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Abstract

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential 
curative treatment for both congenital and hematological malignancies. Immune 
reconstitution after allogeneic hematopoietic stem cell transplantation is implicated 
in successful transplant outcomes such as overall survival and relapse-free survival. 
The reconstitution of immune cell subsets after HSCT occurs in different phases at 
different time points encompassing pre-engraftment, engraftment, and post-engraft-
ment. The recovery of innate cellular immunity with the appearance of monocytes, 
dendritic cells, and natural killer cells in peripheral blood correlates with initiation of 
cellular engraftment. The cellular adaptive immunity is characterized by both thymic-
independent expansion of T cells infused with graft and thymus-dependent expan-
sion of naïve T cells derived from donor stem cells. The humoral immunity consists of 
B-cell reconstitution, which consists primarily of transitional and naïve subsets with 
the recovery of memory B cells that occur much later. In this review, we highlight the 
factors affecting immune reconstitution, the reconstitution of innate and adaptive 
immunity, techniques to assess immune reconstitution, and ways to enhance it.

Keywords: immune reconstitution, hematopoietic stem cell transplantation, innate 
immunity, adaptive immunity

1. Introduction

Hematopoietic stem cell transplantation (HSCT) is a choice of treatment for 
thousands of leukemic patients. The main outcome expected from HSCT is the life-
time engraftment of the donor graft. The preferred donor is a HLA matched-related 
donor; however, this is available in about 25% of the patients. Other options such 
as matched unrelated, matched cord blood units, and haploidentical-related donor 
also do exist. The success of HSCT is marred by conditions such as graft-versus-host 
disease (GvHD), relapse, treatment-related toxicity, and infection, which lead to 
higher morbidity and mortality [1]. The effectiveness of HSCT is dependent on the 
immune reconstitution in the host, which is linked to the number of active T and 
NK cells present in the graft. Delayed immune reconstitution results in unfavor-
able transplant outcomes; hence, faster immune reconstitution of donor origin is 
required for long-term survival of patients.
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Soon after HSCT using myeloablative conditioning, the patient experiences a 
period of pancytopenia. It takes several months or years for immune reconstitution 
and for patients to regain immunocompetence after transplant. The immune cells 
start re-appearing in the following order: neutrophils (0.5 months), monocytes 
(1 month), NK cells (1 month), T cells (2 months), and B cells (3 months); how-
ever, the normal levels are reached much later (Figure 1) [2].

There are various factors affecting immune reconstitution after transplant  
such as

1. thymic damage (age-related or pre-transplant conditioning regimens)

2. source of stem cells

3. HLA disparity between donor and host

4. post-transplant immune suppressant

5. occurrence of graft-versus-host disease.

Age or pre transplant chemotherapy or radiation leads to thymic damage. 
The severity of the damage caused to the thymus depends on the dose of the 
drugs used and also on the age of the patients, which in turn affect the immune 
recovery. In younger patients (<18 years), there is faster thymic regeneration 
after chemotherapy than older patients [3]. The age of the donor also affects the 
engraftment and reconstitution potential of hematopoietic stem cells as shown in 
mouse models [4]. Moreover, the thymic recovery is faster and is associated with 
faster T-cell reconstitution and recovery of normal T-cell repertoire in autologous 
(9 months) than allo-HSCT (12 months) [5]. This delayed thymic-dependent 
immune reconstitution is further reduced by the occurrence of aGvHD after 
allogeneic HSCT [6, 7].

The source of stem cells used as graft could be either bone marrow, peripheral 
blood, or cord blood. Source of stem cells used predicts the rate of immune recon-
stitution. It has been observed that platelet (20 × 109/L) reconstitution is faster in 
peripheral blood (11–18 days) than bone marrow (17–25 days) HSCT. Similarly, 
neutrophil (>0.5 × 109/L) reconstitution is also faster in peripheral blood 
(12–19 days) than bone marrow (15–23 days) HSCT. This is because of the presence 

Figure 1. 
The time taken for different immune subsets to (A) reappear in circulation and (B) reach normal levels after 
hematopoietic stem cell transplantation.
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of long-term HSCs and more committed multipotent progenitors in the peripheral 
blood than bone marrow [8]. Further as compared to transplantation using in vivo 
or ex vivo T-cell depleted graft, faster immune reconstitution is seen in unmodi-
fied graft transplantation [9]. Using peripheral blood graft, faster reconstitution 
of CMV-specific cytotoxic T cells and CD4+ T cells is observed than stem cells 
from bone marrow source [10, 11]. The advantages of using umbilical cord blood 
units are its ready availability and its ability to cross the HLA barrier. The rates of 
engraftment and post-transplant outcomes are dependent on the number of total 
nucleated cells (TNCs) and CD34+ cell dose present in the graft source. Martin 
et al. [12] previously reported high TNC dose in association with positive transplant 
outcomes such as improved overall survival (OS), lower relapse rate (RR), and 
increased risk of chronic GvHD. Since there is a higher number of TNCs in the 
bone marrow and peripheral blood, there is faster engraftment (~14–21 days) after 
HSCT using this source of graft than umbilical cord blood source (~30 days) [13, 
14]. Remberger et al. [15] reported faster engraftment but poor survival and higher 
relapse after HSCT using high CD34+ cell dose peripheral blood as graft source. 
Various researchers have reported immune cell reconstitution using different cell 
sources (Table 1).

Graft manipulations such as T-cell depletion (TCD) have resulted in lower 
chances of GvHD and graft rejection in unrelated and HLA mismatched trans-
plants. However, T-cell depletion results in delayed immune reconstitution and 
increased morbidity and mortality due to infection [19–21]. An advantage of using 
T-cell depletion is that in case of malignancies it also leads to better GVL effect 
depending on the malignant disease being treated. For example, in CML, TCD is 
related to increased relapse rate [22], whereas in AML and AML cohorts, lower rate 
of relapse has been observed in TCD transplantation [23–25].

The degree of HLA mismatch is an important factor in immune reconstitution. 
It has been observed that the outcomes from matched unrelated transplantation are 
at par with that of matched related transplantation [1]. Chang et al. reported similar 
reconstitution of T-cell subsets, except for CD4+ cells and CD4+ naïve T cells, in 
haploidentical and HLA-matched transplantation [16]. Various researchers have 
reported reconstitution of immune cells following different transplant strategies. It 
has been observed that the immune reconstitution is best in matched sibling related 
followed by matched unrelated donor, haploidentical donor, T-cell replete, and 
T-cell depleted transplants.

Conditioning regimens deplete host immune system, eliminate the leukemic 
cells, and create space for engraftment of the donor cells. Although this eliminates 
the patient’s leukemic cells, it also reduces the alloreactivity between host and donor 
cells after HSCT and further results in severe depletion of all immune cells. The use 
of drugs such as ATG or alemtuzumab depletes the host T cells further and results in 

Cells/L type of 

transplant

NK cells 

1 month

CD4+ T cells 

90 days

CD8+ T cells 

90 days

B cells 

90 days

Reference

Matched sibling donor — 220 645 33 [16]

Matched unrelated 
donor

253 198 447 43 [17]

Haploidentical donor — 152 672 23 [16]

T-cell depleted 357 7 7 55 [18]

T-cell replete 183 127 181 64 [18]

Table 1. 
Reconstitution of various immune subsets in different types of HSCT.
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a delayed recovery of donor-derived T cells. Increase in the severity of the condi-
tioning regimen results in prolonged immune deficiency after transplant [26].

Both thymus-dependent and thymus-independent T-cell reconstitutions are 
affected by the increase in HLA mismatch between the patient and the donor, 
probably because of higher risk of GvHD [27]. Clave et al. [28] reported higher 
reconstitution of both CD4+ and CD8+ T cells in transplants involving unrelated 
cord blood grafts (190 cells × 103/μL for CD4+ and 280 cells × 103/μL for CD8+) 
than CD34 selected peripheral blood haploidentical donor grafts (68 cells × 103/
μL for CD4+ and 80 cells × 103/μL for CD8+). Mehta et al. [29] showed lower 
reconstitution of absolute CD4+ and CD8+ T cells at 3 months and higher B-cell 
counts (6 months) after unrelated cord blood HSCT than HLA matched HSCT 
(121.53 vs. 261.18 for CD4+, 36.03 vs. 190.56 for CD8+, and 210 vs. 31.2 for B 
cells). There was similar reconstitution of B cells but lower CD4+ and CD8+ 
T-cell reconstitution in single unit umbilical cord blood transplantation than HLA 
mismatched donor HSCT (11 vs. 9 for B cells, 15 vs. 21 for CD4+ cells, and 14 vs. 
21 for CD8+ cells) [30].

Acute graft-versus-host disease occurs when donor lymphocytes react against 
normal host tissue to cause serious complications after allogeneic HSCT. Although 
there is faster recovery of the innate immune system after allo-HSCT, lymphocyte 
recovery is delayed due to aGvHD [3, 31]. The recovery of T cells depends on the 
thymic efficiency as well as the peripheral niche, which provides resources for T-cell 
survival. As GvHD targets the bone marrow, in patients with graft-versus-host 
disease, the peripheral resources are reduced because of which there is increased 
immunosuppression leading to delayed T-cell reconstitution in allogeneic HSCT 
as compared to autologous HSCT. The options to increase the efficiency of T-cell 
reconstitution must be selected in a manner so as to not aggravate the already 
present GvHD [32, 33]. Similarly, the drugs used to treat GvHD can also result in 
delayed immune reconstitution. Drugs such as cyclosporine A and methotrexate 
interfere with the T-cell receptor signaling and hence result in alteration of periph-
eral T-cell survival and B-cell differentiation [34, 35]. Tyrosine kinase inhibitors like 
imatinib mesylate used for controlling refractory cGvHD also lower T-cell survival 
by interfering with T-cell receptor (TCR) or IL7 signaling [36, 37]. Reconstitution 
of dendritic cells is decreased in GvHD [38]. Conversely, it has been suggested that 
depletion or inactivation of the host dendritic cells before allogeneic HSCT reduces 
the occurrence of GvHD [39–41].

2. Reconstitution of innate immunity

After HSCT, the first cells to engraft are the monocytes, followed by granulo-
cytes, platelets, and NK cells [42]. Monocytes are primarily involved in phagocy-
tosis and release of cytokines. They are classified into classical (CD14++CD16-), 
intermediate (CD14++CD16+), and nonclassical (CD14+CD16++) based on the 
expression of CD14 and CD16 [43, 44]. Monocytes remain below the normal levels 
for up to a year [45, 46].

The conditioning regimen used prior transplant results in a neutropenic phase 
till the neutrophils reconstitute, which takes approximately 11–12 days in T-cell 
depleted haploidentical HSCT [47, 48]. Although neutrophil counts rise to normal 
numbers within 2 weeks after transplant [49], they become functionally competent 
only after 2 months [50, 51]. The type of graft affects the reconstitution of neu-
trophils: 2 weeks in case of GCSF mobilized grafts, 3 weeks in case of bone mar-
row, and around 4 weeks in umbilical cord blood [1]. Use of peripheral blood has 
decreased the neutrophil recovery time from an average of 16 to 12 days [52].
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NK cells recover in both number and function within the first few weeks after 
transplant [53], and functional reconstitution of NK cells is reached within 2 
months [1]. The time taken for NK-cell reconstitution is dependent on the occur-
rence of GvHD [47, 54] and does not differ if the source of stem cells is peripheral 
blood or bone marrow [55]. However, the number of functional NK cells is higher 
when the transplant involves T-cell replete grafts than T-cell depleted grafts [56]. 
The most prominent functional NK cells after transplant are CD56brightCD16dim 
[57, 58]. Also, higher overall survival is seen in patients with high CD56bright NK 
cells at day 14 after unmanipulated haploidentical HSCT. The cytolytic function 
of NK cells is regulated by the interaction of inhibitory/activating killer immuno-
globulin like receptors (KIRs) present on their surface and their specific HLA class 
I ligands. The reconstitution of the inhibitory and activating KIRs is dependent on 
factors such as conditioning regimen, T-cell deplete/replete graft, and immunosup-
pression used after transplant.

In a study evaluating NK-cell reconstitution after matched related/unrelated 
donor HSCT, it has been reported that the NK-cell counts are lower for longer 
period (2-3 months) after MUD (156/μL) than MRD (265/μL). The most frequent 
immature NK cells were CD56bright and NKG2A+CD57-CD56dim NK cells [59]. 
Russo et al. [60] reported that in haploidentical HSCT using after transplant 
cyclophosphamide, the immature NK cell starts appearing at 2 weeks; however, the 
mature NK cells expressing CD16 and CD56 and NKG2A appear at about a year.

Host dendritic cells that escape chemotherapy/radiation activate alloantigenic T 
cells in the donor and hence play an important role in GvHD. Since host dendritic cells 
present MHC antigens to donor CD8+ T cells after transplant, depleting these cells 
could result in lower risk of GvHD [61, 62]. Lower reconstitution of lymphoid den-
dritic cells has been associated with inferior overall survival [63].

Gamma delta T cells make up ~5% of the T-cell population, and their recep-
tors are composed to gamma and delta chains. These T cells have been reported 
to enhance engraftment and graft-versus-leukemia effect without an increase in 
GvHD [64]. Gamma delta T cells reconstitute faster in patients in whom bone mar-
row (60 days) is used as the graft source than peripheral blood (200 days) [65].

3. Reconstitution of adaptive immunity

T-cell reconstitution is faster in transplantation with peripheral blood as graft 
source than bone marrow due to higher number of T cells present in the graft 
[55]. Ciurea et al. [18] reported better T-cell reconstitution in recipients of T-cell 
replete haploidentical HSCT than recipients of T-cell depleted haploidentical 
HSCT at 6 months after transplant. Use of ATG for T-cell depletion also affects the 
rate of immune reconstitution. This effect is more prominent in umbilical cord 
blood transplantation than bone marrow transplantation. T-cell reconstitution 
in allo-HSCT without the use of ATG is seen in about 7–12 months when using 
bone marrow and umbilical cord as stem cell source as compared to 6–24 months 
when using peripheral blood as stem cell source [66]. T cells recover primarily via 
peripheral expansion of memory T cells or endogenous T-cell development. Hence, 
functional thymus is required for effective reconstitution of T cells [67]. This is an 
issue in aging patients where there is thymus atrophy [68]. Due to this, although 
full immune recovery is possible in middle-aged patients, it is not possible in 
older patients and is a cause of morbidity and mortality [69]. Reconstitution of 
T cells is slow probably due to the prolonged depletion and reduced function of 
naïve T cells [70]. T cells that reconstitute are primarily from the donor origin in 
case of T-cell replete transplant or host T cells that have escaped the conditioning 
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regimen in case of T-cell depleted transplant. Naïve T cells/T-cell receptor excision 
circles (TRECs) are lower for approximately 10–30 years after transplant [71, 72]. 
Reconstitution of functional T cells as observed by their ability to secrete inter-
feron gamma and interleukin-4 to normal levels returns in 30 days after haploiden-
tical HSCT for patients in whom acute GvHD is not observed [73]. Recipients of 
T-cell depleted haploidentical HSCT show higher CD31+ naïve CD4+ T cells than 
their donors at approximately 4–6 years [74]. Homeostatic peripheral expansion 
is induced by various homeostatic cytokines such as IL7 and IL15, inflammatory 
cytokines, and viral exposure. Peripheral homeostatic expansion leads to an 
inverse CD4/CD8 ratio in patients for several months after transplant. CD4 counts 
are considered as the best predictive marker for the recovery of immune com-
petence after HSCT, and its recovery has also been associated with lower risk of 
infections and improved transplant outcomes [1]. CD4+ T-cell counts are as low as 
<200 cells/μL in the first 3 months and reach levels of 450 cells/μL at about 5 years 
after transplant [55, 75]. CD8+ T-cell counts increase rapidly during the first 3 
months after transplant possibly due to the expansion of herpesvirus-specific CD8 
T cells [55, 76]. GvHD reduces the number of CD4+ T cells by inhibiting the thymic 
output, whereas CD8+ cells increase in number during GvHD or CMV reactivation 
[77, 78]. The reconstituting CD4+ T cells have a higher expression of CD11a, CD29, 
CD45RO, and HLA-DR and a lower expression of CD28, CD45RA, and CD62L 
than normal individuals [79, 80]. The early reconstituting CD8+ T cells are mostly 
memory or effector cells. Naïve or TREC+CD8+ T cells recover at a slower rate [77, 
81]. The number of regulatory T cells (Tregs) is much higher after transplant than 
normal individuals and may contribute to remission [82, 83]. A Treg:CD4+ T cell 
ratio of less than 9% has been associated with higher risk of aGvHD [84]. Chang 
et al. [16] reported lower CD4+ T cells, dendritic cells, and higher CD28 expression 
on CD4+ and CD8+ T cells in patients receiving haploidentical HSCT than patients 
receiving HLA matched HSCT.

B-cell reconstitution is also delayed after HSCT: ~6 months for autologous and 
~9 months after allogeneic transplantation and is mainly due to GvHD or its treat-
ment. In the first 2 months after transplant, B-cell counts are low but rise higher 
than the normal levels in approximately 1–2 years [55, 85]. Since restoration of full 
humoral immune functioning requires both naïve and memory B cells, all patients 
who have undergone HSCT remain susceptible to infections for at least a year after 
transplant [1]. The reconstituted B cells express higher levels of CD1c, CD38, CD5, 
membrane IgM, and membrane IgD and lower levels of CD25 and CD26L than 
normal individuals [86].

A number of studies have reported comparisons between reconstitution of 
different immune cells depending on the graft source. Faster reconstitution of 

Cell type and numbers Bone 

marrow

Peripheral 

blood

Unrelated cord 

blood

Reference

Neutrophils (>0.5 × 109/L) 16 days 15 days 19 days [87]

Natural killer cells (>0.1 × 109/L) 1.5 months 4 months 4 months [16, 87]

T cells (>0.5 × 109/L) CD4 2–3 months 6 months 3 months [28, 88]

Naïve T cells (>0.5 × 109/L) 9 months 24 months 12 months [87, 89]

Cytotoxic T cells (>0.25 × 109/L 3 months 9 months 8 months [65, 90]

T helper cells (>0.2 × 109/L) 4 months 10 months 1 months [65, 90]

Table 2. 
Reconstitution of different immune cells depending on the graft source.
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different immune cells was observed when bone marrow was used as graft source as 
compared to peripheral blood or cord blood (Table 2).

4. Assessment of post-transplant immune recovery

There are different methods to assess the immune recovery after transplant, 
such as estimation of absolute lymphocyte count (ALC), levels of immune cell 
subsets (NK cells, B cells, and T cells), and antibody titers to assays for T- and B-cell 
repertoires [91].

ALC levels have been reported in association with overall survival and rate of 
relapse. ALC >500 cells/μL on day 15 is linked with better OS and lower relapse 
after autologous as well as allogeneic transplantation [92, 93]. An increase in the 
levels of CD16+ monocytes has been associated with aGvhD [94].

Early recovery of CD4+ T cells is associated with overall survival, nonrelapse 
mortality, and risk of infections [95, 96]. Admiral et al. [97] reported the time taken 
by circulating CD4+ T cells to reach 0.5× 109/L as a strong marker for probability 
of relapse. In myeloablative allogeneic HSCT, higher levels of CD3+, CD8+ T cells, 
regulatory T cells, and myeloid dendritic cells are correlated with relapse-free 
survival [98].

Recently, flow cytometric analysis has been used to differentiate between the 
T, B, and NK-cell subpopulations. Low levels of NK cells within the first few weeks 
after transplant have been associated with poor transplant outcomes like lower 
overall survival and higher risk of infection [99, 100]. Surface markers such as 
CD45RA, CD28, CD27, CD62L, and CCR7 can be used to differentiate naïve, effec-
tor, effector memory, and central memory CD4+ and CD8+ subsets [101, 102]. The 
surface markers expressed by naïve T cells are CD45RA+CCR7+; central memory 
T cells are CD45RA-CCR7+; effector memory T cells are CD45RA-CCR7–; and 
effector T cells are CD45RA+CCR7– [91]. CD4+ T cells also include regulatory T 
cells (CD25+FoxP3+) and Th17 cells [103, 104]. The expression of CD27, IgM, and 
IgD helps in distinguishing between naïve B cells (CD27-IgD+), memory B cells 
(CD27+IgD+), and isotype switched memory B cells (CD27+IgD-) [105]. Myeloid 
and plasmacytoid dendritic cells can be distinguished based on the expression of 
CD123 and CD11c: CD123low CD11c+(myeloid) and CD123bright CD11c- (plasma-
cytoid) [106].

TRECs have been suggested as a marker for reconstitution of naïve T cells 
(CD4+CD45RA+) derived from the thymus. TRECs, however, remain low up to 
6 months after HSCT [107]. Due to thymic atrophy with age, older patients have 
T cells with low TCR repertoire, which leads to higher risk of infections leading 
to lower transplant outcomes [108, 109]. Thymopoiesis can also be evaluated by 
measuring the number of TRECs by real-time quantitative in purified CD4+ and 
CD8+ T cells [110]. Lewin et al. [111] reported faster recovery of TRECs in younger 
patients and patients who received conventional grafts as compared to T-cell 
depleted grafts. Lower levels of TRECs are associated with GvHD and opportunistic 
infections [77, 112].

Certain cytokines can also be used as predictive markers for transplant out-
comes. One such marker is IL7, which can be used to evaluate successful T-cell 
recovery. Increased IL7 is associated with delayed reconstitution and increased 
mortality and aGvHD [113]. High levels of IL6, GCSF, and IL2α have also been 
indicated in association with risk of aGvHD [96, 114]. For assessing chronic GvHD, 
high levels of IL8 and low levels of IL17A have been suggested [103, 115]. Min et al. 
[104] have also correlated high levels of IL6 and IL10 with poor transplant-related 
outcomes.
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Further, T- and B-cell receptor repertoire gene arrangements can be evaluated 
by molecular techniques such as next generation sequencing [116, 117]. Michalek 
et al. [118] have demonstrated β chain sequencing of the T-cell receptor in order 
to identify the T-cell clones that could mediate either graft-versus-host disease or 
graft-versus-leukemia effect. Brink et al. [9] reported higher diversity in CD4+ T 
cells than CD8+ T cells following allogeneic HSCT. Greater diversity was observed 
in cord blood grafts, followed by unmanipulated grafts and T-cell depleted grafts.

5. Strategies to improve immune reconstitution

Many strategies, such as administration of recombinant cytokines, adoptive cell 
therapy, and hormone-based therapies, have recently been used to improve immune 
reconstitution after transplantation.

IL7 cytokine has been shown to effectively enhance reconstitution of T and 
B lymphoid cells by enabling thymopoiesis [105, 119]. It has been demonstrated 
that IL7 increased the CD3+, CD4+, and CD8+ T-cell levels to more than four folds 
and also leads to increase in functional and diverse T cells [120]. Administering 
IL-7 predominantly increases the naïve CD8+ T cells. The timing of administering 
is, however, important, as administering early after transplant aggravates GvHD 
[116, 121], whereas administering it at a later stage after HSCT results in lower risk 
of GvHD. This is contributed by the activation of alloreactive T cells that express 
lower IL-7Rα levels [32, 38]. Other cytokines that enable immune reconstitution are 
insulin-like growth factor 1(IGF-1), IL22, IL15, and IL12 [122–124]. IL15 has been 
shown to significantly increase the reconstitution of CD8+ T cells and NK cells and 
improve the GvL effect in haploidentical murine models [125]. Sauter et al. [126] 
reported better lymphocyte reconstitution after IL-15 administration in T-cell 
depleted allogeneic HSCT; however, it has been shown to worsen GvHD.

Recently, it has been suggested that modulating the function of dendritic cells 
could reduce GvHD while maximizing GvL [127]. Studies on reconstitution of 
dendritic cells after HSCT have been contradictory. Maraskovsky et al. [128] have 
shown that treatment with Flt3-L can expand DC subsets; however, when admin-
istered after HSCT, it can worsen GvHD [38]. Gauthier et al. [38] have demon-
strated that SDF-1α therapy can expand the DC1 subsets and lower the severity of 
GvHD. Because of their immunosuppressive properties, mesenchymal stem cells 
have recently been used for suppressing GvHD [129–131]. Mesenchymal stem cells 
release cytokines such as IL-7, which improve T-cell survival and promote reconsti-
tution of dendritic cells by secreting SDF-1α [132].

NK-cell immunotherapy is one of the novel strategies underway to reduce GvHD 
and enhance graft-versus-leukemia effect in a KIR-HLA mismatched haploidentical 
HSCT [133–135].

6. Future directions

Recently, few studies have identified the association of reconstitution of certain 
immune subsets with predicting post-HSCT outcomes. However, these studies 
are often limited by small sample size, lack of detailed immune reconstitution, 
and secretome profile, which could be used as biomarkers to predict immune 
reconstitution. Prospective studies involving a large number of patients should 
be conducted to determine which immune factors and tests to detect the same 
could have prognostic value and understand the impact of such predictive risk 
factors on transplant outcomes. This is most beneficial, especially for recipients of 
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haploidentical HSCT, in which a routine strategy could be adopted to result in faster 
immune reconstitution and hence lower probability of poor transplant outcomes, 
such as TRM, relapse, and GvHD.
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