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Abstract

Among the diseases affecting the brain, special attention has been paid to 
psychiatric disorders (PDs) due to high prevalence and significant debilitating 
clinical features. Many difficulties need to be overcome to find good animal models 
for PDs, due to their multifactorial origins, high heterogeneity and symptoms, 
as for instance the hallucinations and delusions, which usually cannot be easily 
assessed employing ordinary experimental animal models. The use of animal 
models reproducing at least some specific traits that can be studied individually, 
known as endophenotypes, is often reported. However, since altered biological 
pathways are common to many of these disorders, each of these behaviors may also 
reflect different PDs. In this context, it is possible to perform several approaches, 
to elicit changes in the endophenotypes of interest, not only in vertebrate models 
like rodents, but also in invertebrate models which have important advantages due 
to high conservation of essential pathways, lower complexity, and shorter life cycle 
compared to mammals. Therefore, animal models are also helpful for elucidating 
the etiology underlying PDs, by allowing easier access to biological samples that are 
usually not accessible in clinical studies, as for instance, fresh brain samples, from 
embryos to adults.

Keywords: animal model, psychiatric disorders, neurodevelopment, biomarkers, 
CNS, endophenotypes

1. Introduction

According to the World Health Organization (WHO), psychiatric disorders 
(PDs) comprise a broad range of dysfunctions, with several and some common 
symptoms. PDs are generally characterized by the combination of symptoms as 
abnormal thoughts, emotions, behavior, and social interaction. The most common 
PDs include schizophrenia (SCZ), bipolar disorder (BD), major depression disorder 
(MDD), attention deficit hyperactivity disorder (ADHD), intellectual disabilities, 
drug abuse disorders, among others [1].

1.1 The need and the value of animal models for PD studies

There are several reasons to use animal models in the studies of disorders affect-
ing the brain. The poor understanding of the etiopathogenesis and pathophysiology 
of PDs is clearly reflected by the unmet clinical need for better pharmacological 
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treatments. Therefore, good models are clearly needed to clarify the neurobiol-
ogy involved in PDs, as well as for the identification of biomarkers useful to assist 
diagnosis and/or for the development of novel therapies. It is also implausible to 
move forward in clinical trials with a novel drug tested only in a cell model, without 
any evidence about its efficacy in animal experiments. The value of animal models 
to drug development has been demonstrated empirically. For example, the first 
and the most efficacious drugs available for complex PDs such as SCZ (e.g., chlor-
promazine and clozapine) was discovered observing the alterations in behaviors of 
experimental animals in response to each drug administration. In fact, in the last 
decades, most of the CNS drugs approved were discovered employing a phenotypic 
screening approach in animal models [2, 3].

1.2 Challenges to model PDs in animals

A reliable animal model must share several similarities with the studied target 
to allow a successful translation from the basic to the clinical research. However, 
several limitations need to be overcome. First, the heterogeneous behavioral symptom 
characteristics of PDs are in some grade uniquely expressed in humans, and they are 
certainly impossible to be reproduced authentically in animals as rodents, fishes or 
worms [4]. Second, there is a lack of an objective measure to unequivocally diagnose 
mental illness [5], which adds complexity to the modeling any mental disorder in 
experimental animals. Third, in order to develop meaningful animal models for PDs 
with potential translational power, the disease phenotypes must be represented in the 
experimental animals. The selection and update of these phenotypes, in agreement 
with the recent findings in clinical psychiatry and neuroscience, represents a chal-
lenge, as evidenced by the recognized gap between the clinical and basic scientific 
research [6]. In addition, a rising question is what are the specific traits or phenotypes 
that an animal model should express to be translatable to specific disorder? (Figure 1).

1.3 How to develop an animal model for PD studies

The traditional approach to establish an animal model in PDs is based on three 
classic constructs proposed by Willner in 1984: face validity, which determines how 
much a phenotype presented by a patient is represented by the animal model (corre-
sponds to similarity between the model and the PDs assessed, that includes symp-
toms, signs, and pharmacological features); construct validity, which demonstrates 
whether it is possible to reproduce the pathological condition based on processes that 
are already known to be altered (correspondence between the physiological dysfunc-
tions in the human population and in the animal model); predictive validity, which 
tries to evaluate if a pharmacological or non-pharmacological intervention is capable 
to reverse the pathological condition (in other words, if the treatment that is effec-
tive in reversing PDs in humans would reverse the changes seen in animals) [7–10]. 
However, in practice, no animal models fully meet these three criteria of validity.

Many authors have proposed that instead of these three proposed criteria 
defining an external validation, in addition, the validity of an animal model 
should not be simply organisms that resemble human dysfunction, but they would 
also reproduce the processes by which animals and humans enter this state, and 
therefore, this could be better exploited by adding a new validation criteria [9]. For 
instance, the validity by homology, which proposes, for instance, an invertebrate 
model, such as Drosophila, may not be the ideal animal model for studying complex 
changes in a brain circuitry, but in turn, it may represent a great choice to study 
the genetic control of early embryonic development [11]. In fact, the nematode 
Caenorhabditis elegans is a reliable model with conserved neurobiological systems 
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that has been helpful in the discovery of molecular mechanisms that underlie learn-
ing and memory, and, in addition, this animal model has a fully sequenced genome 
and other several molecular and genetic tools available for researchers [12, 13].

1.4 Symptoms versus endophenotypes in experimental model animals

There is a consensus about the low reliability of the diagnostic construct provided 
for the employment of Diagnostic and Statistical Manual of Mental Disorders or DMS 
(which is a manual that determines the criteria for the clinical diagnosis of PDs). The 
heterogeneity implicit in this classification system and the imprecise quantification 
of the symptoms make it impossible to deconstruct PDs within model organisms. In 
fact, an etiology-based nosology system has been advocate for psychiatry, and it has 
been proposed to identify the endophenotypes that occur in both healthy individuals 
and subjects with different psychopathologies [14]. Endophenotypes are basically 
quantitative trait-like deficits that are possible to assess by laboratory-based methods 
rather than by clinical observation. An endophenotype should be state-independent, 
heritable, occurring at a high rate in affected families, and in addition, it should be 
associated to genetic variants of the disorder, as it should be involved the same brain 
circuits associated with the symptoms of the illness in patients (Table 1).

The Research Domains Criteria (RDoC) framework was introduced as an alterna-
tive categorization system for psychopathological states [15–17]. This system provides 
a platform to improve the translatability of studies from animals to humans, since it 
supports the endophenotype-based comparison of animals and humans on an objec-
tive neurobiological basis across all behavioral domains. In fact, the endophenotypes 
have been reverse-translated into animal models successfully and allows the evaluation 

Figure 1. 
Different approaches to construct animal models for neuropsychiatric disorders studies.
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of the neural neurobiological substrates and their circuit dysfunctions [18]. Thus, it 
has been demonstrated that the modeling of neurobiological and behavioral endophe-
notypes to reproduce PDs in experimental animals is possible.

The ideal animal model should be derived from risk factors or the causative 
agent of the human disease. One of the strategies used during the construction of a 
model is focused on a specific factor that can reproduce the condition as a whole or 
an aspect of the disease [19]. The choice for the methodology used in establishing 
a model is fundamentally important to guide which aspect of the disease should be 
explored, and it is an essential component in the validation of a model known as 
construct validity.

Endophenotype Description What can be evaluated

Locomotor activity Distance travelled, time spent, and frequency 

of the movements measured during or after a 

habituation period or after some stimuli (i.e. 

drug administration)

Behavioral sensitization (BD; 

ADHD; SCZ); Depressive-like 

behaviors (MDD); etc…

Latent inhibition Latent inhibition is the ability of a pre-exposed 

nonreinforced stimulus to inhibit later stimulus-

response learning

Cognitive impairments 

(SCZ); etc…

Pre-pulse inhibition 

(PPI)

Decrease of the startle reflex after exposure to a 

pre-pulse before the pulse

Cognitive impairments 

(SCZ); etc…

Working memory 

and learning

Describes short-term memory, in a olfactory 

domain and spatial domain

Cognitive impairments  

(PDs in general); etc…

Social interaction Evaluation of time spent on exploring a social 

stimulus.

Anxiety-like behaviors; 

Depressive-like behaviors; 

etc…

Rearing Measure of activity, investigation and 

exploratory behavior induced by a drug or/and 

novelty

Anxiety-like behaviors; etc…

Grooming A maintenance behavior evaluated by the 

cleaning of the fur; is displayed as reaction to 

unexpected stimuli and in conflict situations

Anxiety-like behaviors; 

Depressive-like behaviors; 

etc…

Aggressiveness Evaluation of attack and defensive behavior as 

reaction to a stimuli or other animal

Anxiety-like behaviors; 

Depressive-like behaviors; 

etc…

Food intake Amount of food ingested by the animal Anxiety-like behaviors; 

Depressive-like behaviors; 

etc…

Sucrose preference 

test

Assesses the sensitivity to reward based on the 

rodent’s natural preference for sweets. This test 

measures the amount of a sweet-tasting solution 

that the animal ingests

Depressive-like behaviors; 

etc…

Fear conditioning Classical conditioning paradigm, in which an 

aversive stimulus is paired with some neutral 

stimuli. Used to assess associative fear learning 

and memory in rodents.

Cognitive impairments (PDs 

in general); etc…

Forced swim test Measures the scoring of swimming and 

climbing (active behavior), and immobility 

(passive behavior) when animals are placed in 

an inescapable cylinder filled with water

Depressive-like behaviors; 

etc…

Table 1. 
Most common endophenotypes used to evaluate behaviors associated with psychiatric disorders (PDs).
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2. PDs and animal models

In the following sections, selected examples of animal models used in the 
context of investigating PDs will be demonstrated, indicating which changes are 
observed in behavioral and molecular levels.

2.1 Animal models in schizophrenia (SCZ)

Schizophrenia (SCZ) is a severe brain disorder, characterized by a set of 
positive and negative symptoms and cognitive disorders, which are the basis for 
the clinical diagnosis of individuals who needs to present at least two or more 
of those symptoms, according to the DSM. SCZ is one of the most debilitating 
mental disorders, affecting about 21 million people worldwide. The antipsychot-
ics used to treat SCZ patients can soften the development of the disorder, and 
this pharmacological treatment was the basis for the most accepted theory to 
explain the neurobiology of SCZ, as noticed by the alterations in the dopamine 
transmission. In addition, several other theories have been suggested soon after, 
as for instance, the serotoninergic, glutamatergic, GABAergic, and the neuro-
developmental susceptibility hypothesis, among others [20]. However, none of 
these theories had allowed the characterization of the etiology or the identifica-
tion of strong biomarker for the diagnosis of SCZ. Many efforts are being made 
to characterize a model for SCZ, but there is a great difficulty in reproduce 
endophenotypes that frame all the groups of symptoms related to this disease, or 
which allow associating all risk factors that are already known. Below, we exem-
plify some of these models, and for a more detailed review of SCZ models can be 
found elsewhere [21].

Most of the models are based on the theory of neurotransmitter imbalance, 
and they are induced by the disruption of these pathways, other models explore 
changes in the levels of expression of candidate genes involved in the processes of 
SCZ susceptibility. It should be considered that SCZ is a multifactorial disorder, 
and thus, the genetic component should be evaluated in addition to changes in the 
environment, as in contrast to the models based on genetic alterations, there are 
those taking into account the environmental changes, such as the prenatal insults, 
which impose changes in the neurodevelopment processes. Some of these models 
are exemplified in Table 2.

All of these models show behavioral and molecular changes that can be associ-
ated with SCZ.

2.2 Animal models in major depressive disorder (MDD)

Major depressive disorder (MDD) is a common, complex, and heterogeneous 
mental disorder, characterized by persistent sadness and loss of interest in general 
activities, affecting about 10% of the population worldwide, and which is caused 
by multifactorial mechanisms not fully understood yet,  characterizing MDD as 
a disorder with many variations in clinical features among the patients, impos-
ing a consequent high variability in the diagnosis, time course of response and 
remission [45], which is one of the main reasons justifying the intensive search for 
animal models and biomarkers, aiming for advances in MDD diagnosis [46]. In 
addition, these advances could be helpful for a better classification for depressive 
spectrum, and thereby for improving the treatment [47]. The animal models of 
depression have been developed based on acute or chronic stress exposure, exog-
enous administration of glucocorticoids, injuries in brain regions and/or genetic 
manipulations [48–50]. There is a great variation in the number of protocols that 
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Model Endophenotype Molecular alterations References

Drug-induced models

Amphetamine model of 

SCZ

Acute:

↓ Latent inhibition;  

↑ locomotion

Chronic:

Same as acute but with 

↓ PPI

↑ Mesolimbic dopamine 

response;

↑ Acetilcholine in PFc

[22–26]

Glutamatergic manipulation 

(Phencyclidine; MK-801; 

Ketamine)

↑ Locomotion; ↓ working 

memory;

↓ Reversal learning 

performance;

↓ Social interaction; ↓ PPI

↓ PV-immunoreactive 

neurons in PFc and 

hippocampus

[27–29]

Genetic manipulation

DISC-1 mutations

Missense mutations models ↓ PPI; ↓ latent inhibition;

↑ Depressive-like 

phenotype

↓ Brain volume;

↓ PDE4B activity and 

binding to DISC1;

↓ PV-immunoreactive;

↓ Dendritic density

[30–32]

Dominant-negative 

isoforms of DISC1

↑ Amphetamine sensibility; 

↓ working memory

↓ Dopamine, DOPAC;

↓ PV-immunoreactive

[33, 34]

Knockdown ↑ Amphetamine sensibility; 

↓ PPI; ↓ working memory

↓ Dopamine;  

↓ PV-immunoreactive

[35]

Overexpression ↑ Amphetamine sensibility; 

↑ rearing behavior;  

↑ locomotion; ↓ learning in 

rotarod task

↑ Increase in high-

affinity D2R;

↑ Translocation of 

dopamine transporter;

↑ Dopamine inflow

[36]

Neuregulin1, ErbB4, and dysbindin

Knock-out ↑ Amphetamine sensibility; 

↑ locomotion; ↓ PPI;

↓ Working memory;  

↓ social interaction

Neuregulin1; ErbB4:

↓ Hippocampal spine 

density;

↑ Lateral ventricles;

Dysbindin:

↑ HVA/DA ratio;

↑ Excitability of PFc 

pyramidal neurones

[37–39]

Developmental models

Neonatal excitotoxic 

hippocampal lesion

↓ PPI; ↓ Working memory; 

↓ Social interaction;  

↑ Amphetamine sensibility; 

↑ MK-801/PCP sensibility; 

↑ locomotion

↑ Mesolimbic dopamine 

response;

↑ Acetilcholine in PFc

[40, 41]

Methylazomethanol 

(MAM) and polyinosinic-

polycytidylic acid (poly I:C)

↑ Locomotion;

↑ Amphetamine sensibility; 

↑ MK-801/PCP sensibility; 

↓ Social interaction; ↓ PPI; 

↓ Working memory

↓ PV-immunoreactive 

neurons in PFc and 

hippocampus

[42–44]

All of these models show behavioral and molecular changes that can be associated with SCZ.
PPI = prepulse inhibition; PFc = prefrontal cortex; PV = parvalbumin; PDE4B = cAMP-specific 3",5"-cyclic 
phosphodiesterase 4B; DISC1 = disrupted-in-schizophrenia 1; DOPAC = dihydroxyphenylacetic acid; HVA = 
homovanillic acid; DA = dopamine; poly I:C = Polyinosinic:polycytidylic acid.

Table 2. 
Some examples of SCZ models induced by drugs, genetic manipulation, and prenatal insults.
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can be used to induce these changes, in which the stressor, time of exposure to 
the stimulus, and other parameters may vary. For more detailed review of MDD 
models, see also [51] (Table 3).

Model Endophenotype Molecular alterations References

Stress-induced models

Learned 

Helplessness

↓ Locomotion;  

↑ aggressiveness

↓ Grooming; ↓ response to 

rewards

↑ Sleep disturbance

↓ Norepinephrine ; ↑ BDNF; 

aberrant miRNA brain- region 

specific expression

[52–57]

Unpredictable 

chronic mild 

stress

↓ Food intake;  

↓ growth rate;

↓ Locomotion;  

↑ aggressiveness;

↓ Response to rewards

↑ Corticosterone; ↓ glucocorticoid 

receptor expression;  

↓ endogenous ATP

[58–61]

Chronic restraint 

stress model

↑ Aggressiveness;  

↑ fear conditioning;  

↓ locomotion; ↓ food 

intake

↑ CA3 dendritic atrophy and 

damage; ↓ neurogenesis in dentate 

gyrus; ↑ apoptotic cell death;  

↑ corticosteroid

[62–64]

Social defeat ↓ Locomotion; ↓ 

exploratory activity;

↓ Aggression; ↓ sexual 

behavior;

↑ Anhedonia; ↑ sleep 

disturbance ;

↓ Growth rate

↓ Volume and cell proliferation in 

hippocampus and PFc;  

↑ corticosteroid; ↓ serotonin;  

↓ BDNF

[65–67]

Early life stress 

model

↑ Anxiety-like behavior;

↑ Depression-like 

behavior; ↑ Novelty 

responsivity

↑ BDNF expression PFC and 

hippocampus

[68, 69]

Brain lesion model

Olfactory 

bulbectomy

↑ Locomotion; ↓ working 

memory; ↓ response to 

rewards; ↓ food intake; 

↑ sleep disturbance; ↑ 

responsivity to stressors

Dysfucntion in HPA and  

neuro-immune axis;  

↓ neurotransmitters; ↑ neuronal 

degeneration; ↑ BDNF;  

↓ neuropeptides

[70, 71]

Selective inbreeding

Wistar-Kyoto ↓ Locomotion; ↑ 

immobility in forced swim 

test; ↑ social avoidance;

↑ freezing to context

↑ Adrenal glands; ↑ corticosterone [72, 73]

Flinders Sensitive 

Line rat

↓ Activity in enclosed 

arena;

↑ immobility in forced 

swim test;

↓ sucrose intake under 

stress

↓ Serotonin synthesis; 

dysfunction in dopaminergic and 

noradrenergic systems

[74–77]

BDNF = brain-derived neurotrophic factor; miRNA = microRNA; ATP = adenosine triphosphate; PFc = prefrontal 
cortex; HPA = hypothalamic–pituitary–adrenal axis.

Table 3. 
Examples of models for MDD induced by stressors, injuries in brain regions, and by selective inbreeding.
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2.3 Animal models in bipolar disorder (BD)

Bipolar disorder (BD) is a chronic mood disorder, characterized by fluctua-
tions between mania and depressive episodes, which affects approximately 1% of 
the global population irrespective of nationality, ethnic origin, or socioeconomic 
status [78]. Due to the complex mood alterations, misdiagnosis in BD is very 
common, as other mental illnesses as depression and SCZ share several common 
symptoms, in addition to the specific and common endophenotypes and brain 
structural changes [79, 80]. The search for advances in diagnosis is important for 
these disorders, since early diagnosis would be essential to foster earlier suited 
pharmacological treatment in BD, which was proved to be beneficial to prevent the 
cognitive deficits and disabilities in these BD patients [81], as also demonstrated 
for SCZ patients [82]. The major limitation in evaluating a model for BD is the dif-
ficulty in reproducing the phases of mania and depression observed in the clinic. 
Many of these models present only one of these parameters, and they are often 
developed by genetic alterations in genes known to be involved in this disorder or 
stressors, mainly involved in the circadian cycle as also demonstrated for other 
PDs. Another interesting approach used for the development of animal models for 
BD is the one induced by psychostimulant sensitization (which causes mania-like 
behavior), as withdrawal from psychostimulants is accompanied by depressive-
like behavior, which together leads to changes and compulsory behaviors. Some of 
these models are exemplified in Table 4. A more detailed review of BD models can 
be found elsewhere [93].

BDNF = brain-derived neurotrophic factor; ERK1 = Extracellular signal-regulated 
kinase 1; DAT = dopamine transporter.

Model Endophenotype Molecular alterations References

Genetic manipulation

BDNF haploinsufficient ↑ Locomotion; ↑ agressive 

behavior; ↑ food intake

↓ Brain volume; ↓ BDNF; 

↓ dopamine

[83, 84]

ERK1 Knock-out ↑ Amphetamine 

sensibility; ↓ learing in fear 

conditioning; ↑ locomotion; 

↓ immobility in forced swim

↓ Phospho-RSK1/3 in 

PFC and striatum;

shift of activity rhythm

[85–86]

DAT Knock-down ↑ Locomotion; ↓ anxiety;  

↑ rearing

↑ Dopamine [87–89]

Environmental stress

Sleep deprivation ↑ Locomotion; ↑ agressive 

behavior; ↑ exploratory 

behavior

— [90, 91]

Photoperiod lenghts ↑ Anxiety; ↑ helplessness Switch in dopamine 

neurotransmission to 

somatostatin

[92]

Sensitization model

Chronic amphetamine 

administration followed 

by withdrawal

↑ Locomotion; ↑ anxiety;  

↑ anhedonia; ↓ motivation;  

↓ working memory

↓ Dopamine 

responsiveness

↑ serotonin sensitivty

[94–96]

BDNF = brain-derived neurotrophic factor; ERK1 = Extracellular signal-regulated kinase 1; DAT = dopamine 
transporter.

Table 4. 
Examples of models for BD induced by genetic manipulation, environmental stressors, and induced by 
sensitization, which lead to some aspects of molecular and behavioral changes related to BD.
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2.4 Animal models in attention-deficit/hyperactivity disorder (ADHD)

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental 
disorder, affecting approximately 2.2–2.8% of worldwide, with multifactorial 
inducement, as reflected by the heterogeneity found in this disorder, and as indi-
cated by the diversity in its psychiatric comorbidities [97]. This disorder is defined 
by inappropriate levels of attention deficits and/or hyperactivity behavior, which 
directly interfere with the normal life and functioning of an individual [98]. 
While there is no cure for ADHD, currently available treatments can help reducing 
the symptoms and improving the general functioning, although with a peculiar 
wide variability due to the clinically and scientifically difficulties to exactly 
determine the specificity and the origin of the symptoms [99]. As for other PDs, 
due to the high heritability, animal models for ADHD are mostly derived from 
genetic alterations or breeding selection or from neonatal insults that can lead to 
neurodevelopmental changes. Models related to dopaminergic neurotransmission 
are also important to evaluate ADHD, as also listed in Table 2, and which includes 
the administration of psychostimulants as amphetamine. A more detailed review 
on ADHD animal models can be found elsewhere [100] (Table 5).

3. Conclusion

There is a consensus about the critical role of animal models for the advance and 
understanding the functioning of brain and brain disorders, as well as for the devel-
opment of new treatments. However, it is important to use them judiciously and avoid 
the over interpretations derived for the findings, as it is noticeable that the results 
obtained on experimental animals are not necessarily confirmed in clinical studies.  

Model Endophenotype Molecular alterations References

Genetic manipulation

Spontaneously 

hypertensive rats

↓ Attention; ↑ motor 

impulsiveness

↑ Locomotion; ↑ 

exploratory behavior

↑ Dopamine

↓ Dopamine transporter 

1 expression

↓ Brain volume

[101–104]

Coloboma mouse mutant ↑ Locomotion; ↑ 

exploratory behavior; 

↑ amphetamine 

sensibility

↑ Noraedrenergic 

function

↓ Dopamine

↓ DOPAC and HVA

[105–108]

Neonatal insults

6-hydroxydopamine ↓ Working memory;  

↑ locomotion;

↑ Exploratory behavior

↓ Dopamine

↑ Dopamine receptor 4

↓ Serotonin transporter 

binding in striatum

[109–111]

Neonatal anoxia ↑ Locomotion;  

↑ exploratory behavior;  

↓ spatial memory

Transient changes in 

neurotransmitters

↑ Dopamine turnover

↓ Noraepinephrine and 

5-HIAA

↓ CA1 cell density

[112–114]

DOPAC = 3,4-Dihydroxyphenylacetic acid; HVA = Homovanillic acid; 5-HIIA = 5-Hydroxyindoleacetic acid.

Table 5. 
Examples of models for ADHD induced by genetic manipulation in susceptibility genes and selective inbreeding 
and by prenatal insults.



Animal Models in Medicine and Biology

10

As it has been shown, there are several approaches to obtain an animal model for 
studies in psychiatry, but there is still a limitation in reproducing all the conditions 
involved in the pathophysiology of the disorder, and it is extremely crucial to rec-
ognize this limitation. An alternative that has proved to be efficient is to direct the 
study to a specific symptom domain that can answer at least in part, the significance 
of these findings to concretely improve the knowledge in PDs, and thereby bring 
advances in treatment. The crisis of the classification system is evidenced in the 
diagnostic inflation in psychiatry, which adds complexity to the preclinical research 
and complicates the modeling of PDs within the available experimental laboratory 
animals. The recent and alternative approaches as the RDoC to study the brain and 
behavior are in a relative infancy, but promises bringing new perspectives in how 
models that can be improved to become indeed helpful to benefit the quality of life of 
patients with PDs.

Acknowledgements

This work was supported by the São Paulo Research Foundation (Fundação 
de Amparo à Pesquisa do Estado de São Paulo) (FAPESP No. 2013/13392-4 and 
2017/02413-1 for M.A.F.H) and the National Council of Technological and Scientific 
Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico 
- CNPq) (477760/2010-4, 557753/2010-4; 508113/2010-5; 311815/2012-0; 
475739/2013-2; 311815/2012-0 and 309337/2016-0 for M.A.F.H). Both João V. Nani 
and Benjamín Rodríguez receive fellowship from CAPES. This study was financed 
in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 
(CAPES), Brazil - Finance Code 001.

Author details

João Victor Nani1,2, Benjamín Rodríguez1, Fabio Cardoso Cruz1  
and Mirian Akemi Furuie Hayashi1,2*

1 Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade 
Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil

2 National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), 
Brazil

*Address all correspondence to: mhayashi@unifesp.br; mirianhayashi@yahoo.com

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



11

Animal Models in Psychiatric Disorder Studies
DOI: http://dx.doi.org/10.5772/intechopen.89034

References

[1] Sansone RA, Sansone LA. Psychiatric 
disorders: A global look at facts and 
figures. Psychiatry. 2010;7(12):16-19

[2] Swinney DC, Anthony J. How 
were new medicines discovered? 
Nature Reviews Drug Discovery. 
2011;10(7):507-519

[3] Alexandrov V, Brunner D, Hanania T, 
Leahy E. High-throughput analysis 
of behavior for drug discovery. 
European Journal of Pharmacology. 
2015;750(5):82-89

[4] Salgado JV, Sandner G. A critical 
overview of animal models of 
psychiatric disorders: Challenges and 
perspectives. Revista Brasileira de 
Psiquiatria. 2013;35(2):77-81

[5] Lema YY, Gamo NJ, Yang K, 
Ishizuka K. Trait and state biomarkers 
for psychiatric disorders: Importance of 
infrastructure to bridge the gap between 
basic and clinical research and industry. 
Psychiatry and Clinical Neurosciences. 
2018;72(7):482-489

[6] Kesby JP, Eyles DW, McGrath JJ, 
Scott JG. Dopamine, psychosis and 
schizophrenia: The widening 
gap between basic and clinical 
neuroscience. Translational Psychiatry. 
2018;8:30

[7] McKinney WT, Bunney WE. Animal 
model of depression. I. Review of 
evidence: Implications for research. 
Archives of General Psychiatry. 
1969;21(2):240-248

[8] Willner P. The validity of 
animal models of depression. 
Psychopharmacology. 1984;83(1):1-16

[9] Belzung C, Lemoine M. Criteria of 
validity for animal models of psychiatric 
disorders: Focus on anxiety disorders 
and depression. Biology of Mood & 
Anxiety Disorders. 2011;1(1):9

[10] Vervliet B, Raes F. Criteria 
of validity in experimental 
psychopathology: Application to models 
of anxiety and depression. Psychological 
Medicine. 2012;43(11):2241-2244

[11] Lewis E. A gene complex controlling 
segmentation in drosophila. Nature. 
1978;276(5688):565-570

[12] Kandel ER. The molecular biology 
of memory storage: A dialogue 
between genes and synapses. Science. 
2001;294(5544):1030-1038

[13] Hulme SE, Whitesides GM. Chemistry 
and the worm: Caenorhabditis elegans 
as a platform for integrating chemical 
and biological research. Angewandte 
Chemie International Edition in English. 
2011;50(21):4774-4807

[14] Surís A, Holliday R, North CS. The 
evolution of the classification of 
psychiatric disorders. Behavioral 
Science. 2016;6(1):5

[15] Insel T, Cuthbert B, Garvey M, 
Heinssen R, Pine DS, Quinn K, et al. 
Research domain criteria (RDoC): 
Toward a new classification framework 
for research on mental disorders. 
American Journal of Psychiatry. 
2010;167(7):748-751

[16] Cuthbert BN, Insel TR. Toward 
new approaches to psychotic disorders: 
The NIMH research domain criteria 
project. Schizophrenia Bulletin. 
2010;36(6):1061-1062

[17] Cuthbert BN. The RDoC framework: 
Facilitating transition from ICD/DSM to 
dimensional approaches that integrate 
neuroscience and psychopathology. 
World Psychiatry. 2014;3(1):28-35

[18] Greenwood TA, Shutes-David A, 
Tsuang DW. Endophenotypes in 
schizophrenia: Digging deeper to 
identify genetic mechanisms. Journal 



Animal Models in Medicine and Biology

12

of Psychiatry and Brain Science. 
2019;4(2):e190005

[19] Nestler EJ, Hyman SE. Animal models 
of neuropsychiatric disorders. Nature 
Neuroscience. 2010;13(10):1161-1169

[20] Owen M, Sawa A, Mortensen P.  
Schizophrenia. The Lancet. 2016; 
388(10039):86-97

[21] Jones CA, Watson DJ, Fone KC. 
Animal models of schizophrenia. 
British Journal of Pharmacology. 
2011;164(4):1162-1194

[22] Murphy C, Fend M, Russig H, 
Feldon J. Latent inhibition, but not 
prepulse inhibition, is reduced during 
withdrawal from an escalating dosage 
schedule of amphetamine. Behavioral 
Neuroscience. 2001;115(6):1247-1256

[23] Peleg-Raibstein D, Sydekum E, 
Russig H, Feldon J. Withdrawal from 
repeated amphetamine administration 
leads to disruption of prepulse 
inhibition but not to disruption of 
latent inhibition. Journal of Neural 
Transmission. 2005;113(9):1323-1336

[24] Martinez V, Parikh V, Sarter M. 
Sensitized Attentional performance 
and Fos-Immunoreactive cholinergic 
neurons in the basal forebrain of 
amphetamine-pretreated rats. Biological 
Psychiatry. 2005;57(10):1138-1146

[25] Tenn C, Fletcher P, Kapur S. 
Amphetamine-sensitized animals show a 
sensorimotor gating and neurochemical 
abnormality similar to that of 
schizophrenia. Schizophrenia Research. 
2003;64(2-3):103-114

[26] Turner K, Burne T. Improvement 
of attention with amphetamine 
in low- and high-performing 
rats. Psychopharmacology. 
2016;233(18):3383-3394

[27] Castañé A, Santana N, Artigas F. 
PCP-based mice models of 

schizophrenia: Differential behavioral, 
neurochemical and cellular 
effects of acute and subchronic 
treatments. Psychopharmacology. 
2015;232(21-22):4085-4097

[28] Mouri A, Noda Y, Enomoto T, 
Nabeshima T. Phencyclidine animal 
models of schizophrenia: 
Approaches from abnormality of 
glutamatergic neurotransmission and 
neurodevelopment. Neurochemistry 
International. 2007;51(2-4):173-184

[29] Neill J, Barnes S, Cook S, Grayson B, 
Idris N, McLean S, et al. Animal models 
of cognitive dysfunction and negative 
symptoms of schizophrenia: Focus 
on NMDA receptor antagonism. 
Pharmacology & Therapeutics. 
2010;128(3):419-432

[30] Jaaro-Peled H. Gene models 
of schizophrenia: DISC1 mouse 
models. Progress in Brain Research. 
2009;179:75-86

[31] Clapcote S, Lipina T, Millar J, 
Mackie S, Christie S, Ogawa F, et al. 
Behavioral phenotypes of disc1 
missense mutations in mice. Neuron. 
2007;54(3):387-402

[32] Lee F, Fadel M, Preston-Maher K, 
Cordes S, Clapcote S, Price D, et al. 
Disc1 point mutations in mice 
affect development of the cerebral 
cortex. Journal of Neuroscience. 
2011;31(9):3197-3206

[33] Pletnikov M, Ayhan Y, Nikolskaia O, 
Xu Y, Ovanesov M, Huang H, et al. 
Inducible expression of mutant human 
DISC1 in mice is associated with 
brain and behavioral abnormalities 
reminiscent of schizophrenia. Molecular 
Psychiatry. 2008;13(2):173-186

[34] Hikida T, Jaaro-Peled H, Seshadri S, 
Oishi K, Hookway C, Kong S, et al. 
Dominant-negative DISC1 transgenic 
mice display schizophrenia-associated 
phenotypes detected by measures 



13

Animal Models in Psychiatric Disorder Studies
DOI: http://dx.doi.org/10.5772/intechopen.89034

translatable to humans. Proceedings 
of the National Academy of Sciences. 
2007;104(36):14501-14506

[35] Niwa M, Kamiya A, Murai R, 
Kubo K, Gruber A, Tomita K, et al. 
Knockdown of DISC1 by in utero 
gene transfer disturbs postnatal 
dopaminergic maturation in the frontal 
cortex and leads to adult behavioral 
deficits. Neuron. 2010;65(4):480-489

[36] Trossbach S, Bader V, Hecher L, 
Pum M, Masoud S, Prikulis I, et al. 
Misassembly of full-length disrupted-
in-schizophrenia 1 protein is linked 
to altered dopamine homeostasis 
and behavioral deficits. Molecular 
Psychiatry. 2016;21(11):1561-1572

[37] Mei L, Xiong W. Neuregulin 1 in 
neural development, synaptic plasticity 
and schizophrenia. Nature Reviews 
Neuroscience. 2008;9(6):437-452

[38] Papaleo F, Yang F, Garcia S, 
Chen J, Lu B, Crawley J, et al. Dysbindin-1 
modulates prefrontal cortical activity 
and schizophrenia-like behaviors via 
dopamine/D2 pathways. Molecular 
Psychiatry. 2010;17(1):85-98

[39] Karlsgodt K, Robleto K, Trantham- 
Davidson H, Jairl C, Cannon T, 
Lavin A, et al. Reduced dysbindin 
expression mediates n-methyl-d-
aspartate receptor hypofunction 
and impaired working memory 
performance. Biological Psychiatry. 
2011;69(1):28-34

[40] Sams-Dodd F, Lipska B, 
Weinberger D. Neonatal lesions of 
the rat ventral hippocampus result 
in hyperlocomotion and 
deficits in social behaviour in 
adulthood. Psychopharmacology. 
1997;132(3):303-310

[41] Lipska B. Using animal models to 
test a neurodevelopmental hypothesis of 
schizophrenia. Journal of Psychiatry & 
Neuroscience. 2004;29(4):282-286

[42] Moore H, Jentsch J, Ghajarnia M, 
Geyer M, Grace A. A neurobehavioral 
systems analysis of adult rats exposed to 
methylazoxymethanol acetate on E17: 
Implications for the neuropathology of 
schizophrenia. Biological Psychiatry. 
2006;60(3):253-264

[43] Meyer U. Prenatal poly(I:C) 
exposure and other developmental 
immune activation models in rodent 
systems. Biological Psychiatry. 
2014;75(4):307-315

[44] Winship I, Dursun S, Baker G, 
Balista P, Kandratavicius L, Maia-
de-Oliveira J, et al. An overview of 
animal models related to schizophrenia. 
The Canadian Journal of Psychiatry. 
2018;64(1):5-17

[45] Belmaker RH, Agam G. Major 
Depressive Disorder. The New England 
Journal of Medicine. 2008;358:55-68

[46] Redei EE, Mehta NS. The promise 
of biomarkers in diagnosing major 
depression in primary care: The present 
and future. Current Psychiatry Reports. 
2015;17(8):601

[47] Woods AG, Iosifescu DV, Darie CC. 
Biomarkers in major depressive disorder: 
The role of mass spectrometry. 
Advances in Experimental Medicine and 
Biology. 2014;806:545-560

[48] Caspi A, Moffitt TE. Gene-
environment interactions in psychiatry: 
Joining forces with neuroscience. Nature 
Reviews Neuroscience. 2006;7(7):583-590

[49] McGonagle KA, Kessler RC. Chronic 
stress, acute stress, and depressive 
symptoms. American Journal 
of Community Psychology. 
1990;18(5):681-706

[50] Uher R, McGuffin P. The moderation 
by the serotonin transporter gene of 
environmental adversity in the etiology 
of depression: 2009 update. Molecular 
Psychiatry. 2010;15(1):18-22



Animal Models in Medicine and Biology

14

[51] Wang Q , Timberlake MA 2nd, 
Prall K, Dwivedi Y. The recent progress 
in animal models of depression. 
Progress in Neuro-Psychopharmacology 
& Biological Psychiatry. 2017;77:99-109

[52] Weiss J, Simson PG, Ambrose M, 
Webster A, Hoffman L. Neurochemical 
basis of behavioral depression. 
Advances in Behavioral Medicine. 
1985;1:233-275

[53] Weiss J, Bailey WH, Pohorecky LA, 
Korzeniowski D, Grillione G. Stress-
induced depression of motor activity 
correlates with regional changes in brain 
norepinephrine but not in dopamine. 
Neurochemical Research. 1980;5(1):9-22

[54] Zacharko R, Bowers W, Kokkinidis L, 
Anisma H. Region-specific reductions 
of intracranial self-stimulation after 
uncontrollable stress: Possible effects 
on reward processes. Behavioural Brain 
Research. 1983;9(2):129-141

[55] Corum R, Thurmond J. Effects 
of acute exposure to stress on 
subsequent aggression and locomotion 
performance. Psychosomatic Medicine. 
1977;39(6):436-443

[56] Dwivedi Y, Mondal A, Shukla P, 
Rizavi H, Lyons J. Altered protein kinase 
a in brain of learned helpless rats: 
Effects of acute and repeated stress. 
Biological Psychiatry. 2004;56(1):30-40

[57] Aznar S, Klein A, Santini M, 
Knudsen G, Henn F, Gass P, et al. Aging 
and depression vulnerability interaction 
results in decreased serotonin 
innervation associated with reduced 
BDNF levels in hippocampus of rats 
bred for learned helplessness. Synapse. 
2010;64(7):561-565

[58] Katz R, Roth K, Carroll B. Acute 
and chronic stress effects on open field 
activity in the rat: Implications for a 
model of depression. Neuroscience 
& Biobehavioral Reviews. 
1981;5(2):247-251

[59] Willner P, Muscat R, Papp M. 
Chronic mild stress-induced anhedonia: 
A realistic animal model of depression. 
Neuroscience & Biobehavioral Reviews. 
1992;16(4):525-534

[60] Boyle M, Brewer J, Funatsu M, 
Wozniak D, Tsien J, Izumi Y, et al. 
Acquired deficit of forebrain 
glucocorticoid receptor produces 
depression-like changes in adrenal axis 
regulation and behavior. Proceedings 
of the National Academy of Sciences. 
2005;102(2):473-478

[61] Crema L, Schlabitz M, Tagliari B, 
Cunha A, Simão F, Krolow R, et al. 
Na+, K+ ATPase activity is reduced 
in amygdala of rats with chronic 
stress-induced anxiety-like 
behavior. Neurochemical Research. 
2010;35(11):1787-1795

[62] Conrad C, Magariños A, LeDoux J, 
McEwen B. Repeated restraint stress 
facilitates fear conditioning 
independently of causing hippocampal 
CA3 dendritic atrophy. Behavioral 
Neuroscience. 1999;113(5):902-913

[63] Wood G, Young L, Reagan L, 
McEwen B. Acute and chronic restraint 
stress alter the incidence of social 
conflict in male rats. Hormones and 
Behavior. 2003;43(1):205-213

[64] Zhang L, Luo J, Zhang M, Yao W, 
Ma X, Yu S. Effects of curcumin on 
chronic, unpredictable, mild, stress-
induced depressive-like behaviour 
and structural plasticity in the lateral 
amygdala of rats. The International 
Journal of Neuropsychopharmacology. 
2014;17(05):793-806

[65] Koolhaas J, Meerlo P, De Boer S,  
Strubbe J, Bohus B. The temporal 
dynamics of the stress response. 
Neuroscience & Biobehavioral Reviews. 
1997;21(6):775-782

[66] Crawford L, Rahman S, Beck S. 
Social stress alters inhibitory synaptic 



15

Animal Models in Psychiatric Disorder Studies
DOI: http://dx.doi.org/10.5772/intechopen.89034

input to distinct subpopulations of 
raphe serotonin neurons. ACS Chemical 
Neuroscience. 2013;4(1):200-209

[67] Hollis F, Kabbaj M. Social defeat as 
an animal model for depression. ILAR 
Journal. 2014;55(2):221-232

[68] Liu H, Atrooz F, Salvi A, Salim S. 
Behavioral and cognitive impact of 
early life stress: Insights from an 
animal model. Progress in Neuro-
Psychopharmacology & Biological 
Psychiatry. 2017;78:88-95

[69] Boulle F, Pawluski JL, Homberg JR, 
Machiels B, Kroeze Y, Kumar N, et al. 
Prenatal stress and early-life exposure 
to fluoxetine have enduring effects on 
anxiety and hippocampal BDNF gene 
expression in adult male offspring. 
Developmental Psychobiology. 
2016;58(4):427-438

[70] Harkin A, Kelly J, Leonard B. A 
review of the relevance and validity 
of olfactory bulbectomy as a model 
of depression. Clinical Neuroscience 
Research. 2003;3(4-5):253-262

[71] Hellweg R, Zueger M, Fink K, 
Hörtnagl H, Gass P. Olfactory 
bulbectomy in mice leads to increased 
BDNF levels and decreased serotonin 
turnover in depression-related brain 
areas. Neurobiology of Disease. 
2007;25(1):1-7

[72] Nam H, Clinton S, Jackson N, 
Kerman I. Learned helplessness and 
social avoidance in the Wistar-Kyoto rat. 
Frontiers in Behavioral Neuroscience. 
2014;8:109

[73] Will C, Aird F, Redei E. Selectively 
bred Wistar–Kyoto rats: An animal model 
of depression and hyper-responsiveness 
to antidepressants. Molecular Psychiatry. 
2003;8(11):925-932

[74] Zangen A, Overstreet D, Yadid G. 
High serotonin and 5-hydroxyindoleacetic 
acid levels in limbic brain regions in a 

rat model of depression; normalization 
by chronic antidepressant treatment. 
Journal of Neurochemistry. 
2002;69(6):2477-2483

[75] Overstreet D, Russell R. 
Selective breeding for diisopropyl 
fluorophosphate-sensitivity: Behavioural 
effects of cholinergic agonists and 
antagonists. Psychopharmacology. 
1982;78(2):150-155

[76] Overstreet D, Friedman E, Mathé A, 
Yadid G. The Flinders sensitive line 
rat: A selectively bred putative 
animal model of depression. 
Neuroscience & Biobehavioral Reviews. 
2005;29(4-5):739-759

[77] Nishi K, Kanemaru K, Hasegawa S, 
Watanabe A, Diksic M. Both acute 
and chronic buspirone treatments 
have different effects on regional 
5-HT synthesis in Flinders sensitive 
line rats (a rat model of depression) 
than in control rats. Neurochemistry 
International. 2009;54(3-4):205-214

[78] Merikangas KR, Jin R, He JP, 
Kessler RC, Lee S, Sampson NA, 
et al. Prevalence and correlates of 
bipolar spectrum disorder in the 
world mental health survey initiative. 
Archives of General Psychiatry. 
2011;68(3):241-251

[79] Grande I, Berk M, Birmaher B, 
Vieta E. Bipolar disorder. Lancet. 
2016;387(10027):1561-1572

[80] Johansson V, Hultman CM, Kizling I, 
Martinsson L, Borg J, Hedman A, et al. 
The schizophrenia and bipolar twin 
study in Sweden (STAR). Schizophrenia 
Research. 2019;204:183-192

[81] Sanchez-Moreno J, Martinez- 
Aran A, Vieta E. Treatment of 
functional impairment in patients with 
bipolar disorder. Current Psychiatry 
Reports. 2017;19(1):3

[82] Lewandowski KE, Whitton AE, 
Pizzagalli DA, Norris LA, Ongur D, 



Animal Models in Medicine and Biology

16

Hall MH. Reward learning, 
neurocognition, social cognition, and 
symptomatology in psychosis. Frontiers 
in Psychiatry. 2016;7:100

[83] Beyer D, Freund N. Animal models 
for bipolar disorder: From bedside to the 
cage. International Journal of Bipolar 
Disorders. 2017;5(1):35

[84] Magariños A, Li C, Gal Toth J, 
Bath K, Jing D, Lee F, et al. Effect of 
brain-derived neurotrophic factor 
haploinsufficiency on stress-induced 
remodeling of hippocampal neurons. 
Hippocampus. 2011;21(3):253-264

[85] Kernie S. BDNF regulates 
eating behavior and locomotor 
activity in mice. The EMBO Journal. 
2000;19(6):1290-1300

[86] Engel S, Creson T, Hao Y, 
Shen Y, Maeng S, Nekrasova T, et al. The 
extracellular signal-regulated kinase 
pathway contributes to the control 
of behavioral excitement. Molecular 
Psychiatry. 2008;14(4):448-461

[87] Young JW, Cope ZA,  
Romoli B, Schurs E, Joosen A, 
Enkhuzien J, et al. Mice with reduced 
DAT levels recreate seasonal-induced 
switching between states in bipolar 
disorder. Neuropsychopharmacology. 
2018;43(8):1732-1731

[88] van Enkhuizen J, Henry B, 
Minassian A, Perry W, Milienne-Petiot M, 
Higa K, et al. Reduced dopamine 
transporter functioning induces 
high-reward risk-preference 
consistent with bipolar disorder. 
Neuropsychopharmacology. 
2014;39(13):3112-3122

[89] Giros B, Jaber M, Jones S, 
Wightman R, Caron M. Hyperlocomotion 
and indifference to cocaine and 
amphetamine in mice lacking the 
dopamine transporter. Nature. 
1996;379(6566):606-612

[90] Benedetti F, Fresi F, Maccioni P, 
Smeraldi E. Behavioural sensitization 
to repeated sleep deprivation in a mice 
model of mania. Behavioural Brain 
Research. 2008;187(2):221-227

[91] Gessa G, Pani L, Fadda P, Fratta W. 
Sleep deprivation in the rat: An 
animal model of mania. European 
Neuropsychopharmacology. 
1995;5:89-93

[92] Dulcis D, Jamshidi P, Leutgeb S, 
Spitzer N. Neurotransmitter switching 
in the adult brain regulates behavior. 
Science. 2013;340(6131):449-453

[93] Paulson P, Camp D, Robinson T. Time 
course of transient behavioral depression 
and persistent behavioral sensitization 
in relation to regional brain monoamine 
concentrations during amphetamine 
withdrawal in rats. Psychopharmacology. 
1991;103(4):480-492

[94] Barr A, Fiorino D, Phillips A. Effects 
of withdrawal from an escalating dose 
schedule of d-amphetamine on sexual 
behavior in the male rat. Pharmacology 
Biochemistry and Behavior. 
1999;64(3):597-604

[95] Barr A, Phillips A. Increased 
successive negative contrast in rats 
withdrawn from an escalating-
dose schedule of d-amphetamine. 
Pharmacology Biochemistry and 
Behavior. 2002;71(1-2):293-299

[96] Marszalek-Grabska M, Gibula- 
Bruzda E, Jenda M, Gawel K, 
Kotlinska J. Memantine improves memory 
impairment and depressive-like 
behavior induced by amphetamine 
withdrawal in rats. Brain Research. 
1642;2016:389-396

[97] Luo Y, Weibman D, Halperin JM, Li X. 
A review of heterogeneity in attention 
deficit/hyperactivity disorder (ADHD). 
Frontiers in Human Neuroscience. 
2019;13:42



17

Animal Models in Psychiatric Disorder Studies
DOI: http://dx.doi.org/10.5772/intechopen.89034

[98] Franke B, Michelini G, Asherson P, 
Banaschewski T, Bilbow A, 
Buitelaar JK, et al. Live fast, die young? 
A review on the developmental 
trajectories of ADHD across 
the lifespan. European 
Neuropsychopharmacology. 
2018;28(10):1059-1088

[99] Nigg JT. Attention-deficit/
hyperactivity disorder and adverse 
health outcomes. Clinical Psychology 
Review. 2013;33(2):215-228

[100] Russell VA, Sagvolden T, 
Johansen E. Animal models of attention-
deficit hyperactivity disorder. Behavioral 
and Brain Functions. 2005;1:9

[101] Sagvolden T, Russell V, Aase H, 
Johansen E, Farshbaf M. Rodent models 
of attention-deficit/hyperactivity 
disorder. Biological Psychiatry. 
2005;57(11):1239-1247

[102] Sagvolden T. Behavioral validation 
of the spontaneously hypertensive rat 
(SHR) as an animal model of attention-
deficit/hyperactivity disorder (AD/
HD). Neuroscience & Biobehavioral 
Reviews. 2000;24(1):31-39

[103] Carboni E, Silvagni A, Valentini V, 
Di Chiara G. Effect of amphetamine, 
cocaine and depolarization by high 
potassium on extracellular dopamine 
in the nucleus accumbens shell of SHR 
rats. An in vivo microdyalisis study. 
Neuroscience & Biobehavioral Reviews. 
2003;27(7):653-659

[104] Linthorst A, van Giersbergen P, 
Gras M, Versteeg D, de Jong W. The 
nigrostriatal dopamine system: Role 
in the development of hypertension in 
spontaneously hypertensive rats. Brain 
Research. 1994;639(2):261-268

[105] Wilson M. Coloboma mouse 
mutant as an animal model of 
hyperkinesis and attention deficit 
hyperactivity disorder. Neuroscience 
& Biobehavioral Reviews. 
2000;24(1):51-57

[106] Jones M, Williams M, Hess E. 
Expression of catecholaminergic 
mRNAs in the hyperactive mouse 
mutant coloboma. Molecular Brain 
Research. 2001;96(1-2):114-121

[107] Raber J, Mehta P, Kreifeldt M, 
Parsons L, Weiss F, Bloom F, et al. 
Coloboma hyperactive mutant mice 
exhibit regional and transmitter-specific 
deficits in neurotransmission. Journal of 
Neurochemistry. 2002;68(1):176-186

[108] Jones M, Hess E. Norepinephrine 
regulates locomotor hyperactivity in  
the mouse mutant coloboma. 
Pharmacology Biochemistry and 
Behavior. 2003;75(1):209-216

[109] Luthman J, Fredriksson A, 
Lewander T, Jonsson G, Archer T. Effects 
ofd-amphetamine and methylphenidate 
on hyperactivity produced by 
neonatal 6-hydroxydopamine 
treatment. Psychopharmacology. 
1989;99(4):550-557

[110] Zhang K. Role of dopamine D4 
receptors in motor hyperactivity induced 
by neonatal 6-hydroxydopamine lesions 
in rats. Neuropsychopharmacology. 
2001;25(5):624-632

[111] Zhang K, Davids E, Tarazi F, 
Baldessarini R. Serotonin transporter 
binding increases in caudate-putamen 
and nucleus accumbens after neonatal 
6-hydroxydopamine lesions in rats: 
Implications for motor hyperactivity. 
Developmental Brain Research. 
2002;137(2):135-138

[112] Dell’Anna M. Neonatal anoxia 
induces transitory hyperactivity, 
permanent spatial memory deficits and 
CA1 cell density reduction in developing 
rats. Behavioural Brain Research. 
1999;45:125-134

[113] Dell’Anna M, Calzolari S, 
Molinari M, Iuvone L, Calimici R. 
Neonatal anoxia induces transitory 
hyperactivity, permanent spatial memory 



Animal Models in Medicine and Biology

18

deficits and CA1 cell density reduction 
in developing rats. Behavioural Brain 
Research. 1991;45(2):125-134

[114] Iuvone L, Geloso M, Dell’Anna E. 
Changes in open field behavior, spatial 
memory, and hippocampal parvalbumin 
immunoreactivity following 
enrichment in rats exposed to neonatal 
anoxia. Experimental Neurology. 
1996;139(1):25-33


