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Chapter

Hyperspectral Image
Super-Resolution Using
Optimization and DCNN-Based
Methods
Xian-Hua Han

Abstract

Reconstructing a high-resolution (HR) hyperspectral (HS) image from the
observed low-resolution (LR) hyperspectral image or a high-resolution multispec-
tral (RGB) image obtained using the exiting imaging cameras is an important
research topic for capturing comprehensive scene information in both spatial and
spectral domains. The HR-HS hyperspectral image reconstruction mainly consists
of two research strategies: optimization-based and the deep convolutional neural
network-based learning methods. The optimization-based approaches estimate HR-
HS image via minimizing the reconstruction errors of the available low-resolution
hyperspectral and high-resolution multispectral images with different constrained
prior knowledge such as representation sparsity, spectral physical properties, spatial
smoothness, and so on. Recently, deep convolutional neural network (DCNN) has
been applied to resolution enhancement of natural images and is proven to achieve
promising performance. This chapter provides a comprehensive description of not
only the conventional optimization-based methods but also the recently investi-
gated DCNN-based learning methods for HS image super-resolution, which mainly
include spectral reconstruction CNN and spatial and spectral fusion CNN. Experi-
ment results on benchmark datasets have been shown for validating effectiveness of
HS image super-resolution in both quantitative values and visual effect.

Keywords: hyperspectral imaging, image super-resolution, optimization-based
approach, deep convolutional neural network (DCNN), spectral reconstruction,
spatial and spectral fusion

1. Introduction

Hyperspectral (HS) imaging simultaneously obtains a set of images of the same
scene on a large number of narrow-band wavelengths which can effectively
describe the spectral distribution for every scene point and provide intrinsic and
discriminative spectral information of the scene. The acquired dense spectral bands
of data are capable to benefit for numerous applications, including object recogni-
tion and segmentation [1–9], medical image analysis [10], and remote sensing
[11–15], to name a few. Although with the availability of the abundant spectral
information with HS imaging, it generally results in much low spatial resolution
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compared with ordinary panchromatic and RGB images since photon collection in
HS sensors is performed in a much larger spatial region for guaranteeing sufficiently
high signal-to-noise ratio. The low spatial resolution in the HS images leads to high
spectral mixing of different materials in a scene and greatly affects the performance
of scene analysis and understanding. Therefore, the reconstruction of high-
resolution hyperspectral (HR-HS) image using image processing and machine lean-
ing techniques has attracted a lot of attention.

Especially in remote sensing field, a low-resolution (LR) multispectral or HS
image is usually available accompanying with a HR single-channel panchromatic
image, and the fusion of these two images is generally known as the pan-sharpening
technique [16–39]. Motivated by the fact that human vision is more sensitive to
luminance, traditional pan-sharpening technique mainly concentrated the reliable
illumination restoration via substituting the calculated component of the LR-HS
image with the HR information of panchromatic image via sue saturation exploring
and principle component analysis. However, these simple approaches avoidably cause
spectral distortion in the resulting image. Recently, the HS image super-resolution
actively investigates the optimization methods for minimizing the reconstruction
error of the available LR-HS and HR-MS (HR-RGB) images [16–30], which
manifested impressive performance. The basic idea of these optimization-based
approaches assumes that the spectrum can be represented as matrix decomposition
with different constraints such as representation sparsity, spectral physical proper-
ties, spatial context similarity, and composited matrixes, which are iteratively opti-
mized for more accurate approximating the observed images. Recently, the matrix
factorization and spectral unmixing [40–43]-based HS image super-resolution, which
are mainly motivated by the fact the HS observations can be represented by a linear
combination of the reflectance function basis (the spectral signatures of the pure
materials) and the weight vector denoting the fractions of the pure materials on the
spectral response is assumed sparse, have been actively investigated [16, 17, 27, 28]. A
coupled nonnegative matrix factorization (CNMF) by Yokoya et al. [19], inspired by
the physical property of nonnegative weights for the linear combination, has been
proposed to estimate the HR-HS image from a pair of HR-MS and LR-HS images.
Although the CNMF approach provided acceptable spectral recovery performance,
its solution is usually not unique [44], which cannot always lead to unsatisfied
spectral recovery results. Lanaras et al. [10] proposed to integrate coupled spectral
unmixing strategy into HS super-resolution and conducted optimization procedure
with the proximal alternating linearized minimization method, which requires the
good initial points of the two decomposed reflectance signatures and the fraction
vectors for providing impressive results. Furthermore, taking consideration of the
physical meaning of the spectral linear combination on the reflectance signatures and
the implementation effectiveness, most work generally assumes that the number of
the pure materials in the observed scene is smaller than the spectral band number,
which is not always satisfied in the real application.

Motivated by the successful applications of the sparse representation on the
natural image analysis [14, 15] such as image de-noising, super-resolution, and
representation, the sparsity-promoting approaches without considering explicitly
the physical meaning constraint on the reflection signature (basis) and thus per-
mitting over-complete basis have widely been applied for HS super-resolution
[18, 19]. Inspired by the work in the general RGB image analysis with sparse
representation, Grohnfeldt et al. [11] explored a joint sparse representation for HS
image super-resolution. Via learning the corresponding HS and MS (RGB) patch
dictionaries using the prepared pairs, this work assumed the same sparse coeffi-
cients of the corresponding MS and HS patch dictionary, and thus, these can be
calculated with only the MS input patch. However the above procedure was

2

Processing and Analysis of Hyperspectral Data



conducted on each individual band, which mainly considered the well reconstruc-
tion of the local structure (patch) and completely ignored the spectral correlation
between channels. Therefore, several other works [19, 22] investigated the sparse
spectral representation via conducting reconstruction of all band spectra instead of
the local structure on each individual band. Akhtar et al. [13] explored a sparse
spatiospectral representation via calculating the optimized sparse coefficients of
each spectral pixel but assuming the same used atoms for the pixels in a local grid
region to integrate the spatial structure. For calculation effectiveness, a generalized
simultaneous orthogonal matching pursuit (G-SOMP) was proposed for estimating
the sparse coefficients in [22]. Later, the same research group integrated the sparse
representation and the Bayesian dictionary learning algorithm for improving the HS
image super-resolution performance and manifested its effectiveness. Dong et al.
[21] proposed a nonnegative structured sparse representation (NSSR) approach
for taking consideration of the spatial structure and then conducted optimization
procedure with the alternative direction multiplier method (ADMM) technique.
NSSR achieved a large margin on HS image recovery performance compared with
the other state-of-the-art approaches. Furthermore, Han et al. [45] proposed to
recover the HR-HS output via minimizing the coupled reconstruction error of the
available LR-HR and HR-RGB images with the following constraints, (1) the sparse
representation with over-complete spectral dictionary in the coupled unmixing
strategy [17] and (2) the self-similarity of the sparse spectral representation in the
global structures and the local spectra existed in the available HR-RGB image,
which further improved the HS image recovery performance in both visual and
quality aspects.

Deep convolutional neural networks (CNNs) have recently shown great success
in various image processing and computer vision applications. CNN has also been
applied to RGB image super-resolution and achieved promising performance. Dong
et al. [46] proposed a three-layer CNN architecture (SRCNN), which demonstrates
about 0.5–1.5 db improvement and much lower computational cost compared with
the popularly used sparse-based methods, and they further extended SRCNN to be
capable of directly dealing with the available LR images without mathematical
upsampling operation, called as fast SRCNN. Kim et al. [47] exploited a very deep
CNN architecture based on VGG-net architecture and concentrated on only esti-
mating the missing high-frequency image (residual image). Ledig et al. integrated
two different types of networks, generate network and discriminate network
(called as GAN), for estimating much sharper HR image. For applying CNN to HSI
SR, Li et al. [48] applied similar structures of SRCNN to super-resolve HSI only
from the LR-HS image. These CNN architectures take only the LR image as input,
and the expanding factor of resolution enhancement is theoretically limited to be
lower than 8 in both height and width. There are also several works exploring CNN-
based method with variant backbone architectures to expand the spectral resolution
with only HR-RGB image as input [49, 50]. This chapter introduces several research
works based on DCNN learning for HS image reconstruction.

On the other hand, regarding to the use of the observed data, the HR-HS image
reconstruction can be divided into three research directions: (1) spatial resolution
enhancement from hyperspectral imaging, (2) spectral resolution enhancement
from RGB imaging, and (3) fusion method based on the observed HR-RGB and low-
resolution (LR) HS images of the same scene. Spatial resolution enhancement has
popularly been used on single natural image super-resolution [46, 47], and impres-
sive performance has been achieved especially with the deep learning method in the
resolution expanding factor from 2 to 4. The deep convolutional neural network
(DCNN) has also been adopted for predicting the HR-HS image from a single LR-
HS image [48] and validated feasibility of HS image super-resolution for small
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expanding factor. However, the spatial resolution of the available HS image is
considerably low compared with the commonly observed RGB image, and then the
expanding factor for HR-HS image reconstruction is required to be large enough,
for example, more than 10 in horizontal and vertical directions, respectively. Thus,
the reconstructed HS image with acceptable quality usually cannot reach the
required spatial resolution for different applications. The spectral resolution
enhancement for RGB-to-spectrum reconstruction [49, 50] has recently become a
hot research line with a single RGB image, which can be lightly collected with a low-
price visual sensor. Although the impressive potential of the RGB-spectrum recon-
struction is evaluated, there has still large space for performance improving in real
applications. Fusing a LR-HS image with the corresponding HR-RGB image to
obtain a HR-HS image has shown promising performance [18, 19, 22, 30] compared
to spatial and spectral resolution enhancement methods. It is usually solved as an
optimization problem with prior knowledge such as sparsity representation and
spectral physical properties as constraints, which needs comprehensive analysis of
the target scene previously and would be varied scene by scene. Motivated by the
amazing performance of the DCNN in natural image super-resolution, Han etc. [51]
proposed a spatial and spectral fusion network (SSF-Net) for the HR-HS image
reconstruction and validated the better results of the SSF-Net in spite of the simple
concatenation of the upsampled LR-HS image and the HR-RGB image. However,
the upsampling of the LR-HS image and the simple concatenation cannot effectively
integrate the existed spatial structure and spectral property but would lead to
computational cost. In addition, precise alignment is needed for the input of LR-HS
and HR-RGB images and is extremely difficult due to the large difference of spatial
resolution in the LR-HS and HR-RGB images. This chapter introduces several
advanced DCNN-based learning methods for hyperspectral image super-resolution
and manifests the impressive performance for benchmark datasets. The basic con-
cept of the hyperspectral image super-resolution is shown in Figure 1.

2. Problem formulation of HS image super-resolution

The goal of HS image super-resolution is to recover a HR-HS image

Z0 ∈
W�H�L, where L denotes the spectral band number and W and H denote the

image width and height, respectively, from a HR-MS image Y0 ∈
W�H�l (l≪L)

Figure 1.
The basic concept of the hyperspectral image super-resolution.

4

Processing and Analysis of Hyperspectral Data



and a LR-HS image X0 ∈
w�h�L (w≪W, h≪H). The common used HR-MS image

in the HS image SR scenario is generally a RGB image with l ¼ 3 spectral bands. The

matrix forms of Z0, X0, and Y0 are denoted as Z∈
L�N (N ¼ W �H), X∈

L�M

(M ¼ w� h), and Y∈
3�N, respectively. Both X (LR-HS) and Y (HR-RGB) can be

expressed as a linear transformation from Z (the desired HS image) as:

X ¼ ZD,Y ¼ RZ (1)

where D∈
N�M is the decimation matrix, which blurs and down-samples the

HR-HS image to form the LR-HS image, and R∈
3�L represents the RGB camera

spectral response functions that maps the HR-HS image to the HR-RGB image.
With the given X and Y, Z can be estimated by minimizing the following recon-
struction error:

Ẑ ¼ arrmin X� ZDk k2F þ Y� RZk k2F (2)

where �k kF denotes the Frobenius norm. Via minimizing the reconstruction
errors of the observed LR-HSI, X, and the HR-RGB image, Y, in Eq. (2), we attempt
to recover the HR-HSI, Z. The intuitive way to solve Eq. (2) is to adopt an
optimization-based strategy to minimize Eq. (2) for providing an estimation of the
HR-HSI, Z. This chapter firstly explores the alternative back-projection (ABP)
algorithm to iteratively update the HR-HSI, Z, aiming at minimizing Eq. (2). Back-
projection [12] is well-known as the efficient iterative procedure to minimize the
reconstruction error. Since the back-projection requires an initial estimation for
updating the next Zt, we simply upsample the LR-HS image X as the initial state,
Z0 ¼ Up Xð Þ. The alternative update for Zt at the t-th step is formulated as:

Z0
t ¼ Zt�1 þ λ1R

�1
∗ Y� RZt�1ð Þ

Zt ¼ Z0
t þ λ2D ∗ DT

∗D
� ��1

X � Z0
tD

� �
(3)

where �ð ÞT denotes the transpose operation of a matrix and �ð Þ � 1 represents the
inverse operation of a matrix. λ1 and λ2 denote the hyper-parameters for controlling
the updating weights. After the predefined number of alternative iterations, it is
prospected to obtain an estimated HR-HSI. Z, for well reconstructing the observed
LR-HSI, X, and HR-RGB image, Y.

Since the number of the unknowns (N*L) is much larger than the number of
available measurements (M*L + 3*N), the above optimization problem is highly ill-
posed, and proper regularization terms are required to narrow the solution space
and ensure stable estimation. A widely adopted constraint is that each pixel spectral

zn ∈
L of Z lies in a low-dimensional space, and it can be decomposed as [30]:

zn ¼
X

K

k¼1

bkαk,n subject to: bi,k ≥0, αk,n ≥0,
X

K

k¼1

αk,n ¼ 1 (4)

where B∈
L�K ¼ b1,b2,⋯,bK½ � is the set of all spectral signatures (bk, also

called as the k-th endmember) of K distinct materials. αn represents the fractional
abundance of all K materials for the n-th pixel. Taking consideration of the
physical property on the spectral reflectance, the elements in the spectral signatures
and the fractional abundance are nonnegative as shown in the first and second
constraint terms of Eq. (4), and the summation of abundance vector for each
pixel is one.
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According to Y ¼ RZ, each pixel yn ∈
3 in the HR-RGB image can be

decomposed as:

yn ¼ Rzn ¼ RBαn ¼ B̂αn (5)

where B̂ denotes the RGB spectral dictionary obtained via transforming the HS
dictionary B with camera spectral function R. With a corresponding set of the

previously learned spectral dictionaries, B̂ and B, the sparse fractional vector αn is
able to be estimated from the HR-RGB pixel yn only.

The matrix representation forms of Eqs. (4) and (5) can be formulated as:

Z ¼ BA,Y ¼ B̂A (6)

where A ¼ α1,α2,⋯,αN½ �∈
K�N
þ is a nonnegative sparse coefficient matrix.

Substituting Eq. (4) into Eq. (2), we obtain the nonnegative constrains on both

B and B̂A, which are applied in the same manner as in Eq. (2). Unless otherwise
noted, the nonnegative constraint is imposed on both dictionary and sparse matrix
in the following deductions:

B ∗ ,A ∗f g ¼ argminB,A X� BADk k2F þ Y� B̂A
�

�

�

�

2

F
(7)

The goal of Eq. (7) is to solve both spectral dictionary B and coefficient matrix
A with proper regularization terms to achieve stable and accurate solution.

3. Self-similarity constrained sparse representation for HS image
super-resolution

The complete pipeline of self-constrained sparse representation for HS image
super-resolution is illustrated in Figure 2. The main contribution of this method
is to propose a nonnegative sparse representation coupled with self-similarity

Figure 2.
Schematics of self-similarity constrained sparse representation for HS image super-resolution: (1) learn the HS
dictionary B from the input LR-HS image X, (2) explore self-similarity of the global-structure and local-
spectral, (3) convex optimization of the objective function with sparse and self-similarity constrains on the
sparse matrix A for estimating the required HR-HS image.

6

Processing and Analysis of Hyperspectral Data



constraint to regularize the solution of Eq. (7). Denoting Λ B,Að Þ ¼ X � BADk k2F þ

Y � B̂A
�

�

�

�

2

F
, two additional terms are added to Eq. (7) as:

B ∗ ,A ∗f g ¼ arrminB,AΛ B,Að Þ þ λ Ak k1 þ ηΩ Að Þ (8)

where Ak k1 denotes the sparse constrained term on the coefficient matrix and
Ω Að Þ represents the self-similarity regularized term. λ and η are the hyper-
parameters, for controlling the contribution of the two constrained terms. Our
study solves Eq. (8) with the following three steps: (1) online learning the HS
dictionary from the input LR-HS image, (2) exploring the self-similarity properties
of the global-structure and local-spectral self-similarity from the input HR-RGB
image, and (3) conducting the convex optimization with the previously learned
HS dictionary and the extracted self-similarity for estimating the HR-HS image.
Next, we will describe the details of the above procedures in the following three
subsections.

3.1 Online HS dictionary learning

Since different materials would have very large variety of the HS reflectance,
learning a common HS dictionary for various scenes with different materials would
lead to considerable spectral distortion. In order to obtain a set of adaptive HS
dictionary for well reconstructing the pixel spectra, this study conducts the learning
procedure directly using the observed LR-HS image X in an online manner. The
objective function to build the HS dictionary for representing the pixel spectra is
formulated as follows:

B ∗ , Â∗
n o

¼ argminB,A X� BÂ
�

�

�

�

�

�

2

F
þ λ Â

�

�

�

�

�

�

1
(9)

where Â is the sparse matrix for the pixels in the LR-HS image. In our study, we

also impose the nonnegative constraints on both sparse matrix Â and spectral
dictionary B, and thus, the existing dictionary learning method such as K-SVD
cannot be applied for our optimization problem. We follow the optimization algo-
rithm [21] and adopt ADMM technique to transform the constrained dictionary
learning problem into an unconstrained version. The unconstrained dictionary
learning problem is then solved with alternative optimization algorithm. After
obtaining the HS dictionary B ∗ via optimizing Eq. (9) with the observed LR-HS
image, we would only optimize A to solve Eq. (8) via fixing B ∗ .

3.2 Extraction of self-similarity constraint

The regularization term Ω Að Þ in Eq. (8) is formulated with two types of
self-similarities, which are extracted from the HR-RGB image (see Figure 2 for
illustration):

• Global-structure self-similarity: Since pixels with similar spatial structure,
which are represented as the concatenated RGB spectra within a local square
windows, share similar hyperspectral information, thus the sparse vectors for
reconstructing the hyper-spectra of these pixels would also be similar; this
applies for both nearby patches and nonlocal patches in the whole image plane,
and we name these as global-structure self-similarity.

7

Hyperspectral Image Super-Resolution Using Optimization and DCNN-Based Methods
DOI: http://dx.doi.org/10.5772/intechopen.89243



• Local-spectral self-similarity: Since pixels in a local region have the same
material with RGB values in the HR-RGB image, the sparse vector for different
HR pixels is similar in a local region (superpixel). Note the superpixel is usually
not a square patch.

The global-structure self-similarity is represented by global-structure groups
g ¼ g1; g2;⋯; gP

� �

(in total P groups), which are obtained by clustering all similar

patches (spatial structure) in the HR-RGB image with K-means; gp (each gp may

have different length) is a vector consisting of the pixel indices in the p-th group.
The local-spectral self-similarity is formulated as the superpixels L ¼ l1, l2, ⋯ , lQ

� �

(in total Q superpixels) obtained via SLIC superpixel segmentation method; lq is

also a vector composed with the pixel indices in the q-th superpixel. Since the pixels
in the same global-structure group have similar spectral-spatial structure, we cal-
culate the sparse vector of any pixel in a given group by a weighted average of the
sparse matrix for all pixels in this group. Similarly, the sparse vector of a pixel can
also be approximated by a weighted average of the sparse matrix for all pixels in the
same local-spectral superpixel. With both self-similarity constraints, the sparse
vector for the n-th pixel can be formulated as:

αn ¼ γ

X

i∈ gp

w
g

n, iαi þ 1� γð Þ
X

j∈ lq

wL

n, jαj

with n∈ gp∧n∈ lq

(10)

where w
g

n, i is the global-structure weight for the n-th sparse vector αn; it adjusts

and merges the contribution of the i-th sparse vector αi belonging to the same

global-structure group. Analoguely, wL
n,j weights the j-th sparse vector αj belonging

to the same local-spectral superpixel. And γ is a parameter for balancing the contri-
bution between the global-structure and local-spectral self-similarity.

To be more specific, w
g

n, i (0< w
g

n, i <1 and
P

iw
g

n, i ¼ 1) measures the similarity

between the RGB intensities of patches pn and pi centered around the n-th and i-th

pixels. Each patch is a set of pixels in a R� R window, so each p is a 3R2-dimensional
(R� R� RGB) vector. It is a decreasing function of the Euclidean distance between
the spatial RGB values as:

w
g

n, i ¼

1

z
g
n

exp �
pi�pnk k2

hg , n; ið Þ∈ gp, ∀p

0, others

8

>

<

>

:

(11)

where z
g
n is a normalization factor defined as z

g
n ¼

P

i∈ gp
exp �

pi�pnk k2

hg to guarantee

and ensure that
P

i∈ gp
w
g

n, i ¼ 1 and hg are a smoothing kernel for 3R2-dimensional

vectors. The local-spectral weight wL
n,j is defined in the exactly same format but

with pn and pi being the RGB values of the n-th and i-th pixels (so each p is a three-

dimensional vector here) and a smoothing kernel hL for three-dimensional vectors.

We then build affinity matrices Wg
∈R

N�N and WL
∈

N�N, whose element
encodes the pairwise similarity calculated using Eq. (11). Finally, the regularization
term constrained by two types of self-similarities is represented as:

Ω Að Þ ¼ A� γWg A� 1� γð ÞWLA
�

�

�

�

2

F
(12)
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With the self-similarity constraints of the global-structure and local-spectral, the
sparse representation will be more robust and prospected to be similar for the
locations in the same clustered global group and local superpixel. Given the HS
dictionary B ∗ pre-learned using Eq. (9) and the regularization term with self-
similarity in Eq. (12), Eq. (8), is convex and can be efficiently solved by optimiza-
tion algorithm. We apply the ADMM technique to solve Eq. (8), and please refer to
[45] for detail optimization procedure.

3.3 Experimental results

We evaluate the self-similarity constrained sparse representation method using
two publicly released hyperspectral imaging databases: the CAVE and Harvard
datasets. The CAVE dataset includes 32 indoor images consisting of paintings, toys,
food, and so on, which are captured under controlled illumination. The Harvard
dataset has 50 indoor and outdoor images captured under daylight illumination. The
image size in the CAVE dataset is 512 � 512 pixels, and 31 spectral bands of 10 nm
wide, which covers the visible spectrum from 400 to 700 nm. The image size in the
Harvard dataset is 1392 � 1040 pixels, and 31 spectral bands of width 10 nm,
basically covering the visible spectrum from 420 to 720 nm. In our experiments, we
extract the top left 1024� 1024 pixels as the understudying HR images. We take the
original images in the datasets as ground-truth Z and resize them by a factor of 32 to
create 16 � 16 images in the CAVE dataset and 32 � 32 images in the Harvard
dataset, which is implemented by averaging over 32 � 32 pixel blocks as done in
[10, 21]. The observed HR-RGB images Y are generated by multiplying the spectral
channels of the ground-truth image with the spectral response R of a Nikon D700
camera. We evaluate the recovery performance of the estimated HS images using
four quantitative metrics including root-mean-square error (RMSE), peak-signal-
to-noise ratio (PSNR), spectral angle mapper (SAM) [9], and relative dimensionless
global error in synthesis (ERGAS) [34]. The quantitative metric, SAM [9], gives the
spectral distortion degree of the pixel spectrum in the estimated HR-HS image with
the corresponding one in the ground-truth HR-HS image. We calculate the overall
SAMmetric of one understudying by averaging the SAMs computed from all pixels.
The value of SAM is expressed in degrees and thus normalized into the range (�90,
90). The smaller the absolute value of SAM, the less the spectral distortion is. The
ERGAS [34] calculates the average amount of the relative difference error, where
the absolute difference error is normalized by intensity mean in each band. The
smaller the ERGAS, the smaller the relative difference error is.

3.3.1 Compare results with the state-of-the-art methods

Firstly, we manifest the compared recovery performance of the HR-HS images
with our proposed method (including the online dictionary learning procedure and
self-similarity constraints) and the state-of-the-art HS image SR methods including
matrix factorization (MF) method [18], coupled nonnegative matrix factorization
method [19], sparse nonnegative matrix factorization (SNNMF) method [20], gen-
eralization of simultaneous orthogonal matching pursuit method [13], Bayesian
sparse representation (BSR) method [9], couple spectral unmixing (CSU) method
[10], and nonnegative structured sparse representation method [21]. Table 1
manifests the average RMSE, PSNR, SAM, and ERGAS results of the 32 images in
the CAVE dataset [32], while Table 2 shows the average results of the 50 images
from the Harvard dataset [33].

It can be seen from Tables 1 and 2 that our approach obtains the best recovery
performance for all quantitative metrics, and the performance improvement on the
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CAVE dataset is more significant than on the Harvard dataset. The NNSR method
[21] has the closest performance to ours, and both methods show relatively larger
advantage over other methods. In addition, our method shows the best improve-
ment on SAM values over NNSR [21]. This is because for SAM, a slight spectral
distortion of the pixels with small magnitudes affects its value greatly. Thus, we can
conclude that our proposed approach not only robustly recovers the HS image but
also suppresses the noise and artifacts, especially for those pixels with small spectral
magnitudes, due to the imposed constraints of the global-structure and local-
spectral self-similarities.

3.3.2 Compared results without self-similarity constraints

One of the key differences of our method from existing ones (such as MF [18]) is
the two types of imposed self-similarities formulated by the regularized term, Ω Að Þ
in Eq. (8). Without the Ω Að Þ term, Eq. (8) can still be solved by an optimization
method such as the ADMM. In addition, we can also adopt either global or local self-

similarity separately, i.e., by taking only the Wg or WL terms in Eq. (12). We
conduct such experiments under the same experimental conditions, and the same
quantitative metrics as in Tables 1 and 2 for both datasets are shown in Table 3.

MF

[18]

CNMF

[19]

SNMF

[20]

GSOMP

[13]

BSR

[9]

CSU

[10]

NNSR

[21]

Our

RMSE 3.03 � 0.97 2.93 � 1.30 3.26 � 1.57 6.47 � 2.53 3.13 � 1.57 3.0 � 1.40 2.21 � 1.19 2.17 � 1.08

PSNR 39.37 � 3.76 39.53 � 3.55 38.73 � 3.79 32.48 � 3.08 39.16 � 3.91 39.50 � 3.63 42.26 � 4.11 42.28 � 3.86

SAM 6.12 � 2.17 5.48 � 1.62 6.50 � 2.32 14.19 � 5.42 6.75 � 2.37 5.8 � 2.21 4.33 � 1.37 3.98 � 1.27

ERGAS 0.40 � 0.22 0.39 � 0.21 0.44 � 0.23 0.77 � 0.32 0.37 � 0.22 0.41 � 0.27 0.30 � 0.18 0.28 � 0.18

Table 1.
Quantitative comparison results of the self-similarity constrained sparse representation with the state-of-the-art
methods on the CAVE dataset.

MF

[18]

CNMF

[19]

SNMF

[20]

GSOMP

[13]

BSR

[9]

CSU

[10]

NNSR

[21]

Our

RMSE 1.96 � 0.97 2.08 � 1.34 2.20 � 0.94 4.08 � 3.55 2.10 � 1.60 1.7 � 1.24 1.76 � 0.79 1.64 � 1.20

PSNR 43.19 � 3.87 43.00 � 4.44 42.03 � 3.61 38.02 � 5.71 43.11 � 4.59 43.40 � 4.10 44.00 � 3.63 45.20 � 4.56

SAM 2.93 � 1.06 2.91 � 1.18 3.17 � 1.07 4.99 � 2.99 2.93 � 1.33 2.9 � 1.05 2.64 � 0.86 2.63 � 0.97

ERGAS 0.23 � 0.14 0.23 � 0.11 0.26 � 0.27 0.41 � 0.24 0.24 � 0.15 0.24 � 0.20 0.21 � 0.12 0.16 � 0.15

Table 2.
Quantitative comparison results of the self-similarity constrained sparse representation with the state-of-the-art
methods on the Harvard dataset.

CAVE dataset Harvard dataset

Without

both

Local simil.

only

Global simil.

only

Without

both

Local simil.

only

Global simil.

only

RMSE 2.81 � 1.42 2.25 � 1.15 2.32 � 1.20 1.83 � 1.30 1.66 � 1.20 1.88 � 1.32

PSNR 40.05 � 3.97 42.00 � 3.91 41.78 � 4.05 44.16 � 4.39 45.01 � 4.51 44.02 � 4.56

SAM 5.46 � 1.89 4.24 � 1.36 4.59 � 1.46 2.86 � 1.06 2.69 � 1.00 2.99 � 1.09

ERGAS 0.37 � 0.20 0.30 � 0.18 0.31 � 0.19 0.23 � 0.16 0.19 � 0.15 0.18 � 0.16

Table 3.
Results without local, global, and both similarities on the CAVE and Harvard datasets.
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Taking local self-similarity only into consideration significantly improves the
results on both datasets for all quantitative metrics which shows relatively larger
contribution than considering global self-similarity only, but integrating global self-
similarity as our complete approach could further improve the results.

3.3.3 Evaluation results by changing parameter γ

In addition, we evaluate the HR-HS image recovery performance via changing
the parameter γ for adjusting the contribution of global-structure and local-spectral
self-similarity. For CAVE dataset, the parameter γ is changed from 0 (local-spectral
self-similarity only) to 1 (global-structure self-similarity only) with interval 0.1,
and apply the same measure metrics for manifesting the contribution of the global
and local self-similarity. Figure 3 (a)–(d) gives the curves of the quantitative
measures, RMSE, PSNR, SAM, and ERGAS, respectively, which manifests that
γ = 0.3 gives the best performances. For Harvard dataset, we also conducted exper-
iments with the parameter γ, 0, 0.1, 0.2, ⋯, and the curves of the quantitative
measures, RMSE, PSNR, SAM, and ERGAS, are given in Figure 4.

3.3.4 Visual quality comparison

Figures 5 and 6 manifest the recovered HS images and the difference images
with respect to the ground-truth, which includes one example from the CAVE and
Harvard dataset, respectively. Since including our method, the CSU [10] and NNSR
[21] methods provide the impressive performance compared with all other evalu-
ated methods as shown in Tables 1 and 2, we only give the compared results of our
method, the CSU [10] and NNSR [21] methods for checking the differences in
visual quality. It is obvious that the recovered HS images by our approach have
smaller absolute difference magnitude for most pixels than the result by the CSU
and NNSR method. It is also worth noting that when self-similarity is not applied,

Figure 3.
The evaluated performances with different values of the parameter γ on CAVE dataset. (a) RMSE, (b) PNSR,
(c) SAM, and (d) ERGAS.
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Figure 4.
The evaluated performances with different values of the parameter γ on Harvard dataset. (a) RMSE,
(b) PNSR, (c) SAM, and (d) ERGAS.

Figure 5.
The visualized results of the recovered HR images from the “cloth” image in the CAVE dataset. The first column
shows the ground-truth HR image and the input LR image, respectively. The second to fifth columns show results
from CSU [10], NNSR [21], and our method with and without self-similarity, where the upper part provides
the recovered images and the lower part gives the absolute difference maps w.r.t. ground-truth. Close-up views
are provided below each full resolution image.
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our results manifest quite similar appearance to those from the NNSR method [21],
which also reflects the effectiveness of imposing the self-similarity constraint.

4. DCNN-based HS image super-resolution

Motivated by the success for image super-resolution and simply formulation,
our previous work explored a simple DCNN-based HS image super-resolution
method following the similar CNN structure as in [46], which mainly consists of
three convolutional layers and was explained as three operations for the mapping
process from LR images to HR images. This explanation follows the schematic
concept in sparse coding-based SR: patch extraction, representation learning,
nonlinear mapping, and reconstruction. Patch extraction obtains the overlapping
patches from the input image and represents each patch as a high-dimensional
vector. The convolution layers in CNN are used as feature learning and act as a
nonlinear function, which maps a high-dimensional vector (conceptually the patch
representation) to another high-dimensional vector (the feature map in the middle-
layer of CNN). Reconstruction process combines the mapped CNN features into the
final HR image. The above CNN architecture for Y-component recovery of natural
image SR adopts the spatial filters in three convolutional layers with sizes 9� 9, 1� 1,
and 5� 5. Since HSI SR attempts to recover high resolution in not only spatial but also
spectral domain, which has been proven that the spectral response is more important

Figure 6.
The visualized results of the recovered HR images from the “imgf1” image in the Harvard dataset. The first
column shows the ground-truth HR image and the input LR image, respectively. The second to fifth columns
show results from CSU [10], NNSR [21], and our method with and without self-similarity, with the upper
part showing the recovered images and the lower part showing the absolute difference maps w.r.t. ground-truth.
Close-up views are provided below each full resolution image.
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in HIS SR, we set the spatial filter sizes as 3 � 3, 3 � 3, and 5 � 5 with full connection
in spectral domain from either one of the available LR-HS and HR-RGB images or the
concatenated LR-HS and HR-RGB cubic data.

The intuitive way to apply the above baseline architecture of CNN for HSI SR is
to learn the HR-HS image, Z directly from the available LR-HS image X, called as
spatial CNN. Another research line exploits CNN architecture for learning HSI SR Z
from the available HR-MS (RGB) image X, named as spectral CNN. However,
spatial CNN and spectral CNN take only one domain data of the available LR-HS
and HR-MS images, X or Y as input, and completely exclude the other domain data.
Therefore, this chapter introduces a spatial and spectral fusion architecture of CNN,
named as SSF-CNN for recovering the HR-HS image. Recent CNN work incorpo-
rates shorter connections between layers for more accurate and efficient training of
substantially deeper architectures such as ResNets and Highway Networks, or
exploits concatenation between different layer for information and feature reuse
such as Densenet, which manifest considerable improvements in different applica-
tions. In the scenario of our HSI SR application, since the available HR-RGB image
has the same high spatial resolution and the expanding factor (about 10 from 3 to
31) in spectral domain is much smaller than those in spatial domain (32 times from
16/32 to 512/1024 in horizontal and vertical directions, respectively), we concate-
nate the available HR-RGB image (a part data of the input: Partial) to the outputs of
the Conv and RELU blocks (Densely) in the CNN structure for transferring the
available maximum spatial information, and name this new CNN architecture as
PDCon-SSF. The schematic structures of the spatial CNN, spectral CNN, SSF-CNN
and PDCon-SSF are shown in Figure 7.

Recently, we also investigated a residual network architecture for HS image
super-resolution. The residual network takes the concatenated cubic data of both
available HR-RGB and upsampled LR-HS images as input, and simultaneously
maintains spectral attribute in LR-HS image and spatial context in HR-RGB image
to estimate a more robust HS-HS image. Taking consideration of the characteristic
in HS image super-resolution, we modified the ResNet architecture, which is orig-
inally proposed for solving higher-level computer vision problems such as image
classification and detection, via removing unnecessary modules to simplify the
network architecture for this low-level vision problem. Furthermore, as evidenced
in pansharping research that the estimated HR-HS image should have similar spatial
structure information with HR-RGB image, we utilize the input RGB image to guide
the spatial structure of the learned feature maps in our proposed ResNet. We firstly
upsample the LR-HS image to the same size with the HR-RGB image, and stack
them together with a “Concat” layer in our method. Multiple residual layer modules
with alternately conjuncted spectral and spatial reconstruction layers, which are
implemented with convolutional kernel size 1 and n (n > 1), are used for effectively
investigating the nonlinear spectral mapping and spatial structure. Our constructed
ResNet architecture consists of 5 residual blocks and each block includes a set of
the conjuncted spectral and spatial reconstruction layers as shown in Figure 8. In
Figure 8, the first 3 residual blocks have 128 feature maps, and the last 2 residual
blocks are with 256 feature maps. The output of them-th residual block is expressed as:

Fm ¼ Spat3 Spec1 Fm�1ð Þ
� �

þ Fm�1 (13)

where Spec1 �ð Þ denotes the spectral reconstruction layer with convolutional

kernel size 1, and Spat3 �ð Þ denotes the spatial reconstruction layer with
convolutional kernel size 3. Fm � 1 is the input of the residual block. Furthermore,
considering the HR spatial structure in the observed HR-RGB image, we use the
HR-RGB image to guide the spatial structure of the learned feature maps in the
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Figure 7.
The network architectures of four different types of CNNs. The top row denotes the baseline upsampling
network, and the bottom rows are the architectures of spatial CNN, spectral CNN, and the SSF-CNN,
respectively.

Figure 8.
The ResNet architecture for the residual component reconstruction.
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residual blocks, which is modeled by stacking the input HR-RGB image and the
input feature map Fm � 1. Thus, with the added guidance connection, the output of a
residual block is modified as:

Fm ¼ Spat3 Spec1 stack Fm�1,Yð Þð Þ
� �

þ Fm�1 (14)

The guidance connections of the HR-RGB image are shown in dot lines in
Figure 7. Our ResNet-based HR-HS image recovery model is trained by minimizing
the Mean Square Error (MSE) between the estimated HR-HS image and the
ground-truth Z.

4.1 Experimental results

We also validate the performance of the HR image reconstruction with the
DCNN-based method using CAVE and Harvard datasets. We have randomly
selected 20 HSIs from CAVE database to train CNN model, and the remainder is
used for validation of the performance of the proposed CNN method. For Harvard
database, 10 HSIs have been randomly selected for CNN model training, and the
remainder 40 HSIs are as test for validation. Figure 9manifests the HR-RGB images
of the test samples from CAVE database and several test samples from Harvard
databases.

4.1.1 Compared results of different CNN models

As we introduced above, the CNN-based method can be used for recovering the
HR-HS image from either of the available LR-HS, HR-RGB images or the
concatenated cubic data of the LR-HS, HR-RGB images, which are named as spatial
CNN, spectral CNN, Spatial and spectral Fusion CNN (SSF-CNN) and an extended

Figure 9.
The HR-RGB images of test samples from CAVE and Harvard databases.
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version of SSF-CNN, PDCon-SSF. The baseline network is a three-layer convolution
architecture. For CAVE database, we randomly select 20 images for learning the
different types of CNN models, and save the CNN model parameters after 0.5 and 1
million iterations. The remainder 12 images in CAVE database are used for evaluat-
ing the recovering performance of different CNN models. The average and the
standard deviation of RMSE, PSNR, SAM, and ERGAS of the 12 test images in
CAVE database are shown in Table 4, which manifests much better results of the
spectral CNN than spatial CNN due to the smaller expanding factor in spectral
domain (about 10 from 3 to 32) than spatial domain (32 from 16 to 512 for horizon-
tal and vertical directions, respectively) and significant performance improvement
using SSF-CNN and PDCon-SSF-CNN models. One recovered HS image example
and the corresponding residual images with the ground-truth HR images from
CAVE database are visualized in Figure 10 using different CNN models.

From Table 4 and Figure 10, it can be seen that the SSF-based CNN models
provide significant performance improvement compared with the spatial CNN and
the spectral CNN, and thus for Harvard database, we only train the SSF-CNN and
PDCon-SSF models with 1 million iterations using 10 randomly selected 10 images,
and the remainder 40 images are used for evaluation. In addition, in order to
validate the generation of the learned CNN model, we predict the HR-HS image of
the Harvard test samples according to the parameters of the learned SSF-CNN and

Table 4.
The average and standard deviation of RMSE, PSNR, SAM, and ERGAS using different CNN models of
three-layer architecture under 0.5 and 1 million iteration training on CAVE database.

Figure 10.
The “superballs” image example from the CAVE database. The first row shows the ground-truth HR image and
the recovered images by spatial CNN, spectral CNN, CSU [22], NNSR [12], and the proposed spatial and
spectral CNN architectures, SSF-CNN and PDCon-SSF-CNN, respectively. The second row gives the input LR
image, the absolute difference images between the ground-truth image, and the recovered HR-HS images in the
first row.
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PDCon-SSF-CNN with the CAVE training samples. The average and the standard
deviation of RMSE, PSNR, SAM, and ERGAS of the 40 test images in Harvard
database are shown in Table 5, which shows that the learned SSF-CNN and PDCon-
SSF models even with the training samples from CAVE database can provide rea-
sonable recovery performance and the quantitative measures can further be
improved using the learned SSF-CNN and PDCon-SSF models even with 10 training
images only. One recovered HS image example and its corresponding residual
images with the ground-truth HR image from Harvard database are visualized in
Figure 11 using the learned SSF and PDCon-SSF-CNN models with the CAVE and
Harvard training samples, respectively.

4.1.2 Compared results of different baseline CNN architectures

As mentioned above, we also investigated a residual network architecture for HS
image super-resolution, which has different baseline CNN architecture with the
SSF-CNN. Under the same experimental results, we implemented the DCNN-based
HS image reconstruction using three-layer CNN and the ResNet architecture with
five residual blocks. The compared quantitative results are shown in Table 6 for
both CAVE and Harvard datasets. One recovered HS image example and the
corresponding residual images with the ground-truth HR image from CAVE data-
base are visualized in Figure 12 using the ResNet-RGB, SSF-Net, and the ResNet-
based fusion models.

Table 5.
The average and standard deviation of RMSE, PSNR, SAM, and ERGAS of the test samples of Harvard
database using different CNN models, where “SSF-CNN-CAVE” and “PDCon-SSF-CAVE” denote the
learned CNN models using the training images from CAVE database.

Figure 11.
An image example from the Harvard database. The first row shows the ground-truth HR image and the
recovered images by CSU [22], NNSR [12], and the proposed PDCon-SSF-CNN using CAVE training images,
SSF-CNN, and PDCon-SSF-CNN using Harvard training images, respectively. The second row gives the input
LR image, the absolute difference images between the ground-truth image, and the recovered HR-HS images in
the first row.
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5. Conclusions

This chapter introduced recently research on HS image super-resolution. We
firstly described the problem formulation for HS image super-resolution and pro-
vided the mathematical model between the observed HR-RGB, LR-HS images, and
the required HR-HS image. Then we gave the detail description for an optimization-
based method: self-similarity constrained sparse representation and the recently
proposed DCNN-based method. Experimental results validated that the recently
proposed HR image super-resolution methods manifest promising performance on
benchmark datasets.

Table 6.
The compared average and standard deviation of RMSE, PSNR, SAM, and SSIM using the ResNet-RGB,
SSF-Net [51], and the ResNet-based fusion methods on both CAVE and Harvard databases.

Figure 12.
The visualized results of the recovered HR images from an example image in CAVE dataset.
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