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Abstract

Economic growth can be used as an assessment for the success of the regional economic
establishment. Since the Regulation of the Republic Indonesia Number 32 of 2004 has been
implemented, the imbalance economic growth among the regencies in Indonesia is rising.
The imbalance in the conditions of economic growth differs between regions with the aim
of the government to improve social welfare by expanding economic activities in each
region. The purpose of this chapter is to elaborate whether there is a difference in eco-
nomic growth based on the distribution of bank credit for each regency in Indonesia. This
research analyzes the economic growth data using hierarchical structure model that
follows the normality-based modeling in the first level. The two modeling approaches
will be applied, i.e., a general one-level Bayesian approach and a two-level structure
hierarchical Bayesian approach. The success of these approaches has demonstrated that
the two-level hierarchical structure Bayesian has a better estimation than a general one-
level Bayesian. It demonstrates that all of the macro-level characteristics of provinces are
significantly influencing the different economic growth in every related province. These
variations are also significantly influenced by their cross-level interaction regency and
provincial characteristics.

Keywords: Bayesian, estimation, economic growth, normal distribution, hierarchical

1. Introduction

The rising economic development in a country or in such region can be shown by its economic

growth. It could be affected by three main factors, i.e., advances in technology, the capital

accumulation of investment, and the local workforce participation [1]. The indicator to mea-

sure the economic growth rate and to determine the shifts and economic structural changes are
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the gross domestic product (GDP). There were two kinds of GDP, i.e., GDP at constant

prices and GDP at current prices. GDP at constant prices was used to explain the economic

growth from year to year, while GDP at current prices was used to see the economic structural

changes [2].

The law of the Republic Indonesia Number 32 of 2004 states about the delegation of partial of

the central government authority to the local government for conducting and organizing its

own internal affairs. The increase of the economic activity in each regency and province in

order to improve the national economy is the main goal of the delegation. Local autonomy

welfare of society expected quickly can be realized through applied decentralization regula-

tion. Decentralization, on the other hand, can drive the imbalances in economic growth among

the regencies.

The Indonesian government issued the nine packages policy called Nawacita in 2014, a pro-

posed solution to overcome the imbalance of economic growth. The nine packages policy in

Nawacita consists of returning the state to have the main task of protecting all citizens and

providing a safe living environment; emerging clean, effective, trusted, and good democratic

governance; development of marginal areas; reforming law enforcement bureaus; improving

life quality; increasing productivity and competitiveness; promoting economic independence

by developing domestic strategic sectors; overhauling the nation character; and strengthening

the spirit of unity in diversity and social reform [3].

The seventh of the nine points in Nawacita states that the government would accomplish

economic independence by developing domestic strategic sectors. The economy sectors were

stressed as a priority sector for accompanying Nawacita, which fitted the classification Indo-

nesia Banking Statistics (named as Statistik Perbankan Indonesia or SPI). Economic growth is

significantly affected by these sectors. A significant example is that the distribution of financial

credit to economic priority sectors has been proven to have a significant contribution as a

positive impact on regional economic growth [4].

As a developing country, the banking sector in Indonesia is still dominating the financial

system. The development of the banking sector has a strong relationship with economic

growth. Some previous studies have shown that there is a positive relationship between the

number of bank credit with income per capita growth in both developed and developing

countries [5, 6]. The banking industry characteristic in Indonesia, however, is believed rela-

tively brittle [7], inefficient in financing intermediation in ASEAN [4].

This chapter discusses the bank credit influence on economic growth through an assessment of

the distribution of financial credit in Indonesia using two-level Bayesian hierarchical structure

modeling, each regency on the first level as a sample unit and provinces as the second level.

There are 284 regencies as the selected sample unit from the first level, which spread unbal-

anced in the 11 selected provinces. Demonstration of the ability to resolve the challenges of

modeling on this unbalance of a number of sample units, therefore, was a significant contribu-

tion of Bayesian hierarchical modeling. Different from the frequentist approaches, Bayesian

analysis treats all unknown parameters as random variables which have distribution [8]. The

results of this study are expected to provide guidance about financial credit distribution to

Bayesian Networks - Advances and Novel Applications6



priority sector and recommendation to policy-making in Bank Indonesia, the local govern-

ment, Statistics Indonesia (BPS), and other related institutions.

2. Background and methodology

Economic growth has always been a benchmark for the success of the economic development

of a country or a region. In a region, it can be conventionally measured by the increasing rate of

the gross regional domestic product (GRDP) value represented in percent. The important

indicators that represent the economic condition in a region for a certain reporting period were

GRDP. There were two types of GRDP, i.e., reported as current prices and reported as constant

prices. The performance of the economy over time in real terms could be seen through the

GRDP at constant prices, while GRDP at current prices was used to see the shifts and the

economic structures [2]. The economic growth rate in Indonesia during 2015 is lower than in

2014, i.e., 4.79% of 5.02%. Some provinces, however, have economic growth above national

economic growth, which are West Sumatra, North Sumatra, East Java, Central Java, West Java,

East Nusa Tenggara, Southeast Sulawesi, South Sulawesi, and Papua, while the economic

growth rate of South Sumatra (4.5%) is lower than the national economic growth. In 2015,

Papua Province was an exceptional province having the most fantastic rapid economic growth

rate, amounting to 7.97%. The second most rapid economic growth rate after Papua Province

belongs to South Sulawesi Province, achieving 7%. Five provinces were only able to reach the

economic growth rate of around 5–6%, and one province exactly had a growth of 6%. The

others grow below 5%. Almost all provinces that have GRDP at constant prices tend to

increase from 2014 to the year 2015, except Aceh Province. The deficit balance of trade, foreign

export oil, and imports are the main cause of decreasing its GRDP. They have reduced the level

of Aceh’s domestic economy (inter-regional) and sharpened differences in economic growth.

The secondary data recorded officially from the Economic Assessment and Surveillance Divi-

sion of Economic and Financial Advisory, Bank Indonesia Representative Office of East Java

Province, coupled with the data from Statistics Indonesia (BPS) are used in this study. There

are 17 micro predictor variables (x), four macro predictor variables (w), and a response variable

(y), i.e., economic growth rate. Figure 1 shows the design of the hierarchical data structure.

Due to the demand for the number of sample units as many as 17 variables in the modeling,

only 11 provinces were used from as many as 34 provinces in Indonesia which had at least 16

regencies. This considers the guarantee in approaching the fulfillment of the requirements of

the micro model that uses 17 predictor variables.

The procedures of analysis in this research follow the steps below:

1. Describing and exploring economic growth data each regency

2. Parameter estimation of a global one-level Bayesian model of all regencies

a. Write an algorithm to estimate parameters of the general one-level Bayesian model.

The parameters used for modeling in this study are τ and β. These are the parameters

of the normal distribution. The preliminary procedure that needs to be done in

An Economic Growth Model Using Hierarchical Bayesian Method
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modeling with the one-level Bayesian approach is to determine the prior distribution

for the parameters to be estimated. This study uses an independent prior distribution,

i.e., the prior distribution of each parameter is independent of one another. These

independent prior distributions can be used to tackle problems in the modeling if it

suspects there is high collinearity between the explanatory variables.

Prior distributions are used for each element of the parameter vector in the one-level

Bayesian model-based normal distribution as follows:

yi ¼ β0 þ β1x1i þ β2x2i þ…þ βpxpi þ ei,

y � N μ; σ2I
� �

,

μ ¼ xβþ e,

τ ¼
1

σ2
,

ei � N 0; σ2
� �

,

βs � N β̂s; σ
2
s

� �

,

σ2s � Gamma as; bsð Þ,

where i ¼ 1, 2,…, n; n is number of data,

s ¼ 0, 1, 2,…, p; p is number of micro predictor variables:

(1)

Determining the value of hyper-parameter of each parameter in the prior distribution

is done by a combination of the conjugate and pseudo priors [9]. This is done to ensure

that the iteration of the parameter estimation process will quickly meet convergence

and meet the properties of the Markov chain, i.e., irreducible, aperiodic, and recurrent.

b. Implement the algorithm into the syntax of WinBUGS and run.

The relationship between data and the prior distribution of parameters in Bayesian

modeling can be illustrated as a graphic model form using a directed acyclic graph

(DAG).

Figure 1. Hierarchical structure scheme.
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Figure 2 is a representation of the relationship among data, model parameters, and

their parameter prior being modeled. Box-shaped node is used for representing the

parameter or data which are constant, while the node ellipse is used for representing

the parameters changing stochastically or as a logical structure relationship. Between

nodes is connected by a single line and a dotted line. The single line is stating a

stochastic relationship, while the dotted lines express logical relationships.

c. Analyze the model by listing significant contributions of each predictor variable using

the concept of whether the zero value is inside the credible interval of its highest

posterior distribution (HPD).

d. Measure the accuracy of this general one-level Bayesian model by computing its

deviance information criterion (DIC) value.

3. Parameter estimation of the two-level hierarchical structure Bayesian model. The first-level

model is for the regency level modeling, and the second-level model is for the province

level modeling.

a. Write an algorithm to estimate parameters of the two-level hierarchical structure

Bayesian model.

The hierarchical model parameter has a multilevel structure, called hyper-parameter.

It is in line with the hierarchical design perspective in this problem, i.e., the hierarchy

between regency and province. There are two parameters on the first level, namely, β

and σ
2
y, and there are two parameters on the second level, i.e., γ and σ

2
sj. For the

parameters in the first level, σ2y represents the variance of normal error distribution,

and β represents the parameters of regression in the micro model, while the parame-

ters in the second level are referred to a hyper-parameter which is a prior distribution

of the parameter β. This parameter β will be set as a response in the regression model

which is explained by hyper-parameter as a combination of the covariate w in the

macro model.

The following important steps are determining the distribution and hyper-parameter

prior for all of the parameters to be estimated. As in the global one-level model, in this

two-level modeling, the independent prior distributions are used. Prior distributions

Figure 2. DAG one level Bayesian methods.
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are used for each element of a Bayesian hierarchical model parameter vector based on

the normal distribution as follows:

yij ¼ β0j þ β1jx1ij þ β2jx2ij þ…þ βpjxpij þ eij,

Y � N μy; σ2yI
� �

,

μy ¼ xβþ e,

βsj � N β̂sj; σ
2
βsj

� �

,

eij � N 0; σ2y

� �

,

β̂sj ¼ γ0s þ γ1sw1j þ γ2sw2j þ…þ γqswqj þ usj,

β̂j � N μβj; σ
2
βjI

� �

,

(2)

μβj ¼ γwþ u,

γts � N μγts
; σ2γts

� �

,

usj � N 0; σ2βsj

� �

,

σ2γts
� Gamma aγts

; bγts

� �

,

where i ¼ 1, 2,…, nj; j ¼ 1, 2,…, m;

s ¼ 0, 1, 2,…, p; and t ¼ 0, 1, 2,…, q:

As in the global one-level model, in this two-level modeling, the determining of the

value of each parameter prior distribution is done by a combination of the conjugate

and pseudo priors.

b. Implement the algorithm into the syntax of WinBUGS and run.

The hierarchical relationship of model parameters, i.e., parameter priors and hyper-

parameter prior, in the Bayesian approach of such hierarchical scheme could be

described by the directed acyclic graph [10, 11]. Data, parameters, and parameter

prior models in the DAG are represented by nodes.

Figure 3 describes a Bayesian hierarchical model DAG for two-level model based on

the normal distribution, i.e., the first level is the regency, and the second level is the

provinces. For simplicity of writing, Regency-i, i ¼ 1, 2,…, nj, where nj is a number of

regency in the j-th province, and Province-j, j ¼ 1, 2,…, m, where m is a number of the

province. The parameter of regression in the first level is β; it can be written individ-

ually as βsj, where s ¼ 0, 1, 2,…, p; p is a number of the covariate in the micro model.

While the parameters of regression in the second level is γ, it can be written individ-

ually as γts, where t ¼ 0, 1, 2,…, q; q is a number of the covariate in the macro model.

c. Analyze the first and second level model by creating a list of the significant contribu-

tion of predictor variables in each regency and province by using the concept of

whether the zero value is inside the credible interval of its HPD.

Bayesian Networks - Advances and Novel Applications10



d. Determine the accuracy of this two-level hierarchical structure Bayesian models by

computing its DIC value.

4. Choosing the best model between the general one-level Bayesian model and two-level

hierarchical structure Bayesian model by comparing their DIC values

The selection of the best models from the two models can use a smaller DIC value. DIC of

the kth model can be determined through the following Equation [11]:

DIC kð Þ ¼ 2D θk; kð Þ �D θk; k
� �

¼ D θk; k
� �

þ 2pk

(3)

where D θm;mð Þ D θk; kð Þ is a deviance that is equal to the negative value of twice the log-

likelihood as stated in Eq. (4):

D θk; kð Þ ¼ �2 log f yjθk; kð Þ (4)

where D θk; kð Þ is the average posterior and pk represents the number of parameters in the

kth model calculated as

pk ¼ D θk; kð Þ �D θk; k
� �

(5)

θk is average posterior of the parameter in the kth model. The better model has smaller

deviance value.

Figure 3. DAG hierarchical Bayesian methods.
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5. Draw a thematic map that plots the distribution of economic growth of the regency to

provinces.

6. Make an interpretation of the results of the modeling; then write conclusions and suggestions.

3. Characteristics of research variable

A hierarchical linear model is a regression modeling that can accommodate a hierarchical data

structure. The predictor variables were prepared at all predefined levels, while the response

variable was measured at the lowest level [10, 12]. The hierarchical structure model could be

established by two levels of models, i.e., the micro models (model at the first level) and macro

models (model at the second level). Micro models could be in the form of distribution of data

in the first level or the regression model between the observed response and predictor in the

first level. Macro models, on the other hand, are usually as the regression model between the

parameter of the distribution or the regression coefficients from micro models and the predic-

tor variables measured on the second level [13]. In this case, predictor variables measured in

the first level were financial credit distributions, i.e., 17 major economic sectors in the regency,

while in the macro modeling, variables related to the provincial level were employed. There

are six economic sectors that have the greatest contribution among the 17 major economic

sectors at the regency level to economic growth, i.e., trade (x7), manufacturing industry (x4),

construction (x6), agriculture (x1), transportation, warehousing and communication (x9), and

accommodation, food, and beverage services (x8). At the provincial level, for the variable

component macro model, on the other hand, they are inflation (w1), interest rates on loans

(w2), deposits (w3), and the ratio of the nonperforming loan (NPL) (w4).

The distribution of the response variable has to be determined in order to build the likelihood

distribution which will be applied in both general one-level Bayesian and hierarchical struc-

ture Bayesian approach. To do so, the goodness of fit (GOF) test has to be done to check the

suitability of the selected hypothetical distribution pattern with the distribution of the

observed data. In this study, the null hypothesis of “the response data follow a particular

distribution pattern” would be tested to the alternative hypothesis of “the response data do

not follow a particular distribution pattern” by using the Anderson-Darling (AD) test [14].

Eq. (6) represents the AD test statistic:

W2
n ¼ �n�

1

n

X

n

j¼1

2j� 1ð Þ log uj þ log 1� un�jþ1

� �� �

, (6)

where n is the number of observed sample units and uj is the cumulative distribution function

at the data observations. The null hypothesis would be rejected when W2
n is greater than a

critical value, cα [15], calculated as Eq. (7):

cα ¼ aα∗ 1þ
b0
n
þ

b1
n2

� 	

, (7)

Bayesian Networks - Advances and Novel Applications12



where at the significance level α ¼ 5%, the value for aα ¼ 0:7514, b0 ¼ �0:795, and b1 ¼ �0:890

[15]. In this study, the response data was tested whether the pattern was normally distributed

or not by using the following hypothesis test.

H0: The economic growth distribution fits the normal distribution.

H1: The economic growth distribution is unfit for the normal distribution.

Results of the GOF test by using the AD test show that the economic growth (response variable)

of the selected 11 provinces follows the normal distribution. The Bayesian normal-based

approach employing the likelihood of normal distribution, therefore, is applicable for this case.

4. Indonesia’s economic growth modeling using general one-level

Bayesian methods

In the general one-level Bayesian modeling for economic growth, it must begin with the

assumption that all regencies in the 11 selected provinces have the same level of economic

Parameter Mean MC error 2.50% Median 97.50%

β0 5.54400 8.16E�04 5.26400 5.54400 5.825000

β1 �0.24950 0.001269 �0.66500 �0.24940 0.165100

β2 0.03708 0.001033 �0.29370 0.03742 0.363600

β3 0.01071 0.001133 �0.38670 0.01121 0.413800

β4 �0.02010 0.001788 �0.65760 �0.01853 0.621500

β5 �0.30450 9.90E�04 �0.61510 �0.30430 0.004251

β6 0.13530 0.003614 �1.17600 0.13380 1.468000

β7 0.32110 0.003616 �0.90150 0.32280 1.523000

β8 0.88960 0.003478 �0.40340 0.88640 2.198000

β9 �0.36810 0.003282 �1.41100 �0.36580 0.674800

β10 �0.26800 0.002072 �1.00700 �0.26790 0.461900

β11 �0.36240 0.003382 �1.49700 �0.36450 0.802700

β12 0.25370 9.14E�04 �0.06085 0.25490 0.570000

β13 �0.60620 0.002666 �1.58900 �0.60710 0.373700

β14 0.14230 0.001768 �0.48590 0.13990 0.778100

β15 �0.01639 0.004265 �1.53900 �0.01792 1.531000

β16 0.37940 0.002525 �0.51430 0.37870 1.274000

β17 �0.58840 7.76E�04 �0.89230 �0.58780 �0.288300

τ 0.15720 9.57E�05 0.13160 0.15660 0.185300

Table 1. Significance testing parameters of one-level Bayesian model.
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growth. All of the 17 variables were employed to model simultaneously and give the general

one-level Bayesian model as Eq. (8):

y ¼ 5:544� 0:2495x1 þ 0:03708x2 þ 0:01071x3 � 0:0201x4 � 0:3045x5 þ 0:1353x6

þ 0:3211x7 þ 0:8896x8 � 0:3681x9 � 0:268x10 � 0:3624x11 þ 0:2537x12 � 0:6062x13

þ 0:1423x14 � 0:01639x15 þ 0:3794x16 � 0:5884x17

(8)

The next step is to test the parameter significance of this one-level Bayesian model using

credible intervals. If the credible interval does not hold zero, then the estimated parameter is

significant. The result shown in Table 1 says that the intercept and the financial credit

distribution of international agencies and other extra-national agencies sector to total loans

(x17) have a significant influence to their economic growth, but the other 16 variables are

insignificant. The insignificance of the 16 variables means that the contribution of these 16

variables is not statistically influential enough for economic growth in each regency, but those

sectors cannot be interpreted that they should not be implemented in every regency to

support their economic growth. This insignificance can be caused by the random nature of

each sector’s activities among regions, where, naturally, it should be varied locally, but in this

modeling, it is treated and considered to be all the same and global for all regions, to the

response variable.

5. Indonesia’s economic growth modeling using hierarchical structure

Bayesian methods

Two regression models would be established in this hierarchical structure Bayesian approach,

i.e., a regression model for the micro model (first level) and macro model (second level),

respectively. The regression model in the first level will use 17 variables, and it has to estimate

198 parameters, while the regression model in the second level will use 4 variables, and

therefore, it has to estimate 90 parameters. Table 2 shows six estimated parameters of 18

regression coefficients in micro models for selected six provinces.

Parameter Aceh West Java Central Java East Java South Sulawesi Southeast Sulawesi

β0 4.0630 4.3330 4.92000 3.0330 6.3470 4.741

β1 �0.1328* �1.0220* 0.28610* �0.0955* 3.3370* �2352.000

β2 �1.9210* 0.0192* �0.00404* �0.2382* 0.0821* �981.200

β3 �37.4500* �0.8488* 0.86100* �1.5820 �14.8400* �39.940

β4 �174.6000 �0.3119* �0.23360* 0.3850* 3.0480* �1023.000

β5 8.6950* �0.3027 0.40700* 0.9209* �0.5125* �340.000

*The estimated parameter was not significant at α ¼ 5%.

Table 2. Six estimated parameters of 18 regression coefficients in micro models for selected six provinces.
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Table 2 demonstrates that each estimated βi, i ¼ 0, 1,…, 5 is treated as variables, i.e., the values

of βi among provinces were different. This also applies to βi, i ¼ 6, 7,…, 17.βi, i ¼ 6, 7,…, 17: As

an example, in the intercept coefficient, the lowest belonged to the East Java Province, while

the greatest value belonged to Papua Province. These intercept variations of selected 11

provinces in micro models are presented as boxplot in Figure 4. This fluctuation of these

parameters would be explained by regressing these parameters to the four covariates in the

second level. This has to be done to find out the different effects of their different local policies

in implementing their provincial regulations when it is viewed from differences of parameter

values [12, 16]. This stage of regression is applied to each random resulted regression param-

eter of the first level to the covariate at the second level. Table 3, as an example, shows only 6 of

18 regressions of macro model. Combining this cross-level interaction hierarchically between

micro and macro models, the model of Aceh province, for example, for the randomly intercept

only, can be written as Eq. (9):

y1 ¼ 5:059þ 1:037w1 þ 0:2406w2 � 1:605w3 þ 1:153w4ð Þ � 0:1328x1

� 1:921x2 � 37:45x3 � 174:6x4 þ 8:695x5 � 11:91x6 � 0:5904x7

� 2:461x8 � 74:23x9 þ 111:7x10 þ 238:3x11 � 115:1x12 � 50:71x13

þ 22:8x14 þ 11:58x15 þ 0:1152x16 � 1:606x17

(9)

From the example of a hierarchical model for Aceh, a hierarchical structure model can demon-

strate its superiority in presenting a newmodel as a hierarchical cross-level interaction through

the modeling of the slope of micro models. This model can describe the differences in economic

growth between different provinces even though they have characteristics of regencies with

almost perfect similarities. In this case, the role of provincial characteristics is as an activator

variable in relation to the regency’s economic growth rate. The interpretation, therefore, could

Figure 4. Boxplot of intercept micro models.
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be derived from the micro models adapted to the characteristics of each province. In addition,

the creation of predictors by adding depth to the hierarchical level will be more adaptive in

capturing real phenomena in the field.

The results in the first line of Table 2 and Figure 4 showed that the intercept of micro models

varies among the provinces. It is due to the significant effect of the province characteristics as

shown by the first line of Table 3. All of the estimated parameters of the covariate w in the

second level, γt, t ¼ 0, 1, 2,…, q, are significant, except for γ0. This means that variables in the

second level, inflation (w1), interest rates on loans (w2), and NPL ratio (w4), are affecting the

different shifts in economic growth in each regency. Interpretation for parameters other than

intercepts can be done in the same way, namely, by substituting the results of parameter

estimates at level two in Table 3 of the second row into the first-level model.

6. The best model selection

Modeling of economic growth in Indonesia in this study is done using two methods, the

general one-level Bayesian and the two-level hierarchical structure Bayesian models. These

two models would be compared to see which model is a more representative model to

economic growth. The main point of view that needs to be highlighted in the modeling

differences is that in general one-level Bayesian modeling, all of the characteristics at the

provincial level are ignored and only the characteristics in the Regency are considered. In this

modeling view, the economic growth in all regencies was, therefore, treated equally. The

Bayesian hierarchical structure modeling, on the other hand, was smartly joining the

Parameter in micro model γ0 γ1 γ2 γ3 γ4

β0 5.0590 1.0370* 0.2406* �1.6050* 1.1530*

β1 4.7120E+04 �4.6160E+04 365.3001 9.610E+03 �6.1450E+04

β2 9.9490E+05 9.6220E+05 �7.2320E+05 �2.9160E+05 �7.3050E+05

β3 �7.4470E+04 �2.37E+05 1.5040E+05 7.2280E+04 �5.163E+03

β4 �4.0340E+05 3.4290E+05 4.6780E+04 �3.5150E+04 4.8380E+05

β5 1.0480E+04 �1,28E+05 3.4670E+04 2.9410E+04 �5.1220E+04

*The estimated parameter was not significant at α ¼ 5%.

Table 3. Summary of parameter estimation macro model regression.

Model DIC

General one-level Bayesian 1351.360

Hierarchical structure Bayesian 916.490

Table 4. Goodness-of-fit model.
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characteristics at the provincial level and at the regency level. Here, the economic growth

could be explained as a cross-level interaction hierarchically through the modeling of param-

eters of micro models to the province characteristics as its covariates. The criteria used to select

the best model are the value of DIC. Based on the smaller DIC in Table 4, the hierarchical

structure Bayesian model was better than the general one-level Bayesian model.

7. Thematic map of economic growth in Indonesia

The economic growth of each regency based on the one-level Bayesian method can be seen in

Figure 5. Each color in Figure 5 represents economic growth in a regency. Color code 64 is a

color code for the regency that is not included in the modeling. The higher the economic

growth in a region, the greater the color code. Nabire has the highest economic growth in

2015 among other regencies in Indonesia, i.e., 9.51%, so the color code for Nabire is 255.

Furthermore, the thematic map of economic growth of each regency based on the hierarchical

Bayesian method shown in Figure 6, where the color codes for regencies that are not included

modeling is code 83. Like a thematic map of economic growth based on the one-level Bayesian

method, these maps also show that the higher the economic growth in a region, the greater the

color code.

Based on Figures 5 and 6, the difference between economic growth modeling using the global

one-level Bayesian method and the hierarchical Bayesian method is easily seen. The difference

is the color in Figure 5 only influenced by covariates of regencies, whereas the difference in

Figure 5. Thematic Map One-Level Bayesian Model.

An Economic Growth Model Using Hierarchical Bayesian Method
http://dx.doi.org/10.5772/intechopen.88650

17



color in Figure 6 is due to the collaboration and interaction between covariates in each regency

and province. In addition to this, collaboration and interaction of the characteristics of the

regency and province also affect the color difference in maps. Hierarchical Bayesian model is

better in representing the economic growth in each regency in Indonesia, as has been discussed

in Section 6. Figure 6 looks more clear in describing and representing Indonesia’s economic

growth in 2015.

8. Conclusion

Some conclusions could be gathered, i.e., (i) the economic growth model based on financial

credit distribution in Indonesia generally follows the normal distribution pattern, (ii) it would

be more appropriate to be modeled using the hierarchical Bayesian than using a global one-

level Bayesian method, and (iii) the results of hierarchical Bayesian modeling can also be seen

as a significant influence on the regression coefficients that describe a cross-level interaction of

the regency and provincial characteristics. The influence of the regency characteristics, there-

fore, cannot be generalized, so that the regency characteristics should be fitted to the province

characteristics.

There were also some recommendations to be given, i.e., (i) the local government and Bank

Indonesia should focus on addressing issues of inequality of economic growth in Indonesia,

especially in areas with slow rate of economic growth; and (ii) it was necessary to develop a

new method that (a) was capable to include the provinces with the regency number of less

Figure 6. Thematic Map Hierarchical Bayesian Model.
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than 17 variables in the model and (b) was able to model the different distribution patterns of

economic growth in the different regions into the generalized hierarchical Bayesian model.
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