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Chapter

Utilization of Digital Twins and
Other Numerical Relatives for
Efficient Monte Carlo Simulation
in Structural Analysis
Bernt Johan Leira, Arifian Agusta and Sebastian Thöns

Abstract

Analysis of structures will in general involve large and complex numerical
models, which require extensive computation efforts. These models are frequently
referred to as digital twins. This analysis becomes particularly cumbersome for
cases where a large number of response calculations are repeatedly performed, such
as in the case of Monte Carlo simulation. One way of avoiding this will be to
introduce simplified numerical models, which are no longer twins but some kind of
more distant numerical relative. As an example of such a simplified numerical
representation, a so-called response surface model can be applied in order to over-
come the excessive computational efforts. Such models are also sometimes referred
to as meta-models or cyber-physical models. One possible approach is to use a
response surface model based on first- or second-order polynomials as approximat-
ing functions, with the function parameters being determined based on multivariate
regression analysis techniques. In this chapter, various types of approximate models
are first discussed in connection with a simplistic example. The application of
response surface techniques is subsequently illustrated for a quite complex physics-
based structural model for an offshore jacket structure in combination with Monte
Carlo simulation techniques.

Keywords: digital representation, structural analysis, Monte Carlo simulation,
response surface techniques, structural integrity management

1. Introduction

Analysis of structures will in general involve large and complex numerical
models both with respect to the loading and the structure. This typically implies
extensive computational efforts. For cases where a large number of load and
response calculations are repeatedly performed this becomes particularly cumber-
some, such as in the case of Monte Carlo simulation. In the present paper, applica-
tion of physics-based response surface methods for the purpose of reducing
computation time is illustrated. In Section 2, various types of numerical approxi-
mations are first discussed in connection with a very simple structure. In Section 3 a
complex offshore jacket structure is analyzed by means of response surface tech-
niques for the loading and a physics-based “digital twin” of the structure.
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2. Numerical representations of physical structures

2.1 The (near to) perfect twin based on multi-physics models

In the present text, the concept of a digital twin is understood in the following
sense: A digital twin is a numerical model capable of reproducing the state and
behavior of a unique real asset in real time (or faster), with this model also being
able to represent the performance of the asset for new and artificially generated
conditions (i.e., in connection with extrapolated predictions). As a primary candi-
date for a digital twin, a complete numerical model based on first principles in
terms of multi-physics modeling seems to be most relevant. Such a model will also
be able to represent non-linear features of the structural behavior of the asset.

As an example, a relatively simple structure with pronounced non-linear behav-
ior is considered: Figure 1 shows a structure composed of two truss members. The
structure is subjected to a vertical load R.

If the geometry is assumed to be non-deformed, the relationship between the
vertical load R and the vertical displacement is obtained as:

R ¼ 2EA

l
sin α0ð Þ2 cos α0ð Þr (1)

which for small angles can be approximated by

R ¼ 2EA

l
α20r (2)

where α0 is the slope angle of both truss members.
However, by accounting for changing geometry due to the vertical load, a

different relationship between the vertical load, R, and displacement, r, is obtained.
By consideration of geometric compatibility, equilibrium conditions and a linear
stress-strain relationship, the expression for the load-displacement curve can then
be derived as:

R ¼ 2EA

l

h

r
� 1

� �

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ h� rð Þ2
q � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ h2
p

0

B

@

1

C

A
r (3)

where h is the height of the truss and l is half the horizontal span length. E is the
modulus of elasticity for the relevant material and A is the cross-section area of
both truss members. The model uncertainty associated with this relationship is
presently considered to be negligible, such that it can be assumed to represent a

Figure 1.
Truss structure subjected to vertical load R.
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“digital twin” of the structure (implying that, e.g., buckling of the members
themselves is not relevant due to their non-slender characteristics).

This highly nonlinear expression in Eq. (3) can be closely approximated by a
third order polynomial as follows, [1]:

R ¼ 2EA

l
α20 1� r

h

� �

1� r

2h

� �

r (4)

By inserting α0 = h/l (also assuming small angles), this can be written as

R ¼ 2EA � α30 1� r

h

� �

1� r

2h

� � r

h
(5)

Both of the R-r (i.e., load and displacement) relationships according to Eqs. (3)
and (5) are shown in Figure 2 for a slope angle of α0 = π/15. It is seen that they can
barely be distinguished from another. (This implies that the third order representa-
tion can also be regarded as a digital twin, although not of the one-egg kind).

Both of the curves are characterized by a very non-linear behavior, where a so-
called snap-through occurs when the two truss members are displaced to a
completely horizontal position. After snap-through has occurred, a second equilib-
rium configuration is obtained for which a further increase of the vertical load can
take place. However, this second equilibrium configuration will in most cases rep-
resent a “failed condition” in the sense that the structure will survive but such that
an unwanted large displacement has taken place (which would, e.g., be the case if
the structure represents a load-carrying roof structure or an arch system).

Up to around one quarter of the maximum load point, the load-displacement
curve is quite close to being linear. Accordingly, if only empirical load-displacement
data points for this interval are available, this would typically lead to the assumption
that the structural behavior is linear for any load level (unless the physical behavior
of the system is taken into consideration). Having available data sets for many
different structures of the same type, it is very unlikely that any of the sets contain
information about the post-snap interval if all the structures are still in operation.

For structures of the present type in cases where also the stress-strain behavior
of the material is nonlinear, numerical solution methods will generally be required
in order to compute the load-displacement curve. This will increase the computa-
tion time significantly, which will be particularly cumbersome in connection with
Monte Carlo simulation procedures where a large number of repeated calculations is
typically required (e.g., of the order of millions and upwards). In any case, simpli-
fied but “adequate” models need to be introduced.

Figure 2.
Load-displacement curves according to Eqs. (3) and (5) α0 = π/15.
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2.2 More distant numerical relatives based on different kinds of simplified
physics-based models

One way of being able to reduce the computation time for even larger and more
complex numerical models, is to introduce a simplified representation which is no
longer a twin but some more distant numerical relative. As an example, a so-called
response surface model can be applied in order to overcome excessive computa-
tional efforts. Such models are frequently also referred to as “meta-models” or
“cyber-physical” models. One possible approach is to use a response surface repre-
sentation based, e.g., on first- or second-order polynomials as approximating func-
tions. The parameters of these functions and their weighting coefficients are then
determined, e.g., based on minimization of the mean square error. The “control
points” for the approximate model are then established based on application of the
physics-based model at just these points (i.e., for given input parameter values). By
a proper selection of control points, the prediction error associated with the entire
range of structural displacement levels can be limited in magnitude.

As examples, we consider approximation of the exact load-displacement rela-
tionship with a quadratic and also an alternative quadratic response surface model.
For the former, the control points are selected as (0, 0); (0.5, 3/16) and (1.0, 0.0),
where 3/16 represents the exact maximum value of the cubic function (but with the
location of the maximum point shifted to an abscissa value of 0.5). For the latter, a
minimummean square error approximation within the interval 0.0–1.0. The first of
these approximations is compared to the “exact physics-based model” in Figure 3.

The error associated with the second order approximations over the range from
r/h = 0 to 1 is seen to be acceptable, while for the less interesting range (within the
present context) from 1 to 2 it is highly inaccurate and of little use.

2.3 Data-driven simplified models

A numerical representation of the load-displacement relationship based on a
data-driven simplified model is next considered. First, it is assumed that 10 data
points in the range from r/h = 0 to 0.15 are available, which is mainly in the weakly
non-linear regime. These are, e.g., obtained during normal operation of the struc-
ture. A measurement noise with a standard deviation of 10% of the measured signal
is also introduced. The extrapolated second order approximation (based on regres-
sion analysis) is shown in Figure 4a together with the data points themselves. It is
seen that the maximum value of the load R is significantly underpredicted by this

Figure 3.
Comparison of second order response surface with exact relationship.
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curve. As a second approximation, the 10 data points (including noise) are next
taken to lie in the range from r/h = 0 to 0.2 (i.e., into the slightly more nonlinear
regime). The corresponding second order approximation is shown in Figure 4b.
The maximum load is somewhat closer to the true value, but still a significant
underprediction is observed.

These results are intended to illustrate the limitations of extrapolations based on
data driven models unless the measurement points are available in the region with
“high nonlinearity.” For structural systems, such data points are generally scarce as
they represent rare events that may even correspond to failure of the structure.

2.4 Comparison of failure probabilities calculated by application of the
different numerical models

By introducing a structural failure criterion for the truss in addition to joint
statistical models for the inherent random variables, the failure probability
corresponding to a given reference period can be computed. Presently, the failure
function is expressed in terms of the maximum allowable load (i.e., Rmax), and the
only random variable is the external extreme environmental load (i.e., Rex) which
follows a Gumbel distribution with a mean value of 0.9 Rmax and a coefficient of
variation of 10% (i.e., a standard deviation of 0.09 Rmax). In the present section, a
comparison is made between structural failure probabilities, which are obtained by
application of the different structural representations that were considered above
(Table 1).

Not unexpectedly, the accuracy of the physics-based representations is signifi-
cantly higher than the data-driven models for the present example. While the cubic
response surface almost corresponds to the twin representation, the data driven

Figure 4.
Measured data points and second order approximations: (a) data range is in the interval from 0 to 0.15 r/h
and (b) data range is from 0 to 0.15 r/h.

5

Utilization of Digital Twins and Other Numerical Relatives for Efficient Monte Carlo…
DOI: http://dx.doi.org/10.5772/intechopen.89144



model for the low loading regime could at best be referred to as a more distant
relative (e.g., a half-brother or a cousin).

3. Example of a more complex structural analysis by Monte Carlo
simulation

In the following, an application of a physics-based digital twin model is illus-
trated for the analysis and the structural integrity management optimization of a
specific jacket structure, also in combination with Monte Carlo simulation tech-
niques. The loading is represented by a response surface with the basic environ-
mental parameters as input. The control points are based on physics-based load
models. The structural response is obtained by means of a numerical model, which
is able to account for large deformations and plastic behavior. This implies that the
load-displacement curve is characterized by a maximum value, which is followed by
a rapid decline of load-carrying ability similar to the previous simplified example.

3.1 System modeling and reliability formulation

The failure of a structural system, e.g., offshore jacket platform is often defined
as the total collapse of the structure. The collapse event can be modeled as a series
system of several parallel subsystems as follows [2]:

gFS
…ð Þ ¼ ⋃

N

j¼1
⋂
n

i¼1
gFij

…ð Þ≤0
� �

(6)

where n is the number of components in the system, N is the number of failure
modes, gFij

…ð Þ is the limit state function of component i for failure mode j. The system

failure probability for systems like offshore jacket platforms can be accurately
estimated by considering a single failure mode and expressing the system resistance
R and the system load S in terms of base shear [3, 4]. The system resistance R is the
ultimate capacity base shear, which is a function of system damage state’s matrix D.
The system load S is the base shear load for a given environmental variable E. The
probability of system overload failure for a given system damage state D is calcu-
lated shown in Eq. (7).

P FS,OjD
� �

¼ P R Dð Þ � L Eð Þ≤0½ � (7)

The performance of structural components in the system deteriorates over time
due to, e.g., fatigue damage or corrosion. The system damage state’s matrix D
contains the (fatigue) damage state of each component at time t, i.e.,

Numerical representation Probability of failure

Exact (digital twin) 0.0719

Response surface (physics-based), quadratic 0.0719

Response surface (physics-based), MSE quadratic 0.0671

Data-driven, cubic regression, low loading 1.0000

Data-driven, cubic regression, intermediate loading 0.9102

Table 1.
Failure probabilities corresponding to different numerical representations.
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D ¼ HF1 Y, tð Þ, ::HFi Y, tð Þ, ::HFn Y, tð Þ½ �, where HFi is an indicator function that equals
one if the component i fails (i.e., gFij

Y, tð Þ≤0) and zero if otherwise. Y is a vector of

random variables that influences the fatigue damage (see Chapter 3.2). The total
probability theorem is then utilized to calculate the probability of system failure due
to both overload and fatigue failures as follows:

P FSð Þ ¼
ð

D
P FSjD ¼ gF Y, tð Þ
� �

fY y
� �

dy (8)

Following [3], Eq. (8) can be approximated as follows:

P FSð Þ≈P Fintact
S,O

� �

þ
X

n

i¼1

P Fið ÞP FS,OjFi

� �

þ
X

n

i¼1

X

n�1

j¼1

P Fi ⋂Fj

� �

P FS,OjFi ⋂Fj

� �

þ…

(9)

where P Fintact
S, o

� �

is the system failure probability due to overload in the intact

condition, P Fið Þ is the fatigue failure probability for component i, P FS, ojFi

� �

is the

conditional system failure probability due to overload after fatigue failure occurs
at component i, and P Fi ∩ Fj

� �

is the probability that fatigue failures occurs at
components i and j before the overload failure. Eq. (9) is often referred as annual
probability of system failure in the context of structural integrity management,
where P Fið Þ is defined as the probability of failure at component i given survival up
until year t [5]. As a first approximation, the annual probability of system failure
can be calculated by keeping only the first two terms [5]:

P FSð Þ≈P Fintact
S,O

� �

þ
X

n

i¼1

P Fið ÞP FS,OjFi

� �

(10)

3.2 Response surface

The system load L is a function of environmental variable vector E. In this
work, the wave height H and wave period T are considered as the environmental
random variables, i.e., E = [H,T]. The system load L is expressed as the base shear
for a given combination of wave height and wave period. The response surface
method with quadratic polynomial function is utilized to estimate the system load
as follows [6]:

L H, Tð Þ ¼ a0 þ a1H þ a2T þ a3H2 þ a4T2 þ a5HT (11)

where a0….a5 are the coefficients to be determined. Probabilistic linear regres-
sion analysis is employed to obtain the coefficients and the predictive distribution
of the system load L. The linear model is written as follows:

L ¼ Xβ þ ε (12)

where L is a (1 � m) vector of “responses” (i.e., which here is the load), β is a
(1�m) vector of the regression coefficients (see Eq. (11)), and ε is the 1�m vector
containing the error terms. The error is assumed Normal-distributed with zero
expected value and variance σ2e . X is a m � p design matrix which consists of p
combinations of individual terms (see Eq. (11)) and m number of samples as
follows:
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X ¼

1 H1 T1 H2
1 T2

1 H1T1

1 H2 T2 H2
2 T2

2 H2T2

:

:

1 Hm Tm H2
m T2

m HmTm:

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(13)

The unconditional predictive distribution is given by the multivariate non-

central Students t-distribution i.e., ~L∣L̂ � tm�p E ~LjL̂
	 


,COV ~LjL̂
	 
� �

with parameters
as given as follows [7]:

E ~LjL̂
	 


¼ ~XE β½ � (14)

COV ~LjL̂
	 


¼ σ̂2e
~X X̂

T
X̂

� ��1
~X
T þ I

� �

(15)

E β½ � ¼ X̂
T
X̂

� ��1
X̂

T
L̂ (16)

σ̂e ¼
1

m� r
L̂� X̂E β½ �
� �T

L̂� X̂E β½ �
� �

and r ¼ rank X̂
� �

(17)

X̂ and L̂ are matrices that contain the pre-computed load points from, e.g., finite

element analysis. ~L is a vector of load predictions from regression analysis for given
~X, which is calculated, e.g., from the samples of wave height and wave period. The

predictive distribution of the load, p ~LjL̂
� �

, can be seen as a measure of the model
uncertainty associated with the response surface.

The wave height is assumed to be Weibull distribution. A special type of a
conditional Weibull distribution proposed by Forristal is utilized and written as
follows [8, 9]:

FH∣Hs
hjhsð Þ ¼ 1� exp �2:263

h

hs

� �2:126
 !

(18)

where hs is the significant wave height. Probabilistic models for the wave period
are less studied compared to wave height. In the present work, the wave period is
assumed to follow a Lognormal distribution, which is conditional on wave height,
and the parameters are defined as follows:

μT Hð Þ ¼ E lnT½ � ¼ b1 þ b2 0:5Hð Þb3 (19)

σT Hð Þ ¼ Std lnT½ � ¼ c1 þ c2 exp 0:5H � c3ð Þ (20)

where b1; b2; b3 and c1; c2; c3 are the coefficients to be determined. Eqs. (19) and
(20) ensure that the wave period is dependent on the wave height in order to avoid
drawing unrealistic samples of wave height and period (e.g., very large wave
heights with very small wave periods).

3.3 Structural fatigue and reliability updating with monitoring and inspection
information

Fatigue failure occurs if the crack size exceeds a critical crack size, and this can
be modeled by means of a limit state function as follows:
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gFi
Y, tð Þ ¼ δc � δ Y, tð Þ (21)

where δc is the critical crack size and δ(Y,t) is the crack size at time t. Here,
failure of the structure will occur if this failure function becomes negative. The
crack growth is modeled using Paris’ Law as follows:

dδ Nsð Þ=dNs ¼ C ΔKð Þm (22)

where m and C are the empirical model parameters, Ns is the number of stress
cycles, and ΔK is the stress range intensity factor. For through-thickness cracks on
an infinite panel, the solution to Eq. (22) can be written as follows [10]:

δ Y, tð Þ ¼ δ
1�m

2
0 þ 1�m

2

� �

C BSIFBΔSΔSe
ffiffiffi

π
p� �m

νt
� � 1

1�m
2 (23)

where δ0 is the initial crack size, and ν is the annual cycle rate. BSIF and BΔS are
the model uncertainties of the stress intensity factor and for the stress range calcu-
lation, respectively (see e.g., [11]). ΔSe is the so-called equivalent stress range and
calculated as follows:

ΔSe ¼ γ Γ 1þm

λ

� �h i 1
m

(24)

Y is a vector of random variables i.e., Y ¼ δ0;C;BSIF;BΔS; ln γ; λ½ �, where γ and λ

is the scale and shape parameter of the Weibull distributed stress range. The prob-
ability of fatigue failure is calculated as follows:

P Fi tð Þð Þ ¼
ð

gFi Y, tð Þ≤0
fY y
� �

dy (25)

P Fi tð Þð Þ is defined as the probability of annual fatigue failure given survival up
until year t. Statistical dependencies between fatigue hotspots are modeled using
correlation coefficients of the random variables in the Y vector. There are 6
correlation coefficients: ρδ0 ;ρC;ρBSIF

;ρBΔS
;ργ;ρλ. The coefficient ρδ0 represents the

statistical dependencies due to the same fabrication process. ρC indicates the
dependencies due to common material characteristics. ργ and ρλ describe the

statistical dependencies due to the similar loading patterns. ρBSIF
and ρBΔS

depict the
dependencies due to common stress intensity factor and stress range calculation.

Probabilistic models that are able to represent inspection activities in a proper
way are also required. Information regarding structural performance can be
obtained by carrying out inspection or structural monitoring. There are two out-
comes of an inspection: no damage indication (I1) or damage indication (I2). The
objective of inspection modeling is to obtain the marginal probability of indication
(and no indication) followed by an update of the probability of system failure. By
utilizing detection theory, the probability of an indication can be derived from the
noise and signal distributions (see e.g., [9, 12]). Signal and noise characteristics are
typically modeled by means of a Normal distribution (see e.g., [9, 13]). The
updating of component fatigue failure probability is performed by utilizing Bayes’
law. Given no indication after an inspection, the probability of fatigue failure is
updated as given in [14].

Furthermore, models for statistical representation of the structural monitoring
methods are required. Structural health monitoring (SHM) systems can be installed
to monitor specific structural properties such as, e.g., vibration or strain in the
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structural system. Information from a SHM can be viewed as one of the possible
realizations of the model uncertainty (see e.g., [15, 16]), which is associated with
the measured property such as, e.g., stress ranges. In the present work, the SHM
modeling proposed by [17] is employed, i.e., three different possible SHM outcomes
are considered: The outcome Z1 corresponds to the case where monitoring indicates
lower stress ranges than expected and indicates that the monitored component has a
high performance. Outcome Z3 indicates that the monitoring component has a low
performance due to higher than expected stress ranges. Outcome Z2 indicates that
the monitored component performs as expected. Calculation of the updated proba-
bility of system failure is carried out as described in [14].

3.4 Quantification of the value of SIM strategies

The quantification of the value of SIM strategies builds upon the Bayesian pre-
posterior decision analysis framework as formulated by Benjamin and Cornell, [18].
A SIM strategy decision problem can be modeled by a decision tree in pre-posterior
form as shown in Figure 5. The information space S consists of available informa-
tion acquirement strategies i (e.g., inspection and monitoring). The outcome space
O comprises the possible outcomes of a given information acquirement strategy i.
The action space A consists of the possible actions that can be taken such as e.g.
repair. The state space θ contains possible states such as, e.g., failure or survival.

The value of SIM strategies is quantified by utilizing the value of information
and action (VOIA) analysis (see [19]). A VOIA analysis consists of a base and an
enhancement scenario. The base scenario is defined as the scenario without any
SHM/inspection and risk-mitigating action such as e.g., repair. There are two states
considered in this system state analysis: the (collapse/no collapse) and the compo-
nent state (failure/no failure). Therefore, the expected cost C0 in the base scenario
is the sum of the expected system E[CFS] and component E[CF,i] failure costs over
the service life TSL:

C0 ¼
X

n

i�1

E CF, i
	 


 !

þ E CFS½ � (26)

where n is the number of structural components. Procedures for calculation of
E[CFS] and E[CF,i] are described in [14]. The failure probabilities, which are required
in order to calculate these costs, are computed by means of Monte Carlo simulation.

Two different SIM strategies are analyzed as enhancement scenarios. The first
strategy is to perform inspections and repair if required during the service life. The
second strategy is to install the SHM system for 1 year at one component and to
perform inspections and repair if required. For both strategies, a repair action is
performed if the inspection indicates a damage. The expected total cost of the first
strategy is calculated as the sum of expected costs of inspection E[Ci], repair E[CR,i],
system failure E[CFS], and fatigue failure E[CF,i] costs over the service life as follows:

C S1, Að Þ ¼
X

NIC

i�1

E CI, i
	 


þ E CR, i
	 


 !

þ
X

n

i�1

E CF, i
	 


 !

þ E CFS
½ � (27)

Figure 5.
Illustration of a decision tree with rectangular modeling decision and ellipses for chance nodes.
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where NIC is the number of inspected components. E[CFS] and E[CF,i] in
Eq. (27) are calculated by considering the updated probability of system and fatigue
failure, respectively. E[CR,i] is the expected repair costs over the service with NIC

repaired components.
The expected total costs for the second strategy is calculated as follows:

C S2, Að Þ ¼ EZ

X

NIC

i�1

E CI, i
	 


þ E CR, i
	 


 !

þ E CSHM½ � þ
X

n

i�1

E CF, i
	 


 !

þ E CFS
½ �

" #

(28)

where E CSHM½ � is the expected SHM costs. Further details are given in [14]. The
VOIA is then calculated as follows:

VOIA ¼ max
S,A

C S,Að Þ � C0 (29)

3.5 Case study

A typical deepwater offshore jacket platform with 25 years of service life and
located at 190 m waterdepth is utilized in the present work (see Figure 6a). The
jacket platform has 200 components and each component is subjected to fatigue
deterioration. In this study, each component is assumed to have exactly one hotspot
for which a trough-thickness crack will result in fatigue failure. The incoming wave
direction is taken as 135° and the 100-year significant wave height HS;100y equals to
24.3 m.

Figure 6.
(a) Deepwater finite element jacket model used in the case study. (b) The response surface of L with the
black crosses signify the training data set. (c) The expected value of the load prediction (blue line) with
95%-confidence interval (black lines) for T = 20.8 s.
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System failure is defined as the collapse of the jacket platform due to overload
and fatigue deterioration. In this example, it is assumed that only single component
failure is possible before the overload failure and the probability of system failure is
calculated by Eq. (10). The resistance R is the ultimate base shear for given damage
state matrix D and is calculated by performing pushover analysis with software
USFOS [20]. The system load L is approximated by utilizing response surface
analysis outlined in Section 3.2 with 248 pre-computed load points. The samples of
L are drawn from the predictive distribution for a given H and T. The coefficients in
Eq. (19) and (20) are assumed to have the following values (based on a typical
North Sea environment): b = [1.322; 0.8; 0.242] and c = [0.005; 0.09374; 0.32]. The
conditional probability of system collapse (see Eq. (7)) is calculated by utilizing
Monte Carlo simulation with 106 samples. The response surface of the system load L
is shown in Figure 6b with the coefficient of determination R2 = 0.9905. Figure 6c
shows the predictive distribution of L for T = 20.8 s.

The system failure probability in intact condition is 5E�6. The conditional
system failure probabilities for different damaged components and its associated
ultimate base shears are given in Table 2. The components in Table 2 are located on
the jacket’s legs.

3.5.1 Fatigue model

All components are subjected to fatigue deterioration over the service life with
one critical hotspot for each component. The contributions from the fatigue failure
probabilities to the system failure are weighted w.r.t. the conditional system failure
probabilities. Due to the high number of structural components, only the 10 most
critical components with the highest conditional system failure probabilities (see
Table 2) are presently considered. Fatigue failure contributions from other
components are considerably smaller and can hence be neglected. Fatigue failure
probability at time t is calculated by application of Monte Carlo simulation. The
probability is calculated for a period of 1 year, where survival until year t is given.
All fatigue hotspots are modeled with the same probabilistic models, which are
shown in Table 3. BΔS and BSIF are assumed fully correlated between components
following [21]. The other random variables are assumed to have a correlation
coefficient of 0.8 [21].

Damaged component Ultimate base shear (N) P(FS,O|D)

All intact 1.51E+08 5.00E�06

10035 7.05E+07 3.54E�03

10037 7.19E+07 3.16E�03

10038 7.42E+07 2.63E�03

10013 7.98E+07 1.67E�03

10036 8.61E+07 1.01E�03

10039 8.68E+07 9.60E�04

10014 8.71E+07 9.37E�04

10015 8.99E+07 7.55E�04

10016 1.03E+08 2.93E�04

10024 1.06E+08 1.90E�04

Table 2.
Ten highest conditional probabilities of system failure.

12

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology



3.5.2 Structural integrity management (SIM)

Two SIM strategies are considered: inspection and repair and inspection with
SHM and repair. For the first strategy, inspections are performed at 3 critical
components 1 year before the annual system failure probability P(FS) is estimated
to exceed the threshold Pth(FS) (i.e., constant threshold approach). The minimum

system failure probability threshold during operation is set equal to 10�4 which
corresponds to target system failure probability recommended by JCSS [15]
for structures with large consequences of failure and large relative cost of safety
measure.

In order to simplify the decision analysis, a repair action is performed only if any
damage is detected by inspections. This decision rule is practical and VoI-optimal,
see [22]. Repaired components are assumed to behave as components with no
damage indication. The probability of indication is derived from the noise and
signal distributions. The noise SR is assumed to follow a Normal distribution with
zero mean and a standard deviation of 0.5. The signal threshold ths is calibrated to
the probability of false indication (PFI) of 0.01. The signal S is also Normal distrib-
uted with the following parameters:

μS tð Þ ¼ 0:8þ 0:1 � δ tð Þ, σS tð Þ ¼ 0:3� 0:01 � δ tð Þ (30)

where δ(t) is the crack size at year t.
In the second SIM strategy, a SHM system for stress range monitoring is installed

1 year before the first inspection is performed, with a monitoring duration of 1 year
(i.e., up to the time of the inspection itself). SHM performance is modeled as
proposed in [17] by utilizing the stress range model uncertainty BΔS. Two thresholds
distinguishing the outcomes Z1 (low stress ranges), Z2 (stress ranges as designed)
and Z3 (high stress ranges) are calibrated to target probabilities of P1

T(Fi) = 1�10�4

and P2
T(Fi) = 1�10�3, respectively. The target reliabilities are selected following [13]

for structures with minor consequences of failure with normal and large relative
cost of safety measure. The time dependent threshold’s calibration is illustrated by
Figure 7. The measurement uncertainty U is assumed Normal distributed with the
expected value of 1.0 and a standard deviation of 0.05. A summary of the probabi-
listic models is shown in Table 4.

Variable Dimension Distribution Expected value St. deviation

TSL year — 25 —

δ0 mm Exponential 0.11 —

δC mm — 8 —

lnC N and mm Normal �29.97 0.5095

m — — 3.0 —

BSIF — Lognormal 1.0 0.1

BΔS — Lognormal 1.0 0.2

lnγ N and mm Normal 2.1 0.22

λ — Normal 0.8 0.08

ν 1/year — 107
—

Table 3.
Summary of the random variables for fatigue modeling.
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The costs considered in this case study are consisting of inspection costs CI, SHM
costs CSHM, repair costs CR, system failure costs CFS, and component failure costs
CFi. SHM costs are further divided into investment costs CInv

SHM, installation costs
CInst

SHM, and operational costs Cop
SHM. The cost model used in this example is

shown in Table 5 based on [23, 24].

3.5.3 Results

The annual component and system failure for t = 1....25 years are shown in
Figure 8. The system failure probability for the intact condition is P(FS,O|
D = 0) = 5E�6. The annual system failure probability at the end of service life is
9.5E�5, which is less than the minimum operational threshold, i.e., no SIM
implementations are required to achieve the minimum operational requirement.
However, the decision-maker may wish to increase the structural reliability above
the minimum requirement and presumably enhance the value of SIM. In this work,
three different annual system failure probability thresholds are studied: 6E�5,
7E�5, and 8E�5.

For the inspection-only strategy (S = S1), inspections and repairs are performed
at three components 1 year before the system failure probability threshold Pth(FS) is
predicted to be reached. After each inspection, probabilities of fatigue and system
failure are updated. Figure 9a shows the annual system failure probability for
the inspection-only strategy as a function of time for a specific threshold value.

Figure 7.
Illustration of thresholds calibration for two different SHM installation times for SHM modeling. η1 and η2 are
the thresholds of stress range model uncertainty BΔS associated with PT

1 Fið Þ and PT
2 Fið Þ, respectively. The

integration of the colored regions results in the probabilities of (Z1, Z2, and Z3), which are modeled as three
indication events.

Variable Dimension Distribution Expected value Std. deviation

SR — Normal 0 0.5

S — Normal μS(t) σS(t)

PFI — — 0.01 —

P1
T(Fi) — — 5�10�4

—

P2
T(Fi) — — 5�10�3

—

U — Normal 1.0 0.05

Table 4.
Summary of the random variables for inspection and SHM modeling.
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The first inspection time is at t = 8 years. Increasing the threshold means that the
inspections are performed later during the service life. Because of this, the inspec-
tion frequency during the service life is decreasing with a higher threshold in
exchange of a higher annual system failure probability.

The second SIM strategy (S = S2) is based on installation of a SHM system at one
component to monitor stress ranges for 1 year before the first inspection. There are
three possible outcomes for monitoring based on the component performance.
Figure 9b shows the annual system failure probability with monitoring and inspec-
tions for a system failure probability threshold of 6E-5. Compared to Figure 9a, it is
observed that the outcome of monitoring can influence the future inspection

Type Cost

CI 0.001

CInv
SHM 1.33�10�4/channel

CInst
SHM 1.33�10�4/channel

Cop
SHM 2�10�4/year

CR 0.01

CF,i 1

CFS 100

Table 5.
Cost models used in the case study.

Figure 8.
Annual component and system failure probability over the service life.

Figure 9.
(a) Annual system failure probability with inspections and repairs for one specific threshold, Pth(FS) = 6E�5.
(b) Annual system failure probability with SHM, inspections and repairs for one specific threshold,
Pth(FS) = 6E�5. The inspections and repairs are performed at three components while monitoring is performed
at one component.
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schedule. The SHM installation time differs depending on the thresholds (see
Table 6). A higher threshold means that the SHM system is installed closer to the
end of service life. With increasing annual system failure probability threshold, the
probability of obtaining low performance outcome (Z3) becomes higher.

The values of information and action (VOIA) of the two SIM strategies are
shown in Figure 10. It is observed that increasing the system failure probability
threshold will reduce the value of information and action. With a higher threshold,
inspection and monitoring are performed later in the service life, which reduces the
benefits due to a higher annual system failure probability during the remaining
service life compared to a lower system failure probability threshold. It is also
observed that the VOIA of the SIM strategy SHM, inspection and repair (S2) is
higher than the inspection-only strategy (S1) for all investigated system failure
probability thresholds. This shows that information from SHM system can enhance
the value of the SIM, i.e., reduce the expected total cost. In this example, the cost of
system failure is dominating the expected total cost over the service life.

4. Summary and conclusions

In the present analysis, physics-based numerical models of the load, structural
behavior and for the integrity management have been utilized in combination with
response surface techniques and Monte Carlo simulation. An application of a
physics-based digital twin model is illustrated for the structural and integrity
management analysis of a specific jacket structure. The loading is represented by a
response surface with the basic environmental parameters as input. The control

SHM outcome Annual system failure probability threshold

6.00E-05

tSHM = 6 years

7.00E-05

tSHM = 8 years

8.00E-05

tSHM = 11 years

High performance Z1ð Þ 0.175 0.0991 0.0497

As-expected performance

Z2ð Þ
0.553 0.5036 0.4084

Low performance Z3ð Þ 0.272 0.3973 0.5419

tSHM is SHM installation time for a given annual system failure probability threshold.

Table 6.
The probability of SHM outcomes for different annual system probability thresholds.

Figure 10.
(a) Expected total costs for base scenario, inspection and repairs strategy (S1), and SHM, inspections, and
repairs (S3). (b) Value of information and action based on SIM strategies for different annual system failure
probability thresholds.
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points are based on physics-based load models. The structural response is obtained
by means of a numerical model, which is able to account for large deformations and
plastic behavior.

A framework has been developed to plan and to optimize the structural integrity
management (SIM) by utilizing the physics-based digital twin model. By extending
the concept of the value of information to a value of information and action analy-
sis, the value of inspection and monitoring information and repair actions is quan-
tified. A novel approach of SHMmodeling introduced by Agusta and Thӧns [17] has
been employed in conjunction with inspection modeling based on a probabilistic
representation of inspections. The optimal SIM strategy leading to the least
expected costs and structural risks is associated to the lowest annual system failure
probability threshold. It is further demonstrated that structural systems with a high
reliability requirement will benefit more from a SHM system implementation.

It is believed that for the present type of analysis, which involves large structural
deformations and structural failure behavior, data-driven models will not be ade-
quate due to an insufficient amount of relevant data. Clearly, this belief is also based
on the assumption that the model uncertainties associated with the physics-based
numerical models can be adequately controlled. This can be achieved by collecting
data from laboratory (destructive) testing and full-scale measurements including
failure records. In this way, data-calibrated and physics-based numerical models
can be developed, rather than relying on data-driven models based on conditions
corresponding to normal operation of the structures.
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