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Chapter

Determinantal Representations
of the Core Inverse and Its
Generalizations
Ivan I. Kyrchei

Abstract

Generalized inverse matrices are important objects in matrix theory. In particu-
lar, they are useful tools in solving matrix equations. The most famous generalized
inverses are the Moore-Penrose inverse and the Drazin inverse. Recently, it was
introduced new generalized inverse matrix, namely the core inverse, which was late
extended to the core-EP inverse, the BT, DMP, and CMP inverses. In contrast to
the inverse matrix that has a definitely determinantal representation in terms of
cofactors, even for basic generalized inverses, there exist different determinantal
representations as a result of the search of their more applicable explicit expres-
sions. In this chapter, we give new and exclusive determinantal representations of
the core inverse and its generalizations by using determinantal representations
of the Moore-Penrose and Drazin inverses previously obtained by the author.

Keywords: Moore-Penrose inverse, Drazin inverse, core inverse, core-EP inverse,
2000 AMS subject classifications: 15A15, 16W10

1. Introduction

In the whole chapter, the notations  and  are reserved for fields of the real and
complex numbers, respectively. m�n stands for the set of all m� n matrices over
. m�n

r determines its subset of matrices with a rank r. For A∈
m�n, the symbols

A ∗ and rk Að Þ specify the conjugate transpose and the rank of A, respectively, ∣A∣ or
detA stands for its determinant. A matrix A∈

n�n is Hermitian if A ∗ ¼ A.

A† means the Moore-Penrose inverse of A∈
n�m, i.e., the exclusive matrix X

satisfying the following four equations:

AXA ¼ A (1)

XAX ¼ X (2)

AXð Þ ∗ ¼ AX (3)

XAð Þ ∗ ¼ XA (4)

For A∈
n�n with index IndA ¼ k, i.e., the smallest positive number such that

rk Akþ1
� �

¼ rk Ak
� �

, the Drazin inverse of A, denoted by Ad, is called the unique

matrix X that satisfies Eq. (2) and the following equations,
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AX ¼ XA; (5)

XAkþ1 ¼ Ak (6)

Akþ1X ¼ Ak
: (7)

In particular, if IndA ¼ 1, then the matrix X is called the group inverse, and

it is denoted by X ¼ A#. If IndA ¼ 0, then A is nonsingular and Ad ¼ A† ¼ A�1.
It is evident that if the condition (5) is fulfilled, then (6) and (7) are equivalent.

We put both these conditions because they will be used below independently of
each other and without the obligatory fulfillment of (5).

A matrix A satisfying the conditions ið Þ, jð Þ,… is called an i, j,…f g-inverse of A,

and is denoted by A i, j,…ð Þ. The set of matrices A i, j,…ð Þ is denoted A i, j,…f g. In

particular, A 1ð Þ is called the inner inverse, A 2ð Þ is called the outer inverse, A 1,2ð Þ is

called the reflexive inverse, A 1,2,3,4ð Þ is the Moore-Penrose inverse, etc.
For an arbitrary matrix A∈

m�n, we denote by

• N Að Þ ¼ x∈
n�1

: Ax ¼ 0
� �

, the kernel (or the null space) of A;

• C Að Þ ¼ y∈
m�1

: y ¼ Ax,x∈
n�1

� �

, the column space (or the range space)

of A; and

• R Að Þ ¼ y∈
1�n

: y ¼ xA,x∈
1�m

� �

, the row space of A.

PA ≔AA† and QA ≔A†A are the orthogonal projectors onto the range of A and
the range of A ∗, respectively.

The core inverse was introduced by Baksalary and Trenkler in [1]. Later, it
was investigated by S. Malik in [2] and S.Z. Xu et al. in [3], among others.

Definition 1.1. [1] A matrix X∈
n�n is called the core inverse of A∈

n�n if it
satisfies the conditions

AX ¼ PA, and C Xð Þ ¼ C Að Þ:

When such matrix X exists, it is denoted as A○#.
In 2014, the core inverse was extended to the core-EP inverse defined by K.

Manjunatha Prasad and K.S. Mohana [4]. Other generalizations of the core inverse
were recently introduced for n� n complex matrices, namely BT inverses [5], DMP
inverses [2], CMP inverses [6], etc. The characterizations, computing methods,
and some applications of the core inverse and its generalizations were recently
investigated in complex matrices and rings (see, e.g., [7–18]).

In contrast to the inverse matrix that has a definitely determinantal
representation in terms of cofactors, for generalized inverse matrices, there exist
different determinantal representations as a result of the search of their more
applicable explicit expressions (see, e.g. [19–25]). In this chapter, we get new
determinantal representations of the core inverse and its generalizations using
recently obtained by the author determinantal representations of the Moore-
Penrose inverse and the Drazin inverse over the quaternion skew field, and over the
field of complex numbers as a special case [26–34]. Note that a determinantal
representation of the core-EP generalized inverse in complex matrices has been
derived in [4], based on the determinantal representation of an reflexive inverse
obtained in [19, 20].

The chapter is organized as follows: in Section 2, we start with preliminary
introduction of determinantal representations of the Moore-Penrose inverse and the
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Drazin inverse. In Section 3, we give determinantal representations of the core
inverse and its generalizations, namely the right and left core inverses are
established in Section 3.1, the core-EP inverses in Section 3.2, the core DMP inverse
and its dual in Section 3.3, and finally the CMP inverse in Section 3.4. A numerical
example to illustrate the main results is considered in Section 4. Finally, in Section 5,
the conclusions are drawn.

2. Preliminaries

Let α≔ α1,…, αkf g⊆ 1,…,mf g and β≔ β1,…, βkf g⊆ 1,…, nf g be subsets with
1≤ k≤ min m, nf g. By Aα

β, we denote a submatrix of A∈
m�n with rows and

columns indexed by α and β, respectively. Then, Aα
α is a principal submatrix of A

with rows and columns indexed by α, and Aj jαα is the corresponding principal minor
of the determinant ∣A∣. Suppose that

Lk,n ≔ α : α ¼ α1,…, αkð Þ, 1≤ α1 <⋯< αk ≤ nf g

stands for the collection of strictly increasing sequences of 1≤ k≤ n integers
chosen from 1,…, nf g. For fixed i∈ α and j∈ β, put Ir,m if g≔ α : α∈Lr,m, i∈ αf g and
Jr,n jf g≔ β : β∈Lr,n, j∈ βf g.

The jth columns and the ith rows of A and A ∗ denote a
: j and a ∗

: j and ai: and a ∗
i:,

respectively. By Ai: bð Þ and A
: j cð Þ, we denote the matrices obtained from A by

replacing its ith row with the row b, and its jth column with the column c.

Theorem 2.1. [28] If A∈
m�n
r , then the Moore-Penrose inverse A† ¼ a†ij

� �

∈
n�m

possesses the determinantal representations

a†ij ¼

P

β∈ Jr,n if g A ∗Að Þ
:i a ∗

: j

� �
�

�

�

�

�

�

β

β
P

β∈ Jr,n
A ∗Aj jββ

¼ (8)

¼

P

α∈ Ir,m jf g AA ∗ð Þ j: a ∗
i:

� �

�

�

�

�

�

�

α

α
P

α∈ Ir,m
AA ∗j jαα

: (9)

Remark 2.2. For an arbitrary full-rank matrix A∈
m�n
r , a row vector b∈

1�m,

and a column-vector c∈
n�1, we put, respectively,

AA ∗ð Þi: bð Þ
�

�

�

� ¼
X

α∈ Im,m if g

AA ∗ð Þi: bð Þ
�

�

�

�

α

α
, i ¼ 1,…,m,

AA ∗j j ¼
X

α∈ Im,m

AA ∗j jαα, when r ¼ m;

A ∗Að Þ
: j cð Þ

�

�

�

�

�

� ¼
X

β∈ Jn,n jf g

A ∗Að Þ
: j cð Þ

�

�

�

�

�

�

β

β
, j ¼ 1,…, n,

A ∗Aj j ¼
X

β∈ Jn,n

A ∗Aj jββ, when r ¼ n:

Corollary 2.3. [21] LetA∈
m�n
r . Then, the following determinantal representations

can be obtained
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i. for the projector QA ¼ qij

� �

n�n
,

qij ¼

P

β∈ Jr,n if g A ∗Að Þ
:i _a

: j

� ��

�

�

�

β

β
P

β∈ Jr,n
A ∗Aj jββ

¼

P

α∈ Ir,n jf g A ∗Að Þ j: _ai:ð Þ
�

�

�

�

�

�

α

α
P

α∈ Ir,n
A ∗Aj jαα

, (10)

where _a
: j is the jth column and _ai: is the ith row of A ∗A; and

ii. for the projector PA ¼ pij

� �

m�m
,

pij ¼

P

α∈ Ir,m jf g AA ∗ð Þ j: €ai:ð Þ
�

�

�

�

�

�

α

α
P

α∈ Ir,m
AA ∗j jαα

¼

P

β∈ Jr,m if g AA ∗ð Þ
:i €a: j

� ��

�

�

�

β

β
P

β∈ Jr,m
AA ∗j jββ

, (11)

where €ai: is the ith row and €a
: j is the jth column of AA ∗ .

The following lemma gives determinantal representations of the Drazin inverse
in complex matrices.

Lemma 2.4. [21] Let A∈
n�n with IndA ¼ k and rkAkþ1 ¼ rkAk ¼ r. Then, the

determinantal representations of the Drazin inverse Ad ¼ adij

� �

∈
n�n are

adij ¼

P

β∈ Jr,n if g Akþ1
� �

:i
a kð Þ

: j

� ��

�

�

�

�

�

β

β

P

β∈ Jr,n
Akþ1
�

�

�

�

β

β

¼ (12)

¼

P

α∈ Ir,n jf g Akþ1
� �

j:
a kð Þ
i:

� �

�

�

�

�

�

�

�

�

α

α
P

α∈ Ir,n
Akþ1
�

�

�

�

α

α

, (13)

where a
kð Þ
i: is the ith row and a

kð Þ
: j is the jth column of Ak.

Corollary 2.5. [21] Let A∈
n�n with IndA ¼ 1 and rkA2 ¼ rkA ¼ r. Then, the

determinantal representations of the group inverse A# ¼ a#ij

� �

∈
n�n are

a#ij ¼

P

β∈ Jr,n if g A2
� �

:i
a

: j

� ��

�

�

�

β

β
P

β∈ Jr,n
A2
�

�

�

�

β

β

¼

P

α∈ Ir,n jf g A2
� �

j:
ai:ð Þ

�

�

�

�

�

�

α

α
P

α∈ Ir,n
A2
�

�

�

�

α

α

: (14)

3. Determinantal representations of the core inverse and its
generalizations

3.1 Determinantal representations of the core inverses

Together with the core inverse in [35], the dual core inverse was to be intro-
duced. Since the both these core inverses are equipollent and they are different only
in the position relative to the inducting matrix A, we propose called them as the
right and left core inverses regarding to their positions. So, from [1], we have the
following definition that is equivalent to Definition 1.1.
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Definition 3.1. A matrix X∈
n�n is said to be the right core inverse of A∈

n�n

if it satisfies the conditions

AX ¼ PA, and C Xð Þ ¼ C Að Þ:

When such matrix X exists, it is denoted as A○#.
The following definition of the left core inverse can be given that is equivalent to

the introduced dual core inverse [35].
Definition 3.2 A matrix X∈

n�n is said to be the left core inverse of A∈
n�n if

it satisfies the conditions

XA ¼ QA, and R Xð Þ ¼ R Að Þ: (15)

When such matrix X exists, it is denoted as A○#.
Remark 3.3. In [35], the conditions of the dual core inverse are given as follows:

A○#A ¼ PA ∗ , and C A○#ð Þ⊆C A ∗ð Þ:

Since PA ∗ ¼ A ∗ A ∗ð Þ† ¼ A†A
� � ∗

¼ A†A ¼ QA, and R Að Þ ¼ C A ∗ð Þ, then these
conditions and (15) are analogous.

Due to [1], we introduce the following sets of quaternion matrices


CM
n ¼ A∈

n�n
: rkA2 ¼ rkA

� �

,


EP
n ¼ A∈

n�n
: A†A ¼ AA†

� �

¼ C Að Þ ¼ C A ∗ð Þf g:

The matrices from 
CM
n are called group matrices or core matrices. If A∈

EP
n ,

then clearly A† ¼ A#. It is known that the core inverses of A∈
n�n exist if and only

if A∈
CM
n or IndA ¼ 1. Moreover, if A is nonsingular, IndA ¼ 0, then its core

inverses are the usual inverse. Due to [1], we have the following representations of
the right and left core inverses.

Lemma 3.4. [1] Let A∈
CM
n . Then,

A○# ¼ A#AA†, (16)

A○# ¼ A†AA# (17)

Remark 3.5. In Theorems 3.6 and 3.7, we will suppose that A∈
CM
n but

A ∉ 
EP
n . Because, ifA∈

CM
n andA∈

EP
n (in particular,A is Hermitian), then from

Lemma 3.4 and the definitions of the Moore-Penrose and group inverses, it follows

that A○# ¼ A○# ¼ A# ¼ A†.

Theorem 3.6. Let A∈
CM
n and rkA2 ¼ rkA ¼ s. Then, its right core inverse has the

following determinantal representations

a○#,rij ¼

P

α∈ Is,n jf g AA ∗ð Þ j: u
1ð Þ
i:

� �
�

�

�

�

�

�

α

α
P

β∈ Js,n
A2
�

�

�

�

β

β

P

α∈ Is,n
AA ∗j jαα

¼ (18)

¼

P

β∈ Js,n if g A2
� �

:i
u

2ð Þ
: j

� �
�

�

�

�

�

�

β

β
P

β∈ Js,n
A2
�

�

�

�

β

β

P

α∈ Is,n
AA ∗j jαα

, (19)
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where

u 1ð Þ
i: ¼

X

β∈ Js,n if g

A2
� �

:i
~a

:f

� �
�

�

�

�

β

β

2

4

3

5∈
1�n, f ¼ 1,…, n

u 2ð Þ
: j ¼

X

α∈ Is,n jf g

AA ∗ð Þ j: ~al:ð Þ
�

�

�

�

�

�

α

α

2

4

3

5∈
n�1, l ¼ 1,…, n:

are the row and column vectors, respectively. Here ~a
:f and ~al: are the fth column

and lth row of ~A≔A2A ∗ .
Proof. Taking into account (16), we have for #A,

a#,rij ¼
X

n

l¼1

X

n

f¼1

a#ilalfa
†
fj: (20)

By substituting (14) and (15) in (20), we obtain

a#,rij ¼
X

n

l¼1

Pn
f¼1

P

β∈ Js,n if g A2
� �

:i
a

:f

� ��

�

�

�

β

β
afl

P

β∈ Js,n
A2
�

�

�

�

β

β

P

α∈ Is,n jf g AA ∗ð Þ j: a ∗
l:

� �

�

�

�

�

�

�

α

α
P

α∈ Is,n
AA ∗j jαα

¼

Pn
f¼1

Pn
l¼1

P

β∈ Js,n jf g A2
� �

: j
e

:f

� �

�

�

�

�

�

�

β

β
~afl
P

α∈ Is,n jf g AA ∗ð Þ j: el:ð Þ
�

�

�

�

�

�

α

α
P

β∈ Js,n
A2
�

�

�

�

β

β

P

α∈ Is,n
AA ∗j jαα

,

where e
:l and el: are the unit column and row vectors, respectively, such that all

their components are 0, except the lth components which are 1; ~alf is the (lf)th

element of the matrix ~A≔A2A ∗ .
Let

u
1ð Þ
il ≔

X

n

f¼1

X

β∈ Js,n if g

A2
� �

:i
e

:f

� ��

�

�

�

β

β
~afl ¼

X

β∈ Js,n if g

A2
� �

:i
~a

:lð Þ
�

�

�

�

β

β
, i, l ¼ 1,…, n:

Construct the matrix U1 ¼ u
1ð Þ
il

� �

∈
n�n. It follows that

X

l

u
1ð Þ
il

X

α∈ Is,n jf g

AA ∗ð Þ j: el:ð Þ
�

�

�

�

�

�

α

α
¼

X

α∈ Is,n jf g

AA ∗ð Þ j: u 1ð Þ
i:

� ��

�

�

�

�

�

α

α
,

where u
1ð Þ
i: is the ith row of U1. So, we get (18). If we first consider

u
2ð Þ
if ≔

X

l

~afl
X

α∈ Is,n jf g

AA ∗ð Þ j: el:ð Þ
�

�

�

�

�

�

α

α
¼

X

α∈ Is,n jf g

AA ∗ð Þ j: ~af :
� �

�

�

�

�

�

�

α

α
, f , j ¼ 1,…, n:

and construct the matrix U2 ¼ u
2ð Þ
if

� �

∈
n�n, then from

X

n

f¼1

X

β∈ Js,n if g

A2
� �

:i
e

:f

� ��

�

�

�

β

β
u

2ð Þ
if ¼

X

β∈ Js,n if g

A2
� �

:i
u 2ð Þ

:f

� ��

�

�

�

�

�

β

β
,

it follows (19). □
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Taking into account (17), the following theorem on the determinantal represen-
tation of the left core inverse can be proved similarly.

Theorem 3.7. Let A∈
CM
n and rkA2 ¼ rkA ¼ s. Then for its left core inverse

#Að Þ ¼ a#,lij

� �

, we have

a#,lij ¼

P

α∈ Is,n jf g A2
� �

j:
v

1ð Þ
i:

� �
�

�

�

�

�

�

α

α
P

β∈ Js,n
A ∗Aj jββ

P

α∈ Is,n
A2
�

�

�

�

α

α

¼

P

β∈ Js,n if g A ∗Að Þ
:i v

2ð Þ
: j

� �
�

�

�

�

�

�

β

β
P

β∈ Js,n
A ∗Aj jββ

P

α∈ Is,n
A2
�

�

�

�

α

α

,

where

v
1ð Þ
i: ¼

X

β∈ Js,n if g

A ∗Að Þ
:i a:f

� ��

�

�

�

β

β

2

4

3

5∈
1�n, f ¼ 1,…, n

v 2ð Þ
: j ¼

X

α∈ Is,n jf g

A2
� �

j:
al:ð Þ

�

�

�

�

�

�

α

α

2

4

3

5∈
n�1, l ¼ 1,…, n:

Here a
:f and al: are the fth column and lth row of A≔A ∗A2.

3.2 Determinantal representations of the core-EP inverses

Similar as in [4], we introduce two core-EP inverses.
Definition 3.8. A matrix X∈

n�n is said to be the right core-EP inverse of
A∈

n�n if it satisfies the conditions

XAX ¼ A, and C Xð Þ ¼ C X ∗ð Þ ¼ C Ad
� �

:

It is denoted as A○†.
Definition 3.9. A matrix X∈

n�n is said to be the left core-EP inverse of
A∈

n�n if it satisfies the conditions

XAX ¼ A, and R Xð Þ ¼ R X ∗ð Þ ¼ R Ad
� �

:

It is denoted as A○†.

Remark 3.10. Since C A ∗ð Þd
� �

¼ R Ad
� �

, then the left core inverse A○† of

A∈
n�n is similar to the ∗ core inverse introduced in [4], and the dual core-EP

inverse introduced in [35].
Due to [4], we have the following representations the core-EP inverses of

A∈
n�n,

A○† ¼ A 2,3,6af g and C A○†
� �

⊆ C Ak
� �

,

A○† ¼ A 2,4,6bf g and R A○†

� �

⊆R Ak
� �

:

Thanks to [35], the following representations of the core-EP inverses will be
used for their determinantal representations.
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Lemma 3.11. Let A∈
n�n and IndA ¼ k. Then

A○† ¼ Ak Akþ1
� �†

, (21)

A○† ¼ Akþ1
� �†

Ak
: (22)

Moreover, if IndA ¼ 1, then we have the following representations of the right
and left core inverses

A○# ¼ A A2
� �†

, (23)

A○# ¼ A2
� �†

A: (24)

Theorem 3.12. SupposeA∈
n�n, IndA ¼ k, rkAk ¼ s, and there existA○† andA○†.

ThenA○† ¼ a○† ,rij

� �

andA○† ¼ a○† , lij

� �

possess the determinantal representations, respectively,

a○† ,rij ¼

P

α∈ Is,n jf g Akþ1 Akþ1
� � ∗� �

j:
âi:ð Þ

�

�

�

�

�

�

�

�

α

α
P

α∈ Is,n
Akþ1 Akþ1

� � ∗�

�

�

�

�

�

α

α

, (25)

a○† ,lij ¼

P

β∈ Js,n if g Akþ1
� � ∗

Akþ1
� �

:i
�a

: j

� �

�

�

�

�

�

�

β

β

P

β∈ Js,n
Akþ1

� � ∗

Akþ1
�

�

�

�

�

�

β

β

, (26)

where âi: is the ith row of Â ¼ Ak Akþ1
� � ∗

and �a
: j is the jth column of

�A ¼ Akþ1
� � ∗

Ak.

Proof. Consider Akþ1
� �†

¼ a
kþ1,†ð Þ
ij

� �

and Ak ¼ a
kð Þ
ij

� �

. By (21),

a○† ,rij ¼
X

n

t¼1

a
kð Þ
it a

kþ1,†ð Þ
tj :

Taking into account (9) for the determinantal representation of Akþ1
� �†

, we get

a○† ,rij ¼
X

n

t¼1

a
kð Þ
it

P

α∈ Is,n jf g Akþ1 Akþ1
� � ∗� �

j:
a kþ1, ∗ð Þ
t:

� �

�

�

�

�

�

�

�

�

α

α
P

α∈ Ir,m
Akþ1 Akþ1

� � ∗�

�

�

�

�

�

α

α

,

where a
kþ1, ∗ð Þ
t: is the tth row of Akþ1

� � ∗

. Since
Pn

t¼1a
kð Þ
it a

kþ1, ∗ð Þ
t: ¼ âi:, then it

follows (25).
The determinantal representation (26) can be obtained similarly by integrating

(8) for the determinantal representation of Akþ1
� �†

in (22). □

Taking into account the representations (23)-(24), we obtain the determinantal
representations of the right and left core inverses that have more simpler expres-
sions than they are obtained in Theorems 3.6 and 3.7.
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Corollary 3.13. Let A∈
n�n
s , IndA ¼ 1, and there exist A○# and A○#. Then A○# ¼

a○# ,r
ij

� �

and A○# ¼ a○# ,l
ij

� �

can be expressed as follows

a○# ,r
ij ¼

P

α∈ Is,n jf g A2 A2
� � ∗

� �

j:
âi:ð Þ

�

�

�

�

�

�

�

�

α

α
P

α∈ Is,n
A2 A2

� � ∗
�

�

�

�

�

�

α

α

,

a○# ,l
ij ¼

P

β∈ Js,n if g A2
� � ∗

A2
� �

:i
�a

: j

� �

�

�

�

�

�

�

β

β

P

β∈ Js,n
A2
� � ∗

A2
�

�

�

�

�

�

β

β

,

where âi: is the ith row of Â ¼ A A2
� � ∗

and �a
: j is the jth column of �A ¼ A2

� � ∗
A.

3.3 Determinantal representations of the DMP and MPD inverses

The concept of the DMP inverse in complex matrices was introduced in [2] by S.
Malik and N. Thome.

Definition 3.14. [2] Suppose A∈
n�n and IndA ¼ k. A matrix X∈

n�n is said
to be the DMP inverse of A if it satisfies the conditions

XAX ¼ X,XA ¼ AdA, and AkX ¼ AkA†
: (27)

It is denoted as Ad,†.
Due to [2], if an arbitrary matrix satisfies the system of Eq. (27), then it is unique

and has the following representation

Ad,† ¼ AdAA†
: (28)

Theorem 3.15. Let A∈
n�n
s , IndA ¼ k, and rk Ak

� �

¼ s1. Then, its DMP inverse

Ad,† ¼ ad,†ij

� �

has the following determinantal representations.

ad,†ij ¼

P

α∈ Is,n jf g AA ∗ð Þ j: u 1ð Þ
i:

� ��

�

�

�

�

�

α

α
P

β∈ Js1,n
Akþ1
�

�

�

�

β

β

P

α∈ Is,n
AA ∗j jαα

¼ (29)

¼

P

β∈ Js1,n if g Akþ1
� �

:i
u 2ð Þ

: j

� �
�

�

�

�

�

�

β

β

P

β∈ Js1,n
Akþ1
�

�

�

�

β

β

P

β∈ Js,n
AA ∗j jββ

, (30)

where

u
1ð Þ
i: ¼

X

β∈ Js1,n if g

Akþ1
� �

:i
~a

:f

� �

�

�

�

�

�

�

β

β

2

4

3

5∈
1�n, f ¼ 1,…, n,

u 2ð Þ
: j ¼

X

α∈ Is,n jf g

AA ∗ð Þ j: ~al:ð Þ
�

�

�

�

�

�

α

α

2

4

3

5∈
n�1, l ¼ 1,…, n:

Here, ~a
:f and âl: are the f th column and the lth row of ~A≔Akþ1A ∗ .
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Proof. Taking into account (28) for Ad,†, we get

ad,†ij ¼
X

n

l¼1

X

n

f¼1

adilalfa
†
fj: (31)

By substituting (12) and (9) for the determinantal representations of Ad and A†

in (31), we get

ad,†ij ¼

X

n

l¼1

X

n

f¼1

P

β∈ Js1,n if g Akþ1
� �

:i
a kð Þ

:l

� ��

�

�

�

�

�

β

β

P

β∈ Js1,n
Akþ1
�

�

�

�

β

β

alf

P

α∈ Is,n jf g AA ∗ð Þ j: a ∗
f :

� �
�

�

�

�

�

�

α

α
P

α∈ Is,n
AA ∗j jαα

¼

X

n

l¼1

X

n

f¼1

P

β∈ Js1,n if g Akþ1
� �

:i
e

:lð Þ
�

�

�

�

�

�

β

β

P

β∈ Js1,n
Akþ1
�

�

�

�

β

β

~alf

P

α∈ Is,n jf g AA ∗ð Þ j: ef :
� �

� �

�

�

α

α
P

α∈ Is,n
AA ∗j jαα

,

(32)

where e
:l and el: are the lth unit column and row vectors, and ~alf is the lfð Þth

element of the matrix ~A ¼ Akþ1A ∗ . If we put

u
1ð Þ
if ≔

X

n

l¼1

X

β∈ Js1,n if g

Akþ1
� �

:i
e

:lð Þ
�

�

�

�

�

�

β

β
~alf ¼

X

β∈ Js1,n if g

Akþ1
� �

:i
~a

:f

� �

�

�

�

�

�

�

β

β
,

as the fth component of the row vector u 1ð Þ
i: ¼ u

1ð Þ
i1 ,…, u 1ð Þ

in

h i

, then from

X

n

f¼1

u
1ð Þ
if

X

α∈ Is,n jf g

AA ∗ð Þ j: ef :
� �

�

�

�

�

�

�

α

α
¼

X

α∈ Is,n jf g

AA ∗ð Þ j: u 1ð Þ
i:

� ��

�

�

�

�

�

α

α
,

it follows (29). If we initially obtain

u
2ð Þ
lj ≔

X

n

f¼1

~alf
X

α∈ Is,n jf g

AA ∗ð Þ j: ef :
� �

�

�

�

�

�

�

α

α
¼

X

α∈ Is,n jf g

AA ∗ð Þ j: ~al:ð Þ
�

�

�

�

�

�

α

α
,

as the lth component of the column vector u 2ð Þ
: j ¼ u

2ð Þ
1 j ,…, u 2ð Þ

nj

h i

, then from

X

n

l¼1

X

β∈ Js1,n if g

Akþ1
� �

:i
e

:lð Þ
�

�

�

�

�

�

β

β
u

2ð Þ
lj ¼

X

β∈ Js1,n if g

Akþ1
� �

:i
u

2ð Þ
: j

� �
�

�

�

�

�

�

β

β
,

it follows (30). □

The name of the DMP inverse is in accordance with the order of using the Drazin
inverse (D) and the Moore-Penrose (MP) inverse. In that connection, it would be
logical to consider the following definition.

Definition 3.16. Suppose A∈
n�n and IndA ¼ k. A matrix X∈

n�n is said to
be the MPD inverse of A if it satisfies the conditions

XAX ¼ X,AX ¼ AAd, and XAk ¼ A†Ak
:

It is denoted as A†,d.
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The matrix A†,d is unique, and it can be represented as

A†,d ¼ A†AAd
: (33)

Theorem 3.17. Let A∈
n�n
s , IndA ¼ k, and rkAk ¼ s1. Then, its MPD inverse

A†,d ¼ a†,dij

� �

has the following determinantal representations

a†,dij ¼

P

β∈ Js,n if g A ∗Að Þ
:i v

1ð Þ
: j

� �
�

�

�

�

�

�

β

β
P

β∈ Js,n
A ∗Aj jββ

P

β∈ Is1,n
Akþ1
�

�

�

�

α

α

¼

P

α∈ Is1,n jf g Akþ1
� �

j:
v

2ð Þ
i:

� �

�

�

�

�

�

�

�

�

α

α
P

α∈ Is1,n
A ∗Aj jββ

P

α∈ Is,n
Akþ1
�

�

�

�

α

α

,

where

v
1ð Þ

: j ¼
X

α∈ Is1,n jf g

Akþ1
� �

j:
âl:ð Þ

�

�

�

�

�

�

�

�

α

α

2

4

3

5∈
n�1, l ¼ 1,…, n

v 2ð Þ
i: ¼

X

β∈ Js,n if g

A ∗Að Þ
:i â:f

� �
�

�

�

�

β

β

2

4

3

5∈
1�n, l ¼ 1,…, n:

Here, âl: and â
:f are the lth row and the fth column of Â≔A ∗Akþ1.

Proof. The proof is similar to the proof of Theorem 3.15. □

3.4 Determinantal representations of the CMP inverse

Definition 3.18. [6] Suppose A∈
n�n has the core-nilpotent decomposition

A ¼ A1 þA2, where IndA1 ¼ IndA, A2 is nilpotent, and A1A2 ¼ A2A1 ¼ 0. The

CMP inverse of A is called the matrix Ac,†≔A†A1A
†.

Lemma 3.19. [6] Let A∈
n�n. The matrix X ¼ Ac,† is the unique matrix that

satisfies the following system of equations:

XAX ¼ X,AXA ¼ A1,AX ¼ A1A
†, and XA ¼ A†A1:

Moreover,

Ac,† ¼ QAA
dPA: (34)

Taking into account (34), it follows the next theorem about determinantal
representations of the quaternion CMP inverse.

Theorem 3.20. Let A∈
n�n
s , IndA ¼ m, and rk Amð Þ ¼ s1. Then, the determinan-

tal representations of its CMP inverse Ac,† ¼ ac,†ij

� �

can be expressed as

ac,†ij ¼

P

β∈ Js,n if g A ∗Að Þ
:i v

lð Þ
: j

� �
�

�

�

�

�

�

β

β

P

β∈ Js,n
A ∗Aj jββ

� �2
P

β∈ Js1,n
Amþ1
�

�

�

�

β

β

(35)
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ac,†ij ¼

P

α∈ Is,n jf g AA ∗ð Þ j: w
lð Þ
i:

� �
�

�

�

�

�

�

α

α

P

α∈ Is,n
AA ∗j jαα

� �2
P

β∈ Js1,n
Amþ1
�

�

�

�

β

β

(36)

for all l ¼ 1, 2, where

v 1ð Þ
: j ¼

X

α∈ Is,n jf g

AA ∗ð Þ j: ût:ð Þ
�

�

�

�

�

�

α

α

2

4

3

5∈
n�1, t ¼ 1,…, n, (37)

w 1ð Þ
i: ¼

X

β∈ Js,n if g

A ∗Að Þ
:i û:kð Þ

�

�

�

�

β

β

2

4

3

5∈
1�n, k ¼ 1,…, n, (38)

v 2ð Þ
: j ¼

X

α∈ Is,n jf g

A ∗Að Þ j: ~gt:
� �

�

�

�

�

�

�

α

α

2

4

3

5∈
n�1, t ¼ 1,…, n, (39)

w 2ð Þ
i: ¼

X

β∈ Js,n if g

A ∗Að Þ
:i ~g

:k

� ��

�

�

�

β

β

2

4

3

5∈
1�n, k ¼ 1,…, n: (40)

Here, ût: is the tth row and û
:k is the kth column of Û≔UAA ∗ , ~gt: is the tth row

and ~g
:k is the kth column of ~G≔A ∗AG, and the matrices U ¼ uij

� �

∈
n�n and G ¼

gij

� �

∈
n�n are such that

uij ¼
X

α∈ Is1,n jf g

Amþ1
� �

j:
âi:ð Þ

�

�

�

�

�

�

α

α
, gij ¼

X

β∈ Js1,n if g

Amþ1
� �

:i
~a

: j

� ��

�

�

�

β

β
,

where âi: is the ith row of Â≔A ∗Amþ1 and ~a
: j is the jth column of ~A≔Amþ1A ∗ .

Proof. Taking into account (34), we get

ac,†ij ¼
X

n

l¼1

X

n

k¼1

qAila
d
lkp

A
kj, (41)

where QA ¼ qAil
� �

, Ad ¼ adil
� �

, and PA ¼ pAil
� �

.

a. Taking into account the expressions (13), (10), and (11) for the determinantal

representations of Ad, QA, and PA, respectively, we have

ac,†ij ¼
X

l

X

t

P

β∈ Js,n if g A ∗Að Þ
:i _a

:tð Þ
�

�

�

�

β

β
P

β∈ Js,n
A ∗Aj jββ

P

α∈ Is1,n lf g Amþ1
� �

l:
a mð Þ
t:

� ��

�

�

�

�

�

α

α
P

α∈ Is1,n
Amþ1
�

�

�

�

α

α

P

α∈ Is,n jf g AA ∗ð Þ j: €al:ð Þ
�

�

�

�

�

�

α

α
P

α∈ Is,n
AA ∗j jαα

,

where _a
:t is the tth column of A ∗A, €al: is the lth row of AA ∗ , and a mð Þ

t: is the tth
row of Am. So, it is clear that

ac,†ij ¼
X

l

X

t

X

k

P

β∈ Js,n if g A ∗Að Þ
:i e:tð Þ

�

�

�

�

β

β
âtk

P

α∈ Is1,n lf g Amþ1
� �

l:
ek:

ð Þ
�

�

�

�

α

α
P

β∈ Js,n
A ∗Aj jββ

P

α∈ Is1,n
Amþ1
�

�

�

�

α

α

P

α∈ Is,n jf g AA ∗ð Þ j: €al:ð Þ
�

�

�

�

�

�

α

α
P

α∈ Is,n

AA ∗j jαα
,
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where e
:t is the tth unit column vector, ek:

is the kth row vector, and âtk is the

tkð Þth element of Â ¼ A ∗Amþ1.
Denote

utl ≔
X

k

âtk
X

α∈ Is1,n jf g

Amþ1
� �

l:
ek:

ð Þ
�

�

�

�

α

α
¼

X

α∈ Is1,n jf g

Amþ1
� �

l:
ât:ð Þ

�

�

�

�

α

α
(42)

as the tth component of a column vector u
:l ¼ u1l,…, unl½ �. Then from

X

t

X

β∈ Js,n if g

A ∗Að Þ
:i e:tð Þ

�

�

�

�

β

β
utl ¼

X

β∈ Js,n if g

A ∗Að Þ
:i u:lð Þ

�

�

�

�

β

β
,

we have

ac,†ij ¼
X

l

P

β∈ Js,n if g A ∗Að Þ
:i u:lð Þ

�

�

�

�

β

β

P

α∈ Is,n jf g AA ∗ð Þ j: €al:ð Þ
�

�

�

�

�

�

α

α
P

β∈ Jr,n
A ∗Aj jββ

P

α∈ Is1,n
Amþ1
�

�

�

�

α

α

P

α∈ Is,n
AA ∗j jαα

:

Construct the matrix U ¼ utlð Þ∈
n�n, where utl is given by (42), and denote

Û≔UAA ∗ . Then, taking into account that A ∗Aj jββ ¼ AA ∗j jαα, we have

ac,†ij ¼

P

t

P

k

P

β∈ Js,n if g A ∗Að Þ
:i e:tð Þ

�

�

�

�

β

β
ûtk

P

α∈ Is,n jf g AA ∗ð Þ j: ek:

ð Þ
�

�

�

�

�

�

α

α

P

β∈ Js,n
A ∗Aj jββ

� �2
P

α∈ Is1,n
Amþ1
�

�

�

�

α

α

:

If we put that

v
1ð Þ
tj ≔

X

k

ûtk
X

α∈ Is,n jf g

AA ∗ð Þ j: ek:

ð Þ
�

�

�

�

�

�

α

α
¼

X

α∈ Is,n jf g

AA ∗ð Þ j: ût:ð Þ
�

�

�

�

�

�

α

α

is the tth component of a column vector v 1ð Þ
: j ¼ v

1ð Þ
1 j ,…, v 1ð Þ

nj

h i

, then from

X

t

X

β∈ Js,n if g

A ∗Að Þ
:i e:tð Þ

�

�

�

�

β

β
v

1ð Þ
tj ¼

X

β∈ Js,n if g

A ∗Að Þ
:i v

1ð Þ
: j

� �
�

�

�

�

�

�

β

β
,

it follows (35) with v 1ð Þ
: j given by (37). If we initially put

w
1ð Þ
ik ≔

X

t

X

β∈ Js,n if g

A ∗Að Þ
:i e:tð Þ

�

�

�

�

β

β
ûtk ¼

X

β∈ Js,n if g

A ∗Að Þ
:i û:kð Þ

�

�

�

�

β

β

as the kth component of the row vector w 1ð Þ
i: ¼ w

1ð Þ
i1 ,…,w 1ð Þ

in

h i

, then from

X

k

w
1ð Þ
ik

X

α∈ Is,n jf g

A2
� �

j:
ek:

ð Þ
�

�

�

�

�

�

α

α
¼

X

α∈ Is,n jf g

A2
� �

j:
w

1ð Þ
i:

� �
�

�

�

�

�

�

α

α
,
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it follows (36) with w 1ð Þ
i: given by (38).

b. By using the determinantal representation (12) for Ad in (41), we have

ac,†ij ¼
X

k

X

t

P

β∈ Js,n if g A ∗Að Þ
:i _a

:tð Þ
�

�

�

�

β

β
P

β∈ Js,n
A ∗Aj jββ

P

β∈ Js1,n tf g Amþ1
� �

:t
a mð Þ

:k

� �
�

�

�

�

�

�

β

β
P

β∈ Js,n
Amþ1
�

�

�

�

β

β

P

α∈ Is,n jf g AA ∗ð Þ j: €ak:

ð Þ
�

�

�

�

�

�

α

α
P

α∈ Is,n
AA ∗j jαα

:

Therefore,

ac,†ij ¼
X

l

X

k

X

t

P

β∈ Js,n if g A ∗Að Þ
:i _a

:tð Þ
� �β

β
P

β∈ Js,n
A ∗Aj jββ

�

P

β∈ Js1,n tf g Amþ1
� �

:t
e

:kð Þ
�

�

�

�

β

β

P

β∈ Js1,n
Amþ1
�

�

�

�

β

β

~akl

P

α∈ Is,n jf g AA ∗ð Þ j: el:ð Þ
�

�

�

�

�

�

α

α
P

α∈ Is,n
AA ∗j jαα

:

where e
:k is the kth unit column vector, el: is the lth unit row vector, and ~akl is

the klð Þth element of ~A ¼ Amþ1A ∗ .
If we denote

gtl ≔
X

l

X

β∈ Js1,n tf g

Amþ1
� �

:t
e

:kð Þ
�

�

�

�

β

β
~akl ¼

X

β∈ Js1,n tf g

Amþ1
� �

:t
~a

:lð Þ
�

�

�

�

β

β
(43)

as the lth component of a row vector gt: ¼ gt1,…, gtn
	 


, then

X

l

gtl
X

α∈ Is,n jf g

AA ∗ð Þ j: el:ð Þ
�

�

�

�

�

�

α

α
¼

X

α∈ Is,n jf g

AA ∗ð Þ j: gt:
� �

�

�

�

�

�

�

α

α
:

From this, it follows that

ac,†ij ¼
X

t

P

β∈ Js,n if g A ∗Að Þ
:i _a

:tð Þ
�

�

�

�

β

β

P

α∈ Is,n jf g ðAA ∗j j j: gt:
� �

Þαα
P

β∈ Jr,n
A ∗Aj jββ

P

α∈ Is1,n
Amþ1
�

�

�

�

α

α

P

α∈ Is,n
AA ∗j jαα

:

Construct the matrix G ¼ gtl
� �

∈
n�n, where gtl is given by (43). Denote

~G≔A ∗AG. Then,

ac,†ij ¼

P

t

P

k

P

β∈ Js,n if g A ∗Að Þ
:i e:tð Þ

�

�

�

�

β

β
~gtk

P

α∈ Is,n jf g AA ∗ð Þ j: ek:

ð Þ
�

�

�

�

�

�

α

α

P

β∈ Js,n
A ∗Aj jββ

� �2
P

α∈ Is1,n
Amþ1
�

�

�

�

α

α

:

If we denote

v
2ð Þ
tj ≔

X

k

~gtk
X

α∈ Is,n jf g

AA ∗ð Þ j: ek:

ð Þ
�

�

�

�

�

�

α

α
¼

X

α∈ Is,n jf g

AA ∗ð Þ j: ~gt:
� �

�

�

�

�

�

�

α

α
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as the tth component of a column vector v 2ð Þ
: j ¼ v

2ð Þ
1 j ,…, v 2ð Þ

nj

h i

, then

X

t

X

β∈ Js,n if g

A ∗Að Þ
:i e:tð Þ

�

�

�

�

β

β
v

2ð Þ
tj ¼

X

β∈ Js,n if g

A ∗Að Þ
:i v

2ð Þ
: j

� �
�

�

�

�

�

�

β

β
:

Thus, we have (35) with v 2ð Þ
: j given by (39).

If, now, we denote

w
2ð Þ
ik ≔

X

t

X

β∈ Js,n if g

A ∗Að Þ
:i e:tð Þ

�

�

�

�

β

β
~gtk ¼

X

β∈ Js,n if g

A ∗Að Þ
:i ~g

:k

� ��

�

�

�

β

β

as the kth component of a row vector w 2ð Þ
i: ¼ w

2ð Þ
i1 ,…,w 2ð Þ

in

h i

, then

X

k

w
2ð Þ
ik

X

α∈ Is,n jf g

AA ∗ð Þ j: ek:

ð Þ
�

�

�

�

�

�

α

α
¼

X

α∈ Is,n jf g

AA ∗ð Þ j: w
2ð Þ
i:

� �
�

�

�

�

�

�

α

α
:

So, finally, we have (36) with w 2ð Þ
i: given by (40).

4. An example

Given the matrix

A ¼

2 0 0

�i i i

�i �i �i

2

6

4

3

7

5
:

Since

AA ∗ ¼

4 2i 2i

�2i 3 �1

�2i �1 3

2

6

4

3

7

5
, A2 ¼

4 0 0

2� 2i 0 0

�2� 2i 0 0

2

6

4

3

7

5
, A3 ¼

8 0 0

4� 4i 0 0

�4� 4i 0 0

2

6

4

3

7

5
,

then rkA ¼ 2 and rkA2 ¼ rkA3 ¼ 1, and k ¼ IndA ¼ 2 and r1 ¼ 1. So, we shall

find A○† and A○† by (25) and (26), respectively.
Since

Â ¼ A2 A3
� � ∗

¼ 16

2 1þ i �1þ i

1� i 1 i

�1� i i 1

2

6

4

3

7

5
,

then by (25),

a○† ,r11 ¼

P

α∈ I1,3 1f g A3 A3
� � ∗

� �

1:

â1:ð Þ
�

�

�

�

�

�

α

α
P

α∈ I1,3
A3 A3

� � ∗
�

�

�

�

�

�

α

α

¼
1

4
:
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By similarly continuing, we get

A○† ¼
1

8

2 1þ i �1þ i

1� i 1 i

�1� i i 1

2

6

6

4

3

7

7

5

:

By analogy, due to (26), we have

A○† ¼
1

2

1 0 0

0 0 0

0 0 0

2

6

6

4

3

7

7

5

:

The DMP inverse Ad,† can be found by Theorem 3.15. Since

~A ¼ A3A ∗ ¼ 4

4 2i 2i

2� 2i 1þ i 1þ i

�2� 2i 1� i 1� i

2

6

6

4

3

7

7

5

:

and rk A3
� �

¼ 1, then

u 1ð Þ
1 ¼ ~a1:

, u 1ð Þ
2 ¼ ~a2:

, u 1ð Þ
3 ¼ ~a3:

:

Furthermore, by (29),

ad,†11 ¼

P

α∈ I2,3 1f g AA ∗ð Þ1: u 1ð Þ
1:

� ��

�

�

�

�

�

α

α
P

β∈ J1,3
A3
�

�

�

�

β

β

P

α∈ I2,3
AA ∗j jαα

¼
1

192
det

16 8i

�2i 3

� �

þ det
16 8i

�2i 3

� �
 �

¼
1

3
:

By similarly continuing, we get

Ad,† ¼
1

12

4 2i 2i

2� 2i 1þ i 1þ i

�2� 2i 1� i 1� i

2

6

6

4

3

7

7

5

:

Similarly by Theorem 3.17, we get

A†,d ¼
1

4

2 0 0

�i 0 0

�i 0 0

2

6

4

3

7

5
:

Finally, by theorem, we find the CMP inverse Ac,† ¼ ac,†ij

� �

. Since rkA3 ¼ 1,

then G ¼ ~A and
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~G ¼ A ∗A~A ¼ 16

6 3i 3i

�2i 1 1

�2i 1 1

2

6

4

3

7

5
:

Furthermore, by (40),

w
2ð Þ
11 ¼

X

β∈ J2,3 1f g

A ∗Að Þ
:1 ~g

:1

� ��

�

�

�

β

β
¼ det

6 0

�2i 2

� �

þ det
6 0

�2i 2

� �
 �

¼ 24:

By similar calculations, we get

w 2ð Þ
1: ¼ 384, 96i, 96i½ �, w 2ð Þ

2:

¼ �192i, 96, 96½ �, w 2ð Þ
3:

¼ �192i, 96, 06½ �:

So, by (36), we get

ac,†11 ¼

P

α∈ I2,3 1f g AA ∗ð Þ1: w 2ð Þ
1:

� ��

�

�

�

�

�

α

α

P

α∈ I2,3
AA ∗j jαα

� �2
P

β∈ J1,3
A3
�

�

�

�

β

β

¼
1

4608
det

384 192i

�2i 3

� �

þ det
384 192i

�2i 3

� �
 �

¼
1

3
:

By similarly continuing, we derive

Ac,† ¼
1

12

4 2i 2i

�2i 1 1

�2i 1 1

2

6

4

3

7

5
:

5. Conclusions

In this chapter, we get the direct method to find the core inverse and its gener-
alizations that are based on their determinantal representations. New determinantal
representations of the right and left core inverses, the right and left core-EP
inverses, the DMP, MPD, and CMP inverses are derived.
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