines in natural antifungal compounds or high contents of carbohy-
drates and other nutrients and water. These changes usually occur naturally during 
ripening [10–12].

Postharvest contamination of fruit by human pathogens can be another key issue 
in the supply chain. The most commonly reported human pathogen contaminants 
causing disease outbreaks are bacteria such as Escherichia coli (E. coli), Salmonella 
spp., Mycobacterium spp., Brucella spp. and Pseudomonas aeruginosa (P. aeruginosa). 
However, good manufacturing and handling practices can significantly reduce 
these contaminations [13, 14].

Because of the behavior of microbial populations, including fungi and bacteria, 
an initial infection may originate new infection foci that appear near the primary 
one, so increasing disease incidence and/or severity [15, 16]. Quality deterioration 
and loss of fresh fruit and vegetables during storage have an exceptionally high 
economic impact because by this stage high costs have been incurred in harvest-
ing, grading, packaging, freighting and storage. All these reasons emphasize the 
importance of defining new practices to reduce populations of the postharvest 
microorganisms.

2. Silver nanoparticles for pathogen control

Silver nanoparticles (AgNPs) offer oligodynamic action which is also of low 
toxicity and broad spectrum [17–19]. Moreover, compared with synthetic biocides, 
there is also only a low chance that microbial resistance might develop. These 
AgNPs have been exploited against Gram-negative bacteria, such as Acinetobacter, 
Escherichia, Pseudomonas, Salmonella and Vibrio, and against Gram-positive 
bacteria including Bacillus, Clostridium, Enterococcus, Listeria, Staphylococcus and 
Streptococcus [20]. A number of research reports have demonstrated that their 
antimicrobial nature depends on the surface-capping agent and the size and shape 
of the nanoparticle [21, 22].

The effectiveness of AgNPs also depends on bacterial dose [23]. Silver 
nanoparticles affect the growth of bacteria in a dose-dependent manner. In a study 
conducted by Agnihotri et al. [23], concentrations of 10 and 20 μg/ml Ag (10 nm) 
caused reductions of ~18 and ~53% in E. coli, respectively. Meanwhile, AgNP 
concentrations at 30 and 40 μg/ml eliminated all bacterial growth.

Silver nanoparticles smaller than 100 nm, and containing between 10,000 and 
15,000 silver atoms, are effective as antibacterial agents [20]. The AgNPs’ anti-
bacterial potential increases as size decreases. This effect is more pronounced for 
AgNPs of size <10 nm, because contact with the bacterial cell is direct [24].

Research into the antimicrobial activity of AgNPs against Gram-positive and 
Gram-negative bacteria shows Gram-negative bacteria are more sensitive to AgNPs 
than Gram-positive ones [23, 25], although their relative sensitivity cannot be 
explained based only on a difference in the composition of the cell membrane.

In studies using discs impregnated with AgNP in culture media with bacteria, 
the formation of a clear zone of inhibition around the impregnated discs is an indi-
cator of bactericidal potential of AgNP > 15 nm [21]. Bacteria are unable to survive 
in this area, possibly because of the release of silver in the form of nanoparticles or 
of silver ions.

In addition, nanoparticle silver can be released by the mobility of small size 
AgNPs through the semisolid agar, whereby a zone of inhibition is observed.
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In a previous study conducted by Biao et al. [21], chitosan was combined with 
silver nanoparticles to form composites. They found that chitosan-silver colloid 
has a high inhibition ratio against the prokaryotes E. coli and Staphylococcus aureus 
(S. aureus) and the eukaryote Candida albicans (C. albicans). They concluded that 
the chitosan-silver colloid had a broad spectrum of antimicrobial activity.

3.  Some mechanisms of bactericidal action of silver nanoparticles 
(AgNPs)

3.1 Electrostatic attraction

A way to transport active silver cations to the bacteria can occur on the cell 
membrane or within the cell. When combined with protonated chitosan, the 
positively charged AgNPs bind well to the negatively charged bacterial membrane 
proteins through electrostatic attraction [23].

3.2 Alterations in the bacterial membrane

The first bacterial contact with AgNP can trigger an antibacterial mechanism by 
facilitating the entry of AgNPs into the bacterial cells. This is followed by an explo-
sive release of silver ions inside the bacterial cells causing the bactericidal effect.

The nature of the AgNP, bacteria interaction and its antibacterial effect have 
been analyzed by a number of methods. Bacteria exposed to AgNPs show high 
protein leakage and morphological changes [26]. As an example, E. coli treated with 
AgNPs (∼10 nm) appeared to shrink and develop an irregular shape. Micrographs 
show AgNPs on the cell membrane attached to the lipopolysaccharide layer of the 
cell wall, and a proportion of AgNPs were found inside the bacterial cell [23].

Biao et al. [21] noticed that bacterial strains have intact membranes and smooth 
surfaces in the absence of silver colloid, whereas after exposure to chitosan-silver 
colloid, the cell membrane and surface become shriveled, invaginated and disrupted. 
This cell membrane damage indicates the mode of action of chitosan-silver colloid. 
Its bactericidal effect is attributed to the release of silver cation from AgNPs and to 
alteration of the bacterial cell wall structure and associated physicochemical changes.

Osmoregulation of the bacterial cell can also be affected causing extrusion of 
intracellular material and hence cell death. The deformed or wrinkled cell wall can 
also cause leakage of cytoplasmic contents.

In addition, AgNPs can penetrate bacterial membranes, facilitating internaliza-
tion. The rupture of perforation of the cell wall is an evidence of internalization of 
AgNP and of uncontrolled transport through the cytoplasm resulting in cell death 
[27] (Figure 1).

3.3 Silver nanoparticles internalization: effects on DNA

Multiple pathways of AgNP can occur after internalization. Silver atoms in 
nanoparticles are characterized by a high affinity with sulfur and phosphorus-
containing compounds such as DNA. In this way, they readily combine with cell 
constituents and so destroy the cell.

Silver ions can also inhibit bacterial replication by binding and denaturing 
bacterial DNA. Silver ions react with the thiol groups of enzymes, followed by DNA 
condensation resulting in cell death [28–29].

Blocking of respiration is also a result of the interaction with cell membranes [30].
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Disruption of biofilms is another effect of AgNPs. The anti-biofilm action of 
~8 nm AgNPs on Gram-negative bacteria has been demonstrated [31]. The outer 
membrane of Gram-negative contains aquaporins (water-filled channels) which are 
involved in the transport of Ag ions into the cell where they exert their antibacterial 
effects [32].

4. Cell status by flow cytometry

Flow cytometry (FCM) is a well-established and powerful analytical tool that 
has led to many revolutionary discoveries in cell biology and cellular-molecular 
disease diagnosis and, more recently, has been used to analyze physiological 
responses of bacteria [33, 34]. In FCM, cells are first introduced to a high-speed (up 
to 5–20 m/s) laminar flow stream, and after being focused into single file, they are 
subjected to laser-induced fluorescence, and/or forward and sideways scattered 
light is detected using photodetector arrays with spectral filters. More recently, 
FCM has been used to characterize distinct physiological conditions in bacteria 
including their responses to antibiotics and other cytotoxic chemicals [33]. Once the 
control of bacterial cells or fungal conidia has been applied, an accurate technique 
is required to measure the effectiveness of the silver nanoparticles. Flow cytometry 
is one of the most reliable techniques for detecting and counting living cells and to 
measure their viability.

When studying response to antibacterial agents such as silver nanoparticles, 
viability can be evaluated as an indicator of antibiotic susceptibility. There are 
now reagents available that allow assays of membrane permeability and potential 
by measuring the production of a fluorescent metabolite from a nonfluorescent 
precursor [33, 34].

Besides monitoring susceptibility to antibacterial activity, information can 
be obtained using FCM that can establish mechanisms of antibacterial drug 

Figure 1. 
Mode of action of silver nanoparticles in the bacterial cell.
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activity [35–40]. Traditional culture-based techniques cannot do this [41]. The use 
of fluorescent probes to detect specific cell changes provides a unique tool for inter-
rogating bacteria permeability and changes in membrane potential [42] (Figure 2). 
DNA content and metabolic activity [42] are useful indicators of cell viability and 
thus of antibiotic susceptibility.

The accuracy of cell counting depends on fluorescent staining. The choice of a 
fluorescent dye should take into account factors such as membrane permeability, 
photostability, pH and sensitivity to temperature [43, 44]. The total bacterial count 
is a key quality criterion for food or beverages [45] and a useful tool for detecting 
the presence of microbes within matrices. Williams et al. [46] used this technique 
to detect E. coli O157:H7 in raw spinach. The presence of plant pathogens during 
crop growth has been investigated by several authors. Day et al. [47] used FCM to 
detect and quantify Phytophthora infestans sporangia. A study of colonization of 
root-associated bacteria in rice was carried out by Valdameri et al. [48]. Otherwise, 
Golan et al. [49] counted Pectobacterium carotovorum subsp. carotovorum cells tagged 
with green fluorescent protein (GFP) in Ornithogalum dubium seedlings to detect 
resistant cultivars. The application of FCM is useful to create the bases for predic-
tive models of spore germination, infection and disease development.

Cell viability assays can distinguish between live and dead cell populations and 
so correlate with other cell functions or treatments. Many companies offer a wide 
range of viability dyes, including fixable and non-fixable types and ones specific 
to bacterial or yeast viability tests. FCM can be applied to monitor the efficacy of 
treatments to reduce contamination of water [43] and foods and beverages [45, 50] 
by determining the viability of residual microorganisms. In agriculture FCM can be 
used to test the effectiveness of antibiotics and antifungals against plant pathogens. 
The advantage of live FCM cell counts compared to plate counts is that FCM allows 
the determination of several different morbidity stages between living and dead 
cells. Some of these are membrane integrity, esterase activity, membrane potential, 
electron transport, total cells, GFP expression, active/dead, mitochondrial activity, 
intracellular pH and carotenoid content [51–53].

Figure 2. 
Fluorescent probes to detect specific bacterial cell changes as an indicator of cell viability.
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5. Conclusions

The Food and Agriculture Organization of the United Nations predicts that, 
globally, about 1.3 billion tons of food is lost per year. A large proportion of this loss 
is caused by postharvest microbial action. Much of this loss could be averted if more 
effective procedures and protocols were developed and adopted. Nanotechnology 
offers a range of novel tools with application in the fight against microbial food 
spoilage. Silver nanoparticles can act at cell level affecting from the cell wall 
or finely affecting the DNA. They offer a viable alternative to more traditional 
methods for the bacterial control. Once bacterial control is achieved using silver 
nanoparticles, continual bacterial monitoring becomes a critical component of 
the supply chain. For this, flow cytometry offers an accurate, novel and versatile 
technology through which to survey bacterial viability in assays of various bacterial 
control strategies.
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