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Abstract

Tissue engineering and regenerative medicine are branches of biomedical 
sciences that facilitate the use of cells and biocompatible scaffolds in favor of tissue 
restoration. In this regard, restoration and maintenance of angiogenesis and blood 
supplementation could be an effective strategy for injured tissue removal, accelerat-
ing healing rate, and successful transplantation of cells and scaffolds into target 
sites. It has been elucidated that mesenchymal stem cells have the potency to pro-
mote angiogenesis via paracrine activity and trans-differentiation into the endothe-
lial lineage. In this chapter, we highlighted the paracrine property of mesenchymal 
stem cells to modulate angiogenesis in the target tissues.
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1. Introduction

Angiogenesis, termed as neovascularization, is defined as de novo vasculariza-
tion from the pre-existing vascular network and activated in response to numerous 
pathological and physiological stimuli, playing critical roles during development 
and tissue repair [1]. Recent advances in the field of stem cell research, nota-
bly MSCs, have opened new horizons to human medicine in the promotion of 
angiogenesis and restoration and salvage of ischemic tissues [2]. MSCs actively 
participate in angiogenesis via direct differentiation, cell contact interaction with 
endothelial lineage, and releasing pro-angiogenic factors via a paracrine manner 
[3]. Due to the low survival and differentiation rate of MSCs posttransplantation 
into ischemic microenvironment, it is proposed that the paracrine activity is the 
principal mechanism for the therapeutic outcome [4]. It has been well-established 
that stem cell-secreted growth factors are responsible for, at least in part, therapeu-
tic effects. As a matter of fact, MSC-derived secretome is thought to be a suitable 
alternative therapeutic modality to MSCs posttransplantation. At present, the 
underlying mechanisms by which MSC secretomes contribute to tissue healing and 
angiogenesis are not fully addressed and many efforts are needed to fill knowledge 
gaps by experimental animal research and clinical trials prior to application to 
human medicine [5, 6]. Paracrine factors could increase the blood supplement of 
damaged tissues via the activation and recruitment of resident/circulating stem 
cells and progenitor cells [7, 8]. Several experiments detected the pro-angiogenic 
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capacity of MSCs isolated from different sources [9, 10]. Table 1 ELISA and liquid-
chip assays of cytokine content of umbilical cord MSCs revealed several angiogen-
esis factors, including interleukin-8 (IL-8), insulin-like growth factor 1 (IGF-1), 
and vascular endothelial growth factor (VEGF) compared to mature cell types such 
as fibroblasts. These pro-angiogenic factors are able to form vascular networks and 
increase the migration of endothelial lineage in vitro [51]. In addition to the secre-
tion of angiogenic factors by MSCs, it was revealed that various factors existing in 
secretome could activate the angiogenic behavior in endothelial cells (ECs). For 
instance, equine peripheral blood MSC angiocrine was found to stimulate endothe-
lial functional behavior by the induction of VEGF-A signaling pathway via several 
factors such as endothelin-1, IL-8, platelet-derived growth factor-AA (PDGF-AA), 
and IGF-2 [52]. Due to the variety of factors released by MSCs such as VEGF, 
monocyte chemoattractant protein-1 (MCP-1), and IL-6, an increased angiogenesis 
rate was observed in the mouse model of hindlimb ischemia, and even the combina-
tion of VEGF, MCP-1, and IL-6 could be served as a commercial cocktail for the 
promotion of angiogenesis either in vivo or in vitro [53]. In addition to the existence 
of the pro-angiogenic factor in MSC secretome, some authorities, however, showed 
the anti-angiogenic properties of these cells (Table 2) [67]. In some circumstances, 
the dual effect of a distinct factor was proved related to angiogenesis status. For 
example, in VEGF-free condition, the attachment of angiopoietin-2 (Ang-2) to 
receptor tyrosine kinase (RTK), namely Tie-2, promotes vascular destabilization 
and regression by reduction of pericyte-EC interaction, while in normal condition 
Ang-2 could increase EC migration and tip cell formation required for neovascular-
ization [68]. Commensurate with these comments, one could hypothesize that the 
dynamic balance of MSC secretome, cell source, purity, and preconditioning could 
predetermine the pro- and/or anti-angiogenic property of MSCs [67].

By modulating distinct signaling pathway/s inside the MSCs, cell bioactivity 
would be induced in favor of neovascularization. For instance, it was shown that 
the activation of sonic hedgehog (Shh) factor in Wharton’s jelly-derived MSCs 
(WJ-MSCs) induced the production of pro-angiogenic factors such as angiogenin, 
angiopoietin-1, activin A, matrix metallopeptidase-9 (MMP-9), granulocyte-
macrophage colony-stimulating factor, and urokinase-type plasminogen activa-
tor, indicating WJ-MSCs an ideal cell source for the induction of vascularization 
[69]. An experiment conducted by Matluobi et al. showed an enhanced vascular 
formation capacity of human MSCs after treatment with carvacrol evaluated by 
chicken chorioallantoic membrane angiogenesis assay. The carvacrol-treated MSCs 
tended to trans-differentiate into endothelial lineage by the expression of VWF 
and VE-cadherin [70]. MSCs have the ability to adapt themselves with environ-
mental condition increasing regenerative potential in different conditions [71]. 
Maintaining the MSC cross talk with other cells is required for cell hemostasis, 
stemness feature, and regenerative potential in the distinct niche. For example, the 
normal bioactivity of Hox gene, Abdominal-B, seems to be essential in Drosophila 
cystic stem cells to obtain multipotentiality [72].

Regarding issues related to isolation protocols and stem cell proliferation rate, a 
careful selection is essential for high-throughput results. Vizoso et al. demonstrated 
large-scale secretome production and release of a vast array of bioactive factors in 
human uterine cervical stem cells with considerable advantages over MSCs from 
other tissues for research and clinical application [73].

The emergence of some conditions could change the trans-differentiation capac-
ity of MSCs into distinct phenotypes. In the case of the vicious cycle of abnormal 
placental development in intrauterine growth restriction, placental mesenchymal 
stromal cells lose angiogenic potential while acquiring adipogenic capacity which is 
coincided with a metabolic shift from aerobic to anaerobic state [71]. It seems that 
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Factor Amniotic fluid/

bone marrow 

MSCs

Function

Angiogenin +/+ A pancreatic ribonuclease, known as ribonuclease 5, which 

induces vascularization [11]

Angiopoietin-1 +/+ Activates TEK/TIE2 receptor; promotes angiogenic processes, 

endothelial cell survival, migration, proliferation, and 

stabilization; and during embryogenesis has a role in heart 

development [12]

Angiopoietin-2 +/− Binds to TEK/TIE2, in the presence of VEGF and Ang-2 and 

promotes neovascularization [13, 14]

Angiopoietin-4 +/+ Binds to TEK/TIE2, modulating ANGPT1 signaling, can 

induce tyrosine phosphorylation of TEK/TIE2, and promotes 

endothelial cell survival, migration, and angiogenesis [15]

Amphiregulin +/− An EGF-like ligand that binds to the EGFR, enhanced 

lymphangiogenesis, and stimulates the growth of normal 

epithelial cells [16]

Artemin +/− Binds for the GFR-alpha-3-RET and GFR-alpha-1-RET receptor 

and promotes angiogenesis [17]

Tissue factor +/− Stimulates PDGF receptor signaling pathway, angiogenesis, 

endothelial cell migration, chemotaxis and proliferation, and 

coagulation factor III/CD142; improves transcription of VEGF; 

and reduces transcription of the thrombospondins [18]

CXCL16 +/+ Encourages a chemotactic response, pro-angiogenic [19]

DPPIV +/− A membrane-bound oligopeptidase acting on and modulating 

the pro-angiogenic chemokine CXCL12 [20]

Epidermal growth 

factor

+/− Encourages the growth of epithelial tissues, is anti-apoptotic, 

induces lymphangiogenesis, and improves MSC survival [21]

EG-VEGF +/− Also called Prokineticin 1. Binds to PROKR1 and PROKR2, 

pro-angiogenic [22]

Endothelin-1 +/+ Derived from the endothelium with vasoconstrictor and 

angiogenic effects, prolymphoangiogenic [23]

Endoglin +/− Also called CD 105. Modulates TGF-β1 and β3 responses, 

vascular development, and angiogenic effects [24]

FGF-7 +/+ Has positive effects on cell proliferation, migration and 

division, chemotaxis, and arteriogenesis [25]

Acidic FGF/FGF-1 +/− Binds to for FGFR1 and integrins and induces angiogenesis [26]

Basic FGF/FGF-2 +/− Ligand for FGFR1, FGFR2, FGFR3, and FGFR4, Vascular 

regeneration; role in cell migration and proliferation involved in 

angiogenesis, stimulates arteriogenesis [27]

FGF-4 +/− Has positive effects in MSC proliferation, pro-angiogenic [28]

GDNF +/− Has positive effects in angiogenesis [29]

GM-CSF +/− Has positive effects in angiogenesis [30]

Heparanase +/+ Has positive effects in angiogenesis [31]

Heparin 

binding-EGF

+/+ Has positive effects in angiogenesis [32]

Hepatocyte 

growth factor

+/− Has positive effects in angiogenesis [33]

HIF-1α +/+ Functions as a master transcriptional regulator of the adaptive 

response to hypoxia and influences cell metabolism, cell 

survival, and angiogenesis [34]
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external environmental influence could alter the therapeutic potency of MSCs by 
rendering epigenetic marks associated with cell differentiation capacity [74]. In 
support of this claim, Rezaie and co-workers found a decrease of angiogenic human 
MSC potential after exposure to diabetic sera. The diabetic MSCs showed a declined 
migration capacity by suppressing the transcription of MMP-2, MMP-9, and 
CXCR-4 and aborted the secretion of Ang-1, Ang-2, and VEGF [75]. The expression 
of CXC chemokine receptors such as CXCR-1, CXCR-2, and CXCR-4 was found 
to accelerate and direct MSC migration in response to the chemokine gradients. A 
blockade of CXCR chemokine such as CXCL6 had potential to abrogate cardiac stem 
cell migration and motility [76].

Factor Amniotic fluid/

bone marrow 

MSCs

Function

IL-1β +/− Has positive effects in angiogenesis and lymphangiogenesis [35]

IL-6 +/− A potent pro-angiogenic cytokine which stimulates endothelial 

cell and smooth muscle cell proliferation and migration and 

promotes neovascularization [36]

IL-8 +/− Has a role of pro-angiogenic factor [37]

Leptin +/− Stimulates vessel formation [38]

MCP-1 +/− CCL2. Induces stabilization of new vessels [39]

MIP-1α +/− CCL3. Induces vessel formation

MMP-8 +/− Known as collagenase 2. Breaks collagen types I, II, and III and 

has positive effects on angiogenesis [40]

MMP-9 +/− Called as gelatinase B. Breaks both collagens and gelatins and 

has positive effects on angiogenesis [41]

NRG1-β1 +/− Promotes angiogenesis and arteriogenesis [42]

Pentraxin-3 

(PTX3)

+/+ Has a role of a pro-angiogenic agent [43]

PD-ECGF +/− Stimulates angiogenesis [44]

PDGF-AA +/+ Has positive effects on MSC proliferation and stimulates 

angiogenesis [45]

PDGF-AB/

PDGF-BB

+/− Induces neovascularization and arteriogenesis [27]

Persefin +/− Induces angiogenesis [3]

PlGF +/+ Has a role of a pro-angiogenic factor [46]

Prolactin +/− Has a role of a pro-angiogenic factor in intact form [47]

Sphingosine 

kinase 1

+/+ Promotes angiogenesis [48]

SDF-1α -/+ An important chemotactic factor for progenitor cells. Stimulates 

stem cell migration, adhesion, and homing [3]

TGF-β1 +/− Promotes angiogenesis at least in part via the secretion of the 

survival factors TGF-α and VEGF [3]

uPA +/+ Promotes endothelial cell proliferation and migration and has 

positive effects in vascular network formation [49]

VEGF +/+ Promotes angiogenesis [50]

VEGF-C +/− Promotes lymphangiogenesis [50]

Table 1. 
Comparison of angiogenic paracrine factors secreted by MSCs from amniotic fluid and bone marrow.
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At present, the combination of cell and tissue engineering techniques increased the 
restoration potential of a distinct cell type after transplantation [77]. In most of these 
approaches, the maintenance of cell-to-cell interaction in 3D microenvironment could 
increase survival signaling pathway and organotypic plasticity of cells. For instance, 
it seems that cell encapsulation by the mixture of alginate-gelatin promotes angio-
crine cues and vascular network formation [77]. The introduction of MSC-alginate 
microbeads to ischemic hindlimb mouse model promoted arterial collaterals after the 
occlusion of the femoral artery by the modulation of VEGF-A signaling pathway [78]. 
A side-by-side comparison of MSCs expanded in 2D, and alginate microbeads revealed 
enhanced angiogenic and chemotactic activity in cutaneous healing [79].

2. Modulation of angiogenesis by exosomes

Regarding paracrine activity, MSC exosomes transfer various bioactive mol-
ecules, microRNAs, and protein factors with the ability to modulate angiogenesis 
behavior in the target cells.

2.1 Exosomes biogenesis

Exosomes are a subtype of extracellular vesicles (EVs, 40–200 nm) found in 
bio-fluids and released from all cell types. They maintain cell-to-cell communica-
tion through shuttling diverse biomolecules [80–82]. The first intracellular step 

Factor Amniotic fluid/

bone marrow 

(MSCs)

Function

Angiopoietin-2 +/− Binds to TEK/TIE2 and induces endothelial cell 

apoptosis in the absence of VEGF [54, 55]

Angiostatin +/− Angiogenic inhibitor. Acts as an inhibitor of endothelial 

cell proliferation and migration [56]

Endostatin +/− Acts as inhibitor of endothelial cell proliferation and 

migration and angiogenesis and induces endothelial 

apoptosis [56]

TGF-β1 +/− Angiogenic inhibitor [57]

Platelet factor 4 (PF4) +/− Angiogenic inhibitor [58]

Serpin B5 +/− Maspin. A member of the serine protease inhibitor 

family and negative regulator of angiogenesis [59]

Serpin E1 +/+ Serine protease inhibitor; inhibition of angiogenesis; 

inhibitor of uPA; preserves the vascular integrity [60]

Serpin F1 +/+ Serine protease inhibitor, inhibition of angiogenesis [61]

TIMP-1 +/+ Angiogenesis inhibitor [62]

TIMP-4 +/+ Angiogenesis inhibitor [63]

Thrombospondin-1 +/+ Anti-angiogenic. Inhibits endothelial cell proliferation 

[64]

Thrombospondin-2 +/− Anti-angiogenic. Inhibits endothelial cell migration and 

tubule formation [65]

Vasohibin +/− A negative feedback regulator of angiogenesis [66]

Table 2. 
Comparison of anti-angiogenic paracrine factors secreted by MSCs from the amniotic fluid and bone marrow.
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in exosome biogenesis involves the invagination of the membrane of the multive-
sicular body (MVB) to form membrane-bound vesicles in MVB lumens that are 
identified as intraluminal vesicles (ILVs) (Figure 1) [83, 84]. Various factors and 
signaling pathways have been considered in biogenesis, trafficking, and abscission 
of exosomes [85]. Of note, endosomal sorting complexes required for transport 
(ESCRT) machinery with four complexes, ESCRT-0, ESCRT-I, ESCRT-II, and 
ESCRT-III, participate in exosome formation and packing cargo incorporation with 
different accessory proteins (Figure 1) [81, 85, 86]. Noteworthy, the formation of 
MVBs in the absence of the ESCRT machinery is aborted. In this condition, oligo-
dendroglial cell ceramide is a key molecule to induce inward budding of the limiting 
membrane of MVBs [83, 87]. After MVB formation, intracellular trafficking of 
vesicle systems was orchestrated by Rab-GTPase family proteins [81]. As shown 
in Figure 1, several Rab proteins specifically contribute to the transfer of vesicles 
in definitive pathways. Along with these factors, soluble NSF attachment protein 
receptor (SNARE) has been suggested to control the fusion of MVBs with the 
plasma membrane (Figure 1) [88]. At the intracellular level, three possible fates are 
considered to involve MVBs such as secretory, lysosomal, and back fusion pathways. 
Once secreted, exosomes can be received by neighboring cells by three possible 

Figure 1. 
Biogenesis, structure, and uptake of exosomes. Exosomes are producing during invagination process of MVB’s 
membrane. ESCRT machinery and ESCRT-independent mechanisms (lipid rafts/tetraspanin) contribute 
to form exosomes and sort several molecules including proteins, miRNA, mRNA, DNA strands, and lipids 
into their lumen or limiting membrane of exosomes. Exosome cargoes are collected from materials received 
by endocytic pathway, Golgi apparatus, and cytoplasm. Rab-GTPase family proteins regulate intercellular 
trafficking and docking of MVBs. In the secretory pathway, MVBs actively fuse with the plasma membrane to 
release exosomes into the extracellular space. In alternative pathways, MVB could prefer binding to the lysosome 
or directly fuse back to the plasma membrane. Once secreted, exosomes enroll several mechanisms to arrive at 
the target cell: (I) enter through internalization process; (II) bind through receptor-ligand interactions, (III) 
direct fusion with the plasma membrane of the target cell. Exosomes are able to affect the biological processes of 
the target cells.
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mechanisms: (i) internalization, (ii) direct fusion, and (iii) receptor-ligand interac-
tion. Exosomal uptake results in triggering signaling pathways reprogramming fate, 
proliferation, survival, and morphology of recipient cells (Figure 1) [89, 90].

2.2 Pro- and anti-angiogenic capacity of exosomes

It was shown that a significant portion of MSC angio-activity drives from their 
potency to release exosomes that can affect the function of ECs, either by increas-
ing the production of pro-angiogenic factors or decreasing the production of 
anti-angiogenic factors [91]. The fact that MSC exosomes promote angiogenesis, by 
delivering mediators such as miRNAs, protein factors to distinct cells, was con-
firmed in various in vivo experimental studies [89, 92, 93].

2.2.1 miRNAs

It seems that exosomal cargo such as cytokines and miRNAs could be eas-
ily transferred to recipient cells. Increasing evidence indicates that exosomal 
pro-angiogenic miRNAs (miRNA-125a, miRNA-30b, miRNA-30c, miRNA-424, 
miRNA-150, and let-7f) are important regulators of angiogenesis in the target 
sites [89, 94–96]. Data suggest that exosomal miR-150 is a key contributor to the 
pro-angiogenic activity of MSC exosomes following ischemic injuries [89, 96, 97]. 
In contrast, anti-angiogenic function on tumor cells was reported by a research 
group guided by Lee et al. They demonstrated the anti-angiogenic function of MSC 
exosomes on breast cancer cells governed by delivering miR-16 to suppress VEGF 
factor [91]. In a recent study conducted by Chen et al., they declared that exosome 
can be used as therapeutic transfer vesicles to carry miRNAs and genetic molecules 
to modulate VEGF content and control untamed angiogenesis in rheumatoid 
arthritis [98]. Based on the literature, the expression of VEGF, endothelial marker 
CD31, and matrix metalloproteinases-14 (MMP-14) activity is induced in patients 
with rheumatoid arthritis. The application of MSC-derived exosomes containing 
miRNA-150-5p (Exo-150) clearly decreased transcription of VEGF and MMP-14 in 
synovial fluid. Consistent with these changes, the pro-inflammatory response was 
blunted by decreasing IL-1β, transforming growth factor-β (TGF-β) and tumor 
necrosis factor-α (TNF-α) content in synovial fluid. This study has shown that 
MSC-derived Exo-150 can be used as bio-shuttle and magic bullet for inhibiting 
an exacerbated angiogenesis via the modulation of angiogenesis-related factors. 
However, some contradictory facts exist regarding the sole application of exosomes 
in the context of tumor cells.

2.2.2 Exosomal pro- and anti-angiogenic factors

MSCs can secret signal transducer and activator of transcription-3 (STAT3) 
mRNAs via exosomes that augment the transcription of hepatocyte growth fac-
tor (HGF), IL-6, and VEGF, promoting proliferation and migration of ECs [99]. 
In this context, MSC exosomes abundantly are enriched with VEGF factor that 
increases neovascularization through the Wnt4/β-catenin pathway in epithelial 
cells [100, 101]. The pro-angiogenic propriety of MSC exosomes has been previ-
ously shown in myocardial ischemia/reperfusion injury experiments following 
acute myocardial infarction [102–104]. In contrast, MSC exosomes may contain 
abundant anti-angiogenic factors that could regulate tumor angiogenesis rate. Lee 
et al. showed that exosomes from MSCs significantly downregulated the expres-
sion of VEGF in breast cancer cells, leading to the abortion of angiogenesis [91]. 
However, there are contradicting results. For example, human bone marrow MSC 
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exosomes promoted VEGF synthesis in colonic and gastric carcinomas through the 
activation of extracellular signal-regulated kinase1/kinase2 (ERK1/ERK2) and p38 
MAPK pathways [105]. Taken together, these issues show a fact that exosomes from 
various MSC types can mediate physiological and pathological angiogenesis and 
could be considered as a suitable bio-shuttle for establishing promising therapeutic 
approaches in an individual with cancers and ischemic pathologies. The feasibil-
ity of exosome uptake by recipient cells, make these cell products for introducing 
in clinical approaches. Xue and colleagues investigated the effects of cord blood 
and adipose-derived MSC exosomes on human EC angiogenesis capacity under 
hypoxic and normal conditions [106, 107]. They noted the potency of isolated 
exosomes in triggering angiogenesis rate especially under the hypoxic condition 
compared to exosome counterpart originated from normal milieu. Based on their 
data, the transcription level of genes related to angiogenesis such as angiopoietin-1 
(Ang-1) and VEGF receptor-2 (also termed FLK-1) was induced significantly after 
exposure to exosomes collected from hypoxic MSCs rather than that of normal 
cells. Following the induction of Ang-1 and FLK-1, the status of some downstream 
effectors would be turned to an activated form. For instance, it was found that 
protein kinase A (PKA) is indirectly triggered after the activation of genes Ang-1 
and VEGFR-2. Along with changes, the transcription level of angiogenesis inhibi-
tory gene like Vash1 is completely suppressed. The inhibitory angiogenesis potential 
of MSCs was investigated on cancer cells or progenitors residing inside tumor mass. 
Both anti-inflammatory and pro-angiogenesis property of MSC-derived exosomes 
were shown in cardiovascular disease [92, 97]. In addition to the promotion of 
cell surface receptors, exosomes could augment the synthesis of VEGF factor in 
targeted cells. Doeppner et al. also previously demonstrated that MSC-derived 
exosomes initiated healing processes after the onset of neurological diseases by 
increasing angiogenesis and blood supply which led to the neurological recovery 
and neurogenesis [108]. Other experiments added notion on the potency of exo-
somes to reduce neuroinflammation in traumatic brain injury [109]. However, some 
contradictory facts exist regarding the sole application of exosomes in the context 
of tumor cells. The superior stimulatory effect of MSC-derived exosomes on tumor 
angiogenesis was also addressed by different authors [110]. For example, Zhu et al. 
demonstrated the vasculogenic role of MSC exosomes after addition to human 
gastric carcinoma (SGC-7901) and colon cancer (SW480) cell lines [105, 111]. They 
found that the normal status of signaling effectors such as phosphorylated ERK1/
ERK2, Bcl-2, and VEGF proteins; alpha-smooth muscle actin (α-SMA); CXCR-4; 
and mouse double minute 2 homolog (MDM2) mRNA was modulated in the favor 
of angiogenesis in a mouse cancer model. In addition to the direct fast action on 
recipient cells, it is reasonable to hypothesize that exosomes are able to dictate pro-/
anti-angiogenesis pattern in distinct cells by provoking specific signaling pathways 
and effectors such as ERK1/ERK2 and p38 MAPK kinase routes.

The engagement of factors such as AKT, STAT3, Wnt/β-catenin, and ERK 
happens following cutaneous wound regeneration treated with MSC exosomes. 
Proteomic analysis revealed that the protein content of growth factors IL-6, stromal 
cell-derived factor-1α (SDF-1α), IGF-1α, STAT3, and HGF contributed to cell 
proliferation, migration, and angiogenesis, improving reepithelialization in wound 
sites [112]. The modulation of Wnt/β-catenin pathway targeting Wnt4 diminishes 
the number of cells with apoptotic changes with the levels of pro-angiogenic factors 
such as IL-6 and IL-8, granulocyte-colony-stimulating factor (G-CSF), PDGF-BB, 
MCP-1, and VEGF are increased. In response to treatment with exosomes, phos-
phorylation of glycogen synthase kinase 3β (GSK3β) as a main negative regulator 
of Wnt signaling pathway is initiated, resulting in the progression of a cell from 
phase G1 to S and cutaneous cell proliferation [113]. An enhanced angiogenesis rate 
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with reduced cardiomyocyte apoptosis was reported following the administration 
of MSCs to infarct area. After being exposed to the ischemic/hypoxic condition, 
MSCs were programmed to secrete exosomes. Under these conditions, GATA-4 is 
induced which prevents cell apoptosis, reducing the infarct size. Meanwhile, the 
level of an anti-apoptotic agent such as miR-19a and miR-22 was increased in the 
target sites [114]. In another experiment conducted by Teng et al., it was shown that 
MSC-derived exosomes harboring miRNA-132 efficiently are delivered to human 
umbilical vein ECs (HUVECs). Therefore, it could be pointed out that MSCs could 
dictate prominent changes in the target cells. They also declared that endothelial 
Ras signaling pathway effectors are modulated by recipient cells after direct interac-
tion of this miRNA with RASA1 gene. Ras group genes have a basic role in control-
ling cell proliferation and differentiation [107]. Along with these statements, the 
bona fide effects of MSC exosomes need to be precisely addressed by a plethora of 
various experiments.

In the context of tumor niche, both anti- and pro-tumorigenic features was 
found after the treatment of cancer cells with MSCs exosomes. The migration 
and proliferation of tumor cells were tightly regulated by exosome factors by the 
modulation of PDGFR, C-Met, and EGFR signaling. Ex vivo modulation showed 
this fact that MSC exosomes could activate or phosphorylate intracellular kinase 
domain of relevant receptors, thereby triggering Akt, PKC/PKB, and MAP signal-
ing pathways, leading to proliferation and migration of gastric tumor cells [115]. 
Exosomes released by human bone marrow MSCs augmented VEGF in colonic 
carcinoma and gastric carcinoma tumor cells through the activation of ERK1/ERK2 
and p38 MAPK pathways [105]. This hypocrisy generates doubts on the definite 
therapeutic effect of exosomes from MSC source in various niches. In an experi-
ment, the lack of cell response was approved in dormant-like tumor-initiating cells 
[116]. The differences in tumor cells to MSC secretome may relate to the divergence 
of factors and dynamic growth of target cells inside tumor niche [116]. In light 
of various genetic and proteomic reservoir, the target signaling and possible side 
effects of exosome treatment are required to be investigated in relation to specific 
distinct signaling pathway. It seems that exosome therapy is at the beginning step, 
and the type and source of cells have a superior role in the orientation of target cell 
behavior. A more deep understanding of the regulatory signaling pathways and 
precise inquiry in profiling of components transferred by exosomes is required to 
enroll and engineer the exosomes for therapeutic angiogenesis or targeted therapy

3. The application of MSCs and secretome in ischemic cardiac disease

Cardiovascular diseases remain the leading cause of mortality and morbidity 
in worldwide. Various investigators have continued to assess a large number of cell 
types injected through several routes to promote cardiac repair in patients with 
cardiovascular diseases in both the preclinical and clinical stages. Clinical studies 
have largely been focused on the administration of MSCs [117, 118]. For instance, 
intracoronary injection of bone marrow MSCs led to an improved function of 
the left ventricle in subjects with acute myocardial infarction [119]. Mechanisms 
of action of MSCs administrated to the injured myocardium include accelerating 
angiogenesis process, diminished fibrosis, and regulation of immune response 
[102, 120]. Both in vitro and in vivo investigations have confirmed the trans-dif-
ferentiating capacity of MSCs to effective cardiomyocytes in injured cardiac tissue 
[50]. In addition, documents revealed that MSCs from different sources release 
greater amounts of angiogenic factors (HGF, VEGF, and other growth factors), 
cell migration chemokine (SDF-1α), immune-signaling elements (IL-6, IL-8, and 
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MCP-1) TGF-β, neurotrophic factors (brain-derived neurotrophic factor (BDNF)), 
nitric oxide (NO), and improved cardiac restoration after injury [121].

Exosomes from MSCs exposed to hypoxia and FBS-free condition enhanced 
neovascularization in the injured heart [92, 122–124]. In a preclinical study, intra-
myocardial transplantation of exosome secreted from MSCs significantly improves 
blood flow rate and reduced infarct zone in the rat model [125]. Approximately, the 
entire small and large animal model of CVD preclinical investigations along with 
high-quality phase 0, I, II, and III clinical trials and meta-analysis studies vigor-
ously confirmed that MSC therapy has the effective effects in developing angiogenic 
networks in ischemic regions [126, 127].

Ongoing researches on preconditioning and genetic manipulations of MSCs are 
needed to enhance angiocrine capacity governed by growth factors, microvesicles, 
microRNAs, long noncoding RNAs (lncRNAs), etc. [128, 129]. Finding the route of 
cell delivery, the optimum dose, the excellent cell source, and transplantation time 
are factors that still require to be addressed so as to achieve the aim of comprehen-
sive cardiac regeneration.

4. Angiogenesis assays

Both in vitro and in vivo angiogenesis assays are commonly used to investigate 
pro- and anti-angiogenic potential of stem cells and different cell types.

4.1 In vitro analyses

4.1.1 Proliferation and survival assays

Monitoring the proliferation of ECs is needed to develop microvascular units. 
Different survival and proliferation assays based on DNA synthesis or metabolic 
status are applicable. These assays could also predetermine the anti-angiogenic 
property of a specific compound in the context of tumor biology.

4.1.2 Migration assays

This method shows the migration in response to diverse factors, ability to digest 
basal membrane, and healing capacity of MSCs which is done by various assays as 
follows: Boyden chamber assay, Transwell® inserts, agarose assay, wound-healing 
assay, Teflon fence assay, phagokinetic track, etc. [130].

4.1.3 Tube formation (tubulogenesis) assay

This system is done in the 2D and 3D milieu and able to monitor alignment and 
juxtacrine connection of cells after plating on a specific substrate such as Matrigel, 
Fibrin, etc. Plated cells acquire phenotype to form capillary-like structures and 
lumen which are applicable to in vivo condition and evaluated in terms of tube area 
and number per microscopic field [130, 131].

4.1.4 Aortic ring assay

In this assay, the aorta from mouse or rats was removed and placed on col-
lagen or fibrin matrix in serum-free condition. The angiogenic potential is 
determined by EC sprouting, polarized cells, and outgrowth appearance to the 
periphery [132].
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4.2 In vivo analyses

4.2.1 Corneal angiogenesis assay

The cornea is considered as avascular tissue with unique properties for moni-
toring the angiogenesis and done in the model of mouse, rat, and rabbit. In the 
procedure of corneal angiogenesis, the candidate biomaterials and polymer with 
putative pro- and anti-angiogenic factors were transplanted into the stromal pouch 
created by surgical approach. The penetration and ingrowth of nascent vessels into 
the avascular area is monitored by the time [133].

4.2.2 Chicken chorioallantoic membrane angiogenesis assay

This assay is performed on embryonated eggs by using polymer pellets and 
silastic rings containing target molecules on the surface of the chorioallantoic 
membrane. After the completion of distinct time, the number and dilation of blood 
vessels from avian source to the implants were quantified [70].

4.2.3 Matrigel plug assay

It is a choice of in vivo angiogenesis assay following administration of gelatinous 
protein mixture termed Matrigel into subcutaneous space. The target molecules 
could be administrated with Matrigel at the site of injection and systemically to 
the circulation system. To precisely elucidate the formation of de novo capillaries, 
fluorochrome agent could be administrated into the systemic circulation [130].

5. Conclusion

It is anticipated that MSC secretome and angiocrine could be used as an off-
the-shelf alternative therapy to modulate angiogenesis/vascularization in distinct 
tissues. Considering both pro- and anti-angiogenic capacity, a big question remains 
to the identification of safety and efficacy of MSC secretome under specific condi-
tions. Based on the data from different experiments, the angiogenic paracrine 
potential of MSCs is currently under investigation, and results of preclinical and 
translational studies, if confirmatory of previous basic experiments, could lead to 
human medicine for angiogenic modulation of tissues. The discovery of the signal-
ing pathways that mastermind the paracrine pro- and anti-angiogenic potential of 
MSCs enables us to find appropriate policies for modulating angiogenic switch on/
off in in vivo condition.
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