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Chapter

Metabolic Health Analysis and
Forecasting with Mobile
Computing

Zsolt P. Ori

Abstract

The goal of this paper is to demonstrate feasibility of a concept of mobile
computing to help users to reach and maintain metabolic health. For this purpose,
we analyze data from 12 clinical studies with a total of 39 study arms from the
international literature to show that insulin resistance measured by HOMA-IR could
be followed and its changes could be predicted using our weight-fat mass-energy
balance calculations taking advantage of the significant and strong correlation
between changes of HOMA-IR and state variables of the energy metabolism like
changes of weight, fat mass, R-ratio, Rw-ratio, and fat burning fraction of the
energy production. We introduce here our extended weight-fat mass-energy
balance calculation to assess de novo lipogenesis, adaptive thermogenesis, and the
24-hour nonprotein respiratory quotient. We show how we can analyze and predict
individualized state variables of the metabolism, which serve as metrics for the
quantification of the interrelationship between energy metabolism and insulin
resistance facilitating management and self-management of insulin-resistance
related conditions including obesity, fatty liver, prediabetes, metabolic syndrome,
and type 2 diabetes. The feedback of individualized metrics using tools of the digital
health era may amount to channeling focus also to patient-centered individualized
care and to accelerating nutrition research.

Keywords: energy metabolism, insulin resistance, metabolic monitoring, mobile
computing, 24-h nonprotein respiratory quotient, fat oxidation, carbohydrate
oxidation, de novo lipogenesis, adaptive thermogenesis, obesity, fatty liver,
prediabetes, metabolic syndrome, type 2 diabetes, cardiovascular morbidity,
mortality, dynamic changes of behavior, lifestyle modification, patient-centered
individualized care, digital health

1. Introduction

The purpose of this paper is to outline a new proposed direction of managing
and self-managing metabolic health including insulin resistance in the era of mobile
technology.

I am perhaps a rare breed of internist with previous training in biomedical
cybernetics before entering medical school. My training and research experience in
control engineering together with my experiences as a clinician in academic and
nonacademic settings have inspired me to use mathematical modeling tools to
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tackle the most sweeping health problem of our time which has reached now
pandemic proportion all over the world, i.e., insulin resistance with its devastation
in terms of rising cardiovascular disease (CVD), morbidity, and mortality. The
reason for focusing on insulin resistance is the overwhelming evidence that insulin
resistance syndrome has been proven to be an independent risk factor for CVD
mortality, and effective, clinically usable indicators can be derived from readily
measured variables [1].

Central to the mission of primary care is fighting the burden of
noncommunicable chronic diseases including the most prominent one, CVD [2].
CVD is substantially higher in individuals with unhealthy lifestyle characteristics,
including visceral obesity, prediabetes, diabetes, insulin resistance, metabolic syn-
drome, physical inactivity, poor diet, and cigarette smoking. One could ask the
question, why is insulin resistance such an important issue and how could we
address this problem more effectively? I see a four-pronged answer to this question:

1.There is a need for heightened awareness of the pathophysiological processes
at play in CVD which is accelerated inflammation leading to atherosclerosis
driven by insulin resistance. The higher level than normal of inflammatory
markers and cytokines are triggered by complex cell physiology changes taking
place initially in the visceral adipose tissue and likely related to the regulation
of the deposition of the newly synthetized fat. A recently published research
article [3] found new insight into the pathophysiological steps of how insulin
resistance with or without obesity begets proinflammatory changes [4, 5]
occurring, among others, at the arterial walls.

2.Measuring insulin resistance in clinical practice is a huge challenge. The gold
standard is the “hyperinsulinemic euglycemic clamp,” which measures the
amount of glucose necessary to compensate for an increased insulin level
without causing hypoglycemia. Nowadays the test is rarely performed in
clinical care. The frequently used clinical assessment is with the homeostatic
model assessment of insulin resistance (HOMA-IR) which closely mirrors the
glucose clamp technique [6]. This requires only point-of-care invasive
measurement of fasting insulin and glucose level. There is a need for a
continuous noninvasive measurement method which can provide the same
information as HOMA-IR.

3.A lifelong heightened awareness is needed in our accelerated world which pulls
us back to optimum decision-making by mindfulness regarding eating and
exercising. We have biased perceptions regarding how much we eat [7], and
we possess no bodily sensation regarding the size of the visceral fat (a prime
source of insulin resistance) and its daily changes. The privacy of a
personalized gage such as a smart watch or phone app is needed to gage
changes of our metabolic health and fitness level [8].

4.For tracking insulin resistance noninvasively, there is a need to know the total
fat balance [9-11] which includes also the daily de novo lipogenesis (DNL).
Currently the standard way to measure DNL is the 24-h metabolic chamber
[12, 13]. Mobile computing technology just may offer a key solution to this issue.

The tools needed to realize the new proposed approach are embedded into the
science of cybernetics. Cybernetics is mostly concerned with exploring regulatory
systems—their structures, constraints, and possibilities using mathematical
modeling. Cyber-therapy is defined here as the combined use of individualized
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mathematical-statistical modeling, prediction, planning for change, and gaining
control and self-management of the metabolism with the option for guided therapy
by feedback of information on components of the human energy metabolism of an
individual. Our mathematical modeling techniques of the human energy metabo-
lism [8-11] is a tool to observe the difficult-to-measure variables of the human
energy metabolism, such as slowly occurring body composition changes including
lean mass, protein mass, fat mass, extracellular and intracellular water mass, or
practically impossible-to-measure variables like utilized macronutrient intake,
oxidation rates, and the de novo lipogenesis. The overall goal of individualized
cyber-therapy is to gain better control of the metabolism, i.e., reach and maintain
optimum body composition and cardiometabolic fitness with minimized effort
over the shortest possible time while staying well hydrated and maintaining
optimal insulin sensitivity through self-management with mindfulness and/or
guided therapy.

My recent paper to the same publisher [8] introduces a proposed cyber-physical
system (CPS) as a framework to manage and self-manage metabolic health includ-
ing insulin resistance. The essential elements of CPS comprise smart watch with
appropriate sensors, smart phone, and bathroom scale with fat weight measuring
capabilities. The various devices with their apps are connected through cloud com-
puting. The main software component is a metabolic health monitoring app (MHM)
performing data gathering and result display of metabolic trends [11]. MHM can
make predictions regarding changes of the metabolic state variables (SVs) such as
fat mass, lean body mass, insulin resistance changes by the Rw-ratio, 24-h nonpro-
tein respiratory quotient, as well as the utilized macronutrient intake and oxidation
rates. We developed mathematical models of the human energy metabolism
allowing for estimation of the SVs [9-11] requiring serial fat weight and lean body
mass measurements [9, 10]. We introduced our weight-fat weight-energy balance
(WFE) calculations requiring only serial weight and fat weight measurements for
basic calculations to estimate changes of insulin resistance [8]. In the same paper,
we provided also evidence for feasibility of the CPS concept in healthy young men
to track and predict insulin resistance.

Central to the goal of providing metrics for the quantification of insulin resis-
tance is the recognition of its interrelationship with other easily and daily measur-
able state variables like weight and fat mass. In this regard we take advantage of the
observation that there is a correlation between BMI/weight/body composition and
insulin resistance measured, for example, with HOMA-IR [14, 15, 27]. We reported
earlier that we found significant negative correlation between HOMA-IR and R-
ratio or Rw-ratio [8, 10, 11, 15]. It has been also our research hypothesis that one
could exploit the strong inverse correlation between HOMA-IR and the R-ratio or
Rw-ratio and use this to measure indirectly changes of insulin resistance derived
from serial weight and fat weight measurements [8].

The goal of this paper is to contribute to the developing field of mobile technol-
ogies and their use for health-related applications in three areas:

1.More evidence is provided for the connection between HOMA-IR and WFE
calculations for clinical practice: here we show feasibility of our research
hypothesis that insulin resistance changes by HOMA-IR can be predicted by
using the WFE calculation framework in a wide variety of clinical scenarios
involving insulin resistance changes and not just in young healthy men as it
was already demonstrated in [8]. For this purpose, we use data from [16-27]
to show further support for the idea that insulin resistance measured by
HOMA-IR could be followed and its change could be predicted by WFE
calculation.
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2.We give here our theoretical considerations on how DNL and adaptive
thermogenesis (AT) could be assessed with mobile technology during acute
phase and at predicted steady-state equilibrium of the energy metabolism. AT
becomes important when the energy metabolism goes from one steady state to
another and the AT energy production or disappearance will oppose the
direction of change [28]. We would like to introduce here our extended
weight-fat weight-energy balance calculation allowing for DNL and AT
calculations (WFE-DNL-AT) and pointing out its limitations.

3.1 give here supportive results to the proposition of using WFE-DNL-AT
calculations and show how insulin resistance changes with WFE-DNL-AT
calculations compared with results of indirect calorimetry obtained by 24-h
measurement in a metabolic chamber. For all of these purposes, I reanalyze the
published trial data of the “Calorie for Calorie, Dietary Fat Restriction Results
in More Body Fat Loss than Carbohydrate Restriction in People with Obesity”
(CC trial) [29] using WFE-DNL-AT calculations.

All mathematical tools of WFE-DNL-AT calculation are summarized in
Appendix.

2. Method of the correlation analysis between HOMA-IR and chosen
state variables

This meta-analysis utilizes our dynamic energy balance equation (Eq. (1)) as it
was introduced to the reader in [8]. This establishes a weight, fat weight, and
energy balance calculation (WFE) based on the following mass and energy rela-
tionship:

Qwe - AWy + g - AF, = (Quy - Rwi + @p) - AFy = MEI, — TEE, = EB,. (1)

Essentially, the equation expresses the equivalent change of weight represented
here as AW}, = Rwy, - AF}, and fat weight AF}, in response to the energy balance EB,
i.e., the difference of metabolized energy intake MEI}, and total energy expenditure
TEE}, on a given day k. We listed in the glossary the meaning of each variable.

Egs. (2)-(18) constitute the framework derived from Eq. (1) for the correlation
analysis between the percentage change of HOMA-IR AH% and changes of state
variables Rw-ratio ARw, weight AW, and fat burning fraction Ay over the course of
a clinical trial. We used 39 study arms from 12 clinical trials with a variety of length
of the studies performed ranging from 3 days to 365 days [16-27]. The correlation
analysis was done in MATLAB. The outcome results of the trials are shown in
Table 1. Here # is the number of days in the clinical trial, subjects means the number
of participants, AW,,_, designates the average weight change in kilograms during
the trial period, AF,_o symbolizes the average fat weight change during the trial
period in kilograms, and AH,_ stands for the average change of HOMA-IR with
sugar in mg/dL and insulin in mU/L.

I calculate the average lean mass change AL,_ as the difference between aver-
age weight change and fat weight change as in Eq. (2):

ALn—O = AVVn—O - AFn—O- (2)

For current calculations we assume that the energy density value of lean mass
change @;;, will remain stable, and it takes the value around ¢; ~ 1.8 kcal/g which is
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a value quoted in the literature [30], but its real value is unknown and uncertain.
Likewise, the energy density parameter for weight change oy, is calculated using
the energy density value of lean mass change o; =~ 1.8 kcal/g and using the energy
relationship as in Eq. (3):

ALy,
Qwr = Qr, AW, (3)

The awy, first-order term coefficient of the weight-fat logarithmic relationship is
thought to be stable during the trial period under the stationarity assumption and
therefore remains unindexed denoted as aw . Its value is calculated from weight on
the first day £ =0 and last day k = 7 of the study as in Eq. (4):

W, — Wy
aw = InF, — InFy’ )
The weight change and fat weight change on the first day and last day is
calculated through several steps as in Egs. (5)—(8):
Estimated daily energy balance for each day is the same EBj as in Eq. (5):
AWn_ - AFn— * AF?I—
EBOZQL'( On O)+QF' " - ©)

The first day’s fat weight change AF; and F; is calculated as in Egs. (6) and (7):

-1
aw By
AF; = EBy - (QW-F—+QF> (6)
0
Fi1=Fy+ AF; (7)

Here @; can take different values: for net fat loss g ~ @, it takes the value of 9.4
kcal/g; for net fat synthesis, the value is 9.4 + 2.38 kcal/g because synthesis cost of
fat from glucose is added to the energy density of fat.

The last day’s fat weight change AF,,_; and F,,_1 is calculated as in Egs. (8) and (9).

-1
aw .
AF,_1 = EBj - (Qw Tt ) (8)
anlen_Aanl (9)

The first day’s and last day’s weight changes are calculated as in Egs. (10)
and (11):

AWi=ow-(IlnFy— InFy) (10)
AW, 1=aw-(InF,— InF, ) (11)

The first day’s and last day’s Rw-ratio Rw; and Rw,,_1 is calculated as in Egs. (12)
and (13).

AW,
Rw, = 12
w1 AF, (12)
Aanl
Rw, 1= 1
Wyp—-1 AF, (13)
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Study n days Subjects AW, o AF, o AH, o
[16] Hypoenergetic 84 44 -7 —4.8 -0.12
[16] Hypoenergetic + walking 84 38 —8.8 —6.5 —0.56
[17] Low-carbohydrate 56 12 —7.4 -39 -1.3
[17] Low-fat 56 12 —6.5 —3.8 -0.6
[18] Healthy low-fat 365 305 —5.3 -3.7 -0.8
[18] Healthy low-carb 365 304 -6 —4.1 -0.7
[19] Hypo_LF/HC 5 10 -11 -1.2 -0.9
[19] Hypo_HF/LC 5 8 -1.5 -1.5 -0.9
[20] Whey protein 4 days 4 8 —5.4 -2.2 -1.8
[20] Sucrose 4 days 4 7 —4.3 -1.9 -1.1
[20] Whey protein 4 + 3 days 3 8 1.3 -0.6 0.6
[20] Sucrose 4 + 3 days 3 7 0.8 -0.9 0.4
[20] Whey protein 7 + 28 days 4 8 -0.5 -0.8 1.3
[20] Sucrose 7 + 28 days 4 7 -0.6 -1.3 0.8
[21] Low-glycemic 180 180 32 —4.5 —2.4 -0.5
[21] Low-fat 180 180 34 -375 14 ~02
[21] Low-glycemic 18-mo 360 32 1.75 0.8 0.4
[21] Low-fat 18-mo 360 34 2.25 0.3 0.2
[22] Women obese 77 17 —-12.2 -9.5 -1.7
[22] Men obese 77 17 —17.6 -12.3 -1.8
[23] Women training 1 168 18 —2.7 —2.2 —-0.1
[23] Women training 2 168 16 -2.3 -1.8 -0.2
[24] HC 2 day 2 11 —1.61 —0.20 -1.11
[24] LC 2 day 2 11 —2.64 —-0.04 —1.69
[24] HC 77 day 77 11 —5.75 —4.17 —-0.15
[24] LC 77 day 77 11 —5.09 —5.22 —-0.15
[25] A_calorie Restriction 7 10 -3 2.2 -0.61
[25] A_refeeding 7 10 31 1.4 0.82
[25] B_overfeeding 7 10 1.6 0.7 0.84
[25] B_calorie restriction 7 10 —-3.4 -1.9 -1.08
[26] Women control M 365 87 —0.42 —-0.11 —0.03
[26] Women control O 365 87 —-1.34 -1.71 -0.12
[26] Women exercise M 365 117 —1.67 —3.08 —0.43
[26] Women exercise O 365 117 —2.67 —-1.42 0.15
[26] Women diet M 365 118 —7.64 —11.15 —-0.73
[26] Women diet O 365 118 —6.04 —5.25 —0.82
[26] Women diet+exercise M 365 116 —8.59 12.95 —-0.75
[26] Women diet+exercise O 365 116 —9.58 —8.99 —0.88
[27] Correlation IS and WL 336 72 -10.8 —-8.3 —-14.2

Table 1.
Outcome results of 12 clinical trials with a total of 39 study arms.
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We calculate the absolute change of the Rw-ratio ARw over duration of the trial
as in Eq. (14):

ARw = Rw,,_1 — Rw, (14)

We calculated the fat burning fraction using Eqgs. (15) and (16):

Qw1 - Rw, (

= 15)
1 Qw1 - Rw1 + o

QWn—l ] an,1 (

= 16)
AT Qw1 Rwa—1+Qp
We define the absolute change of fat oxidation fraction Ay as in Eq. (17):

Ay =Jn1— 21 (17)

We calculated the percent change AH% of the HOMA-IR over the duration of
the trial as in Eq. (18) where Hy is the average HOMA-IR value at baseline:

AanO

AH% = ———"=0_
° 7 0.01%H,

(18)

3. Method of the analysis of the CC trial data with WFE-DNL-AT
calculations

The detailed description of the WFE calculation with the capability of calculat-
ing DNL and adaptive thermogenesis/thermal loss (WFE-DNL-AT) is detailed in
Appendix A. For demonstration purpose we apply this method to analyze the
published result of the CC trial [29]. The CC trial [29] investigated 19 adults with
obesity. The intervention was the selective dietary restriction of carbohydrate (RC)
versus fat (RF) for 6 days following a 5-day baseline diet. Subjects received both the
isocaloric baseline diets followed by either RC or RF diet in random sequence during
two inpatient stays when they were confined to a metabolic ward for two 2-week
periods each. The 24-h nonprotein respiratory quotient Rup, was measured on day
—4, 0,1, 4, and 6 in a 24-h respiratory chamber. The baseline measurements were
taken at day 0. The published data of the CC trial were sparse, and the results of
laboratory measurements were published only for baseline and for the end point.

I generated the needed daily weight W), and fat weight F}, data using MATLAB’s
interpolation function ‘pchip.’ First, I calculated the daily Rw-ratio Rwy, fat burning
fraction y,, 24-hour nonprotein respiratory quotient Rnp,, de novo lipogenesis
DNLy, and adaptive thermogenesis T}, without the a priori knowledge of the
measured Rnp), on day 1, 4, and 6 using the uncorrected WFE-DNL-AT algorithm as
in (A1, A2, A3, A6, A7). Second, I performed inverse calculations using the
uncorrected WFE-DNL-AT model and the measured nonprotein respiratory quo-
tient Rup), on days 1, 4, and 6 as input to arrive at the indirectly measured de novo
lipogenesis mDNL and adaptive thermogenesis mT denoted mDNLRC, mTRC for
the RC arm and mDNLRF, mTRF for the RF arm of the CC trial. Finally, I analyzed
how the fat intake fraction ¢, could be used to predict better the measured non-
protein respiratory quotient Rup), and to estimate mDNLRC, mTRC, mDNLRF, and
mTRF and how to build a corrected WFE-DNL-AT, which includes (A4) for RF or
(A5) for RC diet and could work without the a priori knowledge of the measured
24-h respiratory quotient Rnp),.
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The steps of calculations followed the WFE algorithm as in [8], and for DNL
and AT calculations, I used Egs. (A1)-(A7). The unknown values for the adaptive
thermogenesis coefficient c47 and the unknown fraction of the metabolized
carbohydrate intake for de novo lipogenesis cpy;, were assumed to be time
independent for this analysis and their values were estimated with the assumption
that at baseline the energy balance is zero and the energy system is at steady state.
I used the same recursive minimization procedure as already explained in [8]
to calculate awy, the first-order term coefficient of the weight-fat logarithmic
relationship, and the energy density for weight gy, and the Rw-ratio Rwy,.

4. Results of the correlation analysis between HOMA-IR and chosen
state variables

The results of correlation analysis across 12 clinical trials with a total of 39 study
arms are summarized in Table 2. The percent change AH% of the HOMA-IR over
the duration of the trials was correlated with the absolute change ARw of the
Rw-ratio, absolute weight change AW, change of fat oxidation fraction Ay, and the
absolute fat mass change AF.

A sub-analysis was also performed with the results of correlation analysis of
three clinical trials, [18, 26, 27], with inclusion of 11 study arms. The rationale for
this sub-analysis was that all of them were long-term studies with duration of equal
or longer than 336 days with satisfying the stationarity requirement for the analysis.
The results of the sub-analysis are in Table 3.

AH% P value
ARw —0.6745 0.0000024
AW 0.6413 0.0000108
Ay 0.6218 0.0000238
AF 0.4748 0.0022542

Table 2.
Correlation vesults of 12 clinical trials with a total of 39 study arms.

AH% P value
ARw —0.8481 0.0009699
AW 0.8890 0.0002512
Ay 0.8206 0.0019656
AF 0.7605 0.0065810

Table 3.
Correlation vesults of three clinical trials: [18, 26, 27] with a total of 11 study arms.

5. Results of the analysis of the CC trial data with WFE-DNL-AT
calculations

The results of the WFE-DNL-AT calculations using published data of the CC
trial [29] are shown in Figures 1-6.

In Figure 1 the measurement points mFRC and mFRF and trajectories of the fat
mass change in the RC and RF arm of the CC study are shown. The dashed lines
FRC and FRF are the results of the WFE calculation.
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.10* Measured and Modelled Fat Mass with RC or RF
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Figure 1.
Measured and model calculated loss of fat mass without apriori knowledge of measured Rnp),

In Figure 2 the measurement points mMWRC and mWRF and trajectories of body
weight change in the RC and RF arm of the CC study are depicted. The dashed lines
WRC and WREF are the results of the WFE calculation.

In Figure 3 the measurement points and trajectories of HOMA-IR are shown in
the RC and RF arm of the CC trial. The dashed lines are the model predicted
calculations of the fat burning fraction y mRC and ymRF, and the dotted line
represents the Rw-ratios RWRC and RwRF in the RC and RF arm of the CC study.

. 10° Measured and Modelled Body Weight with RC or RF
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Figure 2.
Measured and model calculated weight loss without a priori knowledge of measured Rnp,.
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Figure 3.
Model calculated Rw-vatio, fat burning fraction y;, without a priori knowledge of measured Rnp),.

The measurement points and trajectories of the measured nonprotein respira-
tory quotient Rup;, in the RC and RF arm of the CC study are depicted as mRnpRC
and mRnpRF in Figure 4. The dashed lines are model predicted calculations of the
nonprotein respiratory quotient Rup), by the uncorrected WFE-DNL-AT model
labeled as model RnpRC and model RnpRF. The dotted lines denoted as corrected
RnpRC and corrected RnpRF are results calculated by the corrected WFE-DNL-AT
model.

Effects of RC or RF on Measured, Modelled and Corrected Model Rnp
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Figure 4.

Measured nonprotein vespivatory quotient Rnpy;, uncorrected WFE-DNL-AT model predicted nonprotein

respiratory quotient Rnp,,, and corrected WFE-DNL-AT model predicted nonprotein vespiratory

quotient Rnp,.
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9%fofectss of RC or RF on Measured, Modeled and Corrected Model DNL
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Figure 5.
The indirectly calculated DNL from measured nonprotein vespiratory quotient Rnp,,, DNL prediction by the
uncorrvected WFE-DNL-AT model, and predicted DNL by the corrected WFE-DNL-AT model calculation.

Figure 5 is to demonstrate the results of DNL calculations using measured Rnp),
on day 1, 4, and 6 using inverse calculations with the uncorrected WFE-DNL-AT
model in the RC and RF arm of the CC study marked as mDNLRC, and mDNLRF.
The uncorrected WFE-DNL-AT model predicted results are denoted as DNLRC and
DNLRF marked with dashed lines. The dotted lines GFRC and GFRF are showing
the results of the corrected WFE-DNL-AT model calculations for DNL.

Adaptive Thermogenesis (Loss) of RC or RF diet
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Figure 6.
The indirectly calculated adaptive thermogenesis using the uncorvected WFE-DNL-AT model and the corrected
WFE-DNL-AT model calculation.
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RC diet RF diet
AH% P value AH% P value
Fat mass 0.9958845 0.9916711 1.0 0.9916711
Body weight 1.0 0.0000000 1.0 0.0000000
R-ratio —0.9964298 0.0000000 —0.9973225 0.0000000
Rw-ratio —0.9973225 0.0000000 —0.9979249 0.0000000

Table 4.
Correlation results in the CC [29] study.

RC diet RF diet
Mean Stand.dev. Mean Stand.dev.
Error fat mass —0.2921 3.2736 —0.1098 5.4886
Error weight 185.7393 233.7933 55.4621 80.9364
Error lean mass 178.7499 217.0219 15.8333 26.239

Table 5.
Ervor of prediction vesults in grams in the CC [29] study.

The adaptive thermogenesis/thermal loss calculation is in Figure 6. The dashed
lines labeled with model TRC and model TRF are the results of the uncorrected
WEFE-DNL-AT model in the RC and RF arm of the CC study, respectively. The
dotted lines labeled as corrected mTRC and corrected mTRF show the corrected
WFE-DNL-AT results.

The correlation results between HOMA-IR and fat mass, body weight, R-ratio,
and Rw-ratio are shown in Table 4. The errors of modeling fat mass, body weight,
and lean mass in grams are shown in Table 5.

6. Discussion

The most important result of our meta-analysis across 12 clinical trials with a
total of 39 study arms [16-27] is the high and significant correlation between
changes of insulin resistance as measured with HOMA-IR and changes of Rw-ratio.
The strength of this analysis is that the high correlation prevailed for all of the state
variables examined regardless whether weight loss or weight gain was achieved
during the trial and in the setting of a wide range of trial durations from 3 days to
365 days. As shown in Table 2, Rw-ratio ranked best regarding the level of correla-
tion, followed by weight, fat weight, and fat burning fraction. Further, the high
correlation is independent from dietary interventions such as isocaloric diet, over-
feeding, or underfeeding or with or without exercise intervention. This result
means also that the use of Rw-ratio as a surrogate marker for indirect measure of
insulin resistance is justifiable for modeling changes of insulin resistance. The sub-
analysis looked at studies lasting longer than 336 days. The correlation coefficients
scored as in Table 3 are even higher than in Table 2 with all the studies included.
This predictive strength of the Rw-ratio regarding insulin resistance change could
be even stronger in situations when strict steady-state energy balance is present as
expected with longer study duration. An important advantage of the simple WFE
analysis with Egs. (1)-(18) is that only serial measurement of weight and fat weight
is used and no calorie counting was done. The prevailing daily energy balance can
be simply calculated as in Egs. (2)—(5). Likewise, R-ratio or Rw-ratio can be
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obtained with simple arithmetic as in Egs. (6)-(14), which can lead to the calcula-
tion of the fat burning fraction y,. Using Elia and Livesey’s formula [31], the fat
burning rate y; can be converted into the estimated 24-h nonprotein respiratory
quotient Rnp,,. HOMA-IR change can be predicted by knowing that R-ratio and Rw-
ratio are strongly and inversely correlated. This means that their reciprocal values
could be used to predict proportional change of HOMA-IR. The strong correlation is
in accordance with earlier findings of Thompson and Slezak [27] who were the first
to report correlation between measures of insulin sensitivity and weight loss. They
showed that the McAuley formula, which contains reference to triglyceride, showed
greater correlation with weight loss than HOMA-IR, which does not contain infor-
mation on lipids, supporting the idea that the sugar, insulin, and lipid kinetics and
energy dynamics could and should be measured and modeled together. Therefore,
extending the WFE model with the capability of estimating DNL like in the WFE-
DNL-AT model is of theoretical as well as of practical importance for clinical use.

One weakness of the current analysis is that no individual data are published and
the published data represent lumped together averages of weight and fat weight
measurements at the beginning and at the end of the study period. The lack of
individual serial data of weight or fat weight does not allow to have an exact insight
into the dynamic of the process of body composition change which could occur
along a concave or convex monotone decreasing function. Therefore, it is important
to have the individual data and build an individual model which could be used also,
among others, for interpolation to find missing data points.

Also, measuring insulin resistance with HOMA-IR has its own weaknesses, and
maybe the McAuley formula could hold promise to improve model predictions.

The strength of the WFE modeling scheme with Eqgs. (1)-(18) is that it makes
minimal assumptions requiring only weight and fat weight data and it works also
well for prediction of changes of HOMA-IR even when only the baseline value and
the last measured value are available. The practicality of this matter is that the
already commercially available measuring devices such as bioimpedance body
composition analyzers are available, although their accuracy could be questioned.
However, as a countermeasure we suggest the use of the Kalman filter [10, 11,

32, 33] minimizing the variance of the measurements and maximizing consistency.
The main contribution to science of the CC trial is that it offers an important
glimpse into the acute phase reaction of the body’s adaptation to the energy deficit

state of glucose vs. fat. Even though RC diet increased the measured net fat disap-
pearance more than the RF diet, the RF diet was more effective in the overall fat
weight loss. I interpret this result as the body’s physiological adaptation to a new
and negative energy balance by increasing the production of readily usable needed
fuel such as triglyceride or extra DNL# as a way to meet demand above and beyond

the predicted new steady-state level of DNLY. The increased demand comes from
the sudden drop of energy intake and ensuing energy deficit accompanied by
relatively undisturbed carbohydrate and fat fuel burning rates of the body. The
suddenly needed extra energy for DNL{ comes from different sources in the RC vs.
RF dietary interventions. In RC with drop of available glucose, the needed energies
come from the fat pool. In the RF scenario, the body readily grabs the available
glucose at hand coming from undisturbed carbohydrate energy intake. While equal
calorie deficit is created under both RC and RF, the RF state would sink more
calories into new fat synthesis, i.e., DNL#, as the fat synthesis from carbohydrate is
an energy consuming process. This is because, according to Simonson [13], during
lipogenesis each gram of lipid synthetized from glucose consumes op; = 2.32 kcal/
g energy, and the process appears to be an energy “sink.” In the RC diet, the needed
extra triglyceride can be produced with simple lipolysis with no significant extra
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energy consumption or energy “disappearance or sink.” Our modeling of this phe-
nomenon with simple energy calculations for GFRF), as in Eq. (A4) and for GFRC;,
in Eq. (A5) is fully consistent with the measured result as demonstrated in Figure 5,
where GFRF), and GFRC,, and the measured DNL mDNLRC and mDNLRF are
convincingly close to each other. The ratio of energy content of GFRF}, and GFRC;,
reflects the difference of adaptation in RF vs. RC diet explainable now with
Simonson’s postulate for lipid synthesis from glucose [13] and using the energy
constant Qpy; = 2.32 keal/g (see also Appendix A for more detail).

The strength of WFE-DNL-AT modeling is that the fat mass change predictions
are accurate as in Figure 1, even under dietary interventions such as the RC or RF
diet in the CC trial considered extreme. As fat mass measurement is a primary input
data to our model calculations, its accuracy is essential to arrive at desired precision.
Hall et al. [29] used DXA scan in the “CC” trial. Even with this very expensive tool,
they felt that DXA still was inaccurate to determine fat mass in situations of
dynamic weight change and shifting body fluids. Using commercially available
bioimpedance scales for fat mass measurement with a one point in time, measure-
ment certainly has much higher inaccuracy than DXA in determining the fat mass.
However, currently most bioimpedance scales utilize the 50 kHz measuring fre-
quency which gives quite suitable accuracy for extracellular water mass and intra-
cellular water mass which resides mainly in lean mass, and the water content of the
fat cell is negligible. In a way, the fat weight measurement by bioimpedance mea-
surement is indirect: weight minus lean mass. This could be advantageous during
weight loss when the fluids are shifting. Daily measurements with bioimpedance
scale have the advantage that through obtaining a series of measurements, impor-
tant secondary information related to weight, lean mass, and fat mass change can be
obtained, and the variance of these measurements will allow for presentation of
data in the =+ standard deviation form. In response to the need for practicality,
accuracy, and transparency in bioimpedance measurements, our company, Ori
Diagnostic Instruments, LLC, has invented a Body Composition and Hydration
Status Analyzer in unison with a high-frequency dielectric property analyzer
[32, 33] which can quantify the size of intracellular and extracellular water along
with fat mass better than commercially available bioimpedance analyzers because it
measures the dielectric properties of tissue also at high frequency which is more
suitable for fat mass change measurements. We take advantage of serial measure-
ments by providing a posteriori values to a Kalman filter where the a priori esti-
mates are obtained from our self-adaptive model of the human energy metabolism
[9]. The combination of process model and measurement model equations com-
bined with Kalman filter realizes a classic state-space modeling scheme [9], keeping
the variance of measurements at minimum and maximizing consistency.

Regarding the body weight prediction with WFE-DNL-AT, far more chal-
lenges could be raised. In Figure 2, it is shown how the measured and predicted
weight deviates, especially at day 3. Here are a high number of influencing factors
at work. Probably most importantly, the daily measured weight decreases could
follow an exponentially declining concave function rather than a convex function
such as the applied interpolation function “pchip” in MATLAB. Beyond this
modeling error, the lack of modeling of the extracellular and intracellular water
mass change along with modeling glycogen and protein store changes is an issue in
the current form of WFE-DNL-AT. In this regard our company, Ori Diagnostic
Instruments, LLC, has created a patented modeling solution which includes also
modeling of the intracellular as well as extracellular fluid volume changes and
predicts also protein store as well as glycogen store changes [32, 33]. All results
appear in the scientific form + standard deviation, letting the user know about the
accuracy and its change.
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This demonstration study using CC trial data showed again the high level of
correlation between HOMA-IR and R-ratio, Rw-ratio, weight, and fat mass as
shown in Table 4. The modeling error of weight lean mass and fat mass was low as
in Table 5. The calculated results for y, depicted as dashed lines in Figure 3 are
nicely pointing to the measured HOMA-IR values, demonstrating the predictive
power of the calculated burning rate regarding HOMA-IR change prediction. This is
driving home the main point that indirect measurement and prediction of HOMA-
IR is possible, and the WFE model predicts that the RF diet leads to more reduction
of insulin resistance and concomitant fat reduction than RC as measured.

In terms of modeling and predicting correctly changes of Rnp, the CC trial data
were instrumental to improve our WFE-DNL-AT. It turns out that the truly measured
Rnyp), can be reproduced accurately at known calorie imbalance either with RC or RF
diet as demonstrated in Figure 4. In the case of RC diet, the drop of glucose supply
leads to lipolysis as in the model of GFRC}, (see Appendix Eq. (A5)). During RF diet
GFRF}, energy will come mainly from available glucose and is easily quantifiable with
our model (see Appendix Eq. (A4)). It has to be emphasized that the use of WFE-
DNL-AT is possible only if the correct daily macronutrient energy of food is known.

This paper confirms for clinicians the long felt close relationship of insulin resis-
tance to the energy metabolism, opening the theoretical opportunity to merge quan-
titative insulin sensitivity assessments such as the homeostasis model assessment [37]
of glucose and insulin kinetics with quantitative modeling and measuring dynamics of
the lipid metabolism including de novo lipogenesis, lipolysis, lipid deposition, and net
lipid synthesis or net lipid loss along with lipid oxidation. Importantly, WFE-DNL-AT
could be the first step to extend the homeostasis model assessment in this direction.
The advantage of such modeling efforts is that the individual’s entire lipid metabolism
could be appropriately quantified for the clinician and connected to the processes of
insulin and glucose kinetics. Further, the current modeling technique allows already
for derivation of a person’s individualized metrics of metabolic parameters with
canonical representation [10], allowing for intra- and interindividual comparison of
the parameters; observing daily changes and monitoring long-term changes of the
energy metabolism with the help of a metabolic health monitoring app [11]; control-
ling the energy metabolism by possible implementation of a favorable adaptive
control intervention with instantaneous feedback of metrics to the user to reach
targeted results; and long-term analysis, cardiovascular risk assessment, and
intervention planning by the healthcare team with observance of applicable clinical
guidelines [2].

The ultimate outcome measure of any clinical intervention is mortality, includ-
ing CVD and all-cause mortality. A CPS is empowered to calculate trends and
trajectories of fat mass, which can also be translated into predicted changes of
visceral fat and waist circumference. In addition to this, other important mortality
predictors could be added, like heart rate variability, leading to improved prediction
of all-cause mortality and sudden cardiac death [34, 35]. Measuring and tracking
cardiovascular fitness in terms of exercise capacity and maximum oxygen uptake
makes sense in view of the very strong inverse correlation between mortality and
fitness [36] and direct correlation between insulin resistance syndrome and cardio-
vascular mortality [1]. Ultimately, in a fully developed CPS system, all essential
metabolic variables and cardiovascular fitness measures could be tracked and used
for prevention. An all-encompassing cardiovascular risk assessment by CPS could
be achieved by adding traditional cardiovascular risk factors (i.e., blood pressure,
smoking, age, gender, cholesterol, diagnosis of diabetes mellitus, among others),
and these results would be at the fingertip of the user, who would be the owner of
the data displayed on his/her smartphone. After proper consenting, secondary
analysis of metabolic data could help not only clinical research but also insurance
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companies to calculate costs and potentially reimburse the treatment/self-treatment
and improvement of risk factors for CVD. A value-based health delivery system
holds potential to incentivize participants to improve their lifestyle, especially if
insurance companies would honor participants with a discount on the premiums for
those who were successful to lower their cardiovascular risk.

One final point is worth mentioning regarding our Lagrangian equation as it
appears in Eq. (A10). The seemingly useless-looking Lagrange multiplier terms such
as hawpg, My > MpnLe, and Acary can provide important and coveted individual
sensitivity values to the fixed valued constraints, i.e., sensitivity value of the energy
metabolism to the parameters awy, Qy;> cpNLE> and ca7y. This can potentially reveal
important individual sensitivity patterns to planned or executed interventions.

7. Conclusion

In this paper we presented the foundation of our mobile computing-based solu-
tions to help better observe and control the energy metabolism. We see our
approach as an appropriate response to the frustration of the public at large along
with health professionals regarding perceived inadequateness of the current state of
nutritional research [38] and at the same time give an answer to the call of academic
authors for patient-centered individualized care [39]. Based on a rigorous examina-
tion of our methods here and in prior publications, we conclude that our mathe-
matical modeling scheme along with the suggested computing tools is workable and
appropriate to monitor, analyze, and predict individualized state variables of the
metabolism, providing metrics for the quantification of the interrelationship
between energy metabolism and insulin resistance which is strongly connected to
obesity, fatty liver, prediabetes, metabolic syndrome, type 2 diabetes, cardiovascu-
lar morbidity, and mortality. Our mobile computing-based solutions have the
potential of unlocking the vast potential of digital health. We achieved the goal of
creating individualized metabolic metrics for use in mobile technology in the user’s
natural environment. We demonstrated that our Weight-Fat-Energy balance
calculations are appropriate to predict changes of HOMA-IR. We found that the
Weight-Fat-Energy balance calculations extended with the assessment of de novo
lipogenesis and adaptive thermogenesis/loss predict the changes of the metabolic
state variables such as Rw-ratio, weight, fat mass, and 24-h nonprotein respiratory
quotient with very much acceptable accuracy. We found that the estimation of the
de novo lipogenesis and adaptive thermogenesis calculations follow closely mea-
surements that were done using a metabolic chamber for 5 days. It may just be
possible to get 24-h respiratory quotient measurements in patients in their natural
environment without using the metabolic chamber. We found that our analysis and
predictions of the state variables of the metabolism remain valid not just at steady
state but also during transitional phases. Incorporating Weight-Fat-Energy balance
calculations with extended capability of de novo lipogenesis and adaptive thermo-
genesis assessment into mobile technologies and into a cyber-physical system [8]
can provide appropriate real-time tools to monitor and optimally adjust modifiable
risk factors of an individual’s metabolism, allowing for planning and executing
dynamic changes of behavior for optimization and control. All-encompassing car-
diovascular disease risk scores can be created, tracked, modified with appropriate
lifestyle changes, and used ultimately as outcome measures to improve health
status. All these possibilities are applicable in resource-limited settings with mini-
mal investment with implications for overall reduction of health costs and the
potential to calculate sustainable reduction of premiums by insurers awarding
compliance and efficacy in reaching and maintaining reasonable health status.
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Glossary

Measured variables

Fy fat weight

AFy, fat mass change in 24 h

W, weight

AW, body weight change in 24 h

EB, daily energy balance

AEB,, positively signed energy deficit

EPy, energy production with substrate oxidation

Derived or estimated variables

BMR,, basal metabolic rate

CATE adaptive thermogenesis coefficient

CDNLE fraction coefficient of the metabolized carbohy-
drate intake used for lipid synthesis

CIy carbohydrate calorie intake

DNLy, de novo lipogenesis

DNL} de novo lipogenesis in the acute phase of energy
perturbation

DNL#R¢ de novo lipogenesis in the acute phase of energy
perturbation with RC diet

DNL;:RF de novo lipogenesis in the acute phase of energy
perturbation with RF diet

DNL} de novo lipogenesis in the steady-state phase of
energy perturbation

GFRC,, glucose equivalent of energy for needed fat
(DNL) energy with RC diet

GFRF}, glucose equivalent of energy for needed fat
(DNL) energy with RF diet

Ly, lean mass

ALy, lean mass change in 24 h

mDNLy, calculated DNL using measured 24-h nonprotein
respiratory quotient Rup),

MEI, metabolically utilized energy intake

mT}, calculated adaptive thermogenesis/thermal loss
using measured 24-h nonprotein respiratory quo-
tient Rnp),
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PAE,

Ty
TEE,
Ry
ka
Rnp,,
Rnp),
awy,

AeATE

ACDNL

}»awk

Mwp,

Qc~ 4.2 keal/g
Qr = 9.4 kcal/g

Qr ~ Qp = 9.4 kcal/g

Qpn, X 2.38 keal/g
or ~ 1.8 kcal/g
Qwp

Pr

Xk

Appendix

physical activity energy expenditure via smart
watch sensors

adaptive thermogenesis/thermal loss

total energy expenditure

R-ratio

Rw-ratio

nonprotein respiratory quotient

measured nonprotein respiratory quotient
first-order term coefficient of the weight-fat log-
arithmic relationship

Lagrange multiplier of the adaptive thermogenesis
coefficient

Lagrange multiplier of the fraction coefficient of
the metabolized carbohydrate intake used for
lipid synthesis

Lagrange multiplier of the first-order term coeffi-
cient of the weight-fat logarithmic relationship
Lagrange multiplier of the energy density for
weight

energy density for glucose

energy density for fat (dioleyl palmitoyl
triglyceride)

in the case of net fat loss; for net fat synthesis,
the value is 9.4 + 2.38 kcal/g because synthesis
cost of fat from glucose is added to the energy
density of fat

energy cost for synthesis of 1 g fat from glucose
the energy density for lean mass

energy density for weight

fat intake fraction

fat burning fraction

The WFE calculation using Eq. (1) has been already introduced to the reader in
[8]. WFE-DNL-AT is an extension of the WFE calculation to include de novo
lipogenesis (DNL) and adaptive thermogenesis (AT). Here we are using similar
annotation (see Glossary) as in [8] for the nonfat and fat balance as in Egs. (A1) and
(A2), respectively, which will include now DNL:

Qwy - AWy = (1 —¢,,) - MEI}, — DNLj, — (1 — y,,) - TEE, (A1)

op - AFy = @, - MEI, + DNL;, — y,, - TEE}, (A2)

WEE calculations can provide ways to determine gy, Rwo, and y;, without
calorie counting. In order to calculate DNL;, the measurement of the total energy
expenditure TEE}, and the metabolized energy intake and along with it the fat intake
fraction ¢, are needed. In addition, knowledge of the utilized carbohydrate intake
CI,, is a prerequisite as our modeling proposition for DNL follows on one hand the
modeling proposition of Hall [35], and on the other hand, it follows the common
clinical observation that with increasing insulin sensitivity, less DNL is generated
and vice versa with decreasing insulin sensitivity (increasing insulin resistance),

18



Metabolic Health Analysis and Forecasting with Mobile Computing
DOI: http://dx.doi.org/10.5772/intechopen.88872

more DNL is generated. We use here our earlier observation that the R-ratio or the
Rw-ratio is inversely correlated with HOMA-IR and mimics a measure for insulin
sensitivity [8, 10, 11]. Hence the proposed model for steady-state level of DNL at
baseline at day & = 0 is in Eq. (A3):

cpnro - Clo
Qwo " Rwo + oF

DNL} = (A3)

Here cpnpo means the fraction of the metabolized carbohydrate intake which is
used for de novo lipogenesis, and its value needs to be determined. At steady state all
variables must be stable over time with little or no change. The new steady state is
symbolized as DNL}B where indexj = 1 enumerates the steady states in sequence.

Between two steady states, the DNL calculation will have acute phase component. For
fasting experiments, we show here our modeling of the acute phase component. In
acute phase of fasting, the production of DNL must cover the needed fat (mainly
triglycerides) for the relatively unchanged fat burning rate of the body cells. The
important principle for understanding the metabolic pathways is the fact that glucose is
the prime ingredient for DNL production and fat cannot be directly converted to sugar.
However, lipolysis can provide the needed free fatty acid and glycerol if glucose is not
readily available. We found evidence by studying results of the CC study that the acute
phase DNLZ is determined primarily by the sudden rise of the positively signed energy
deficit AEB;,. The energy source to cover DNL;;1 is different in RF diet versus RC diet.

In case of RF diet where the required energy AEB;, comes from undisturbed
glucose supply, the glucose is oxidized to fat during lipid synthesis to meet the
demand for DNL{®F, This is a process which would increase Rnp above 1 [31] if the
ongoing fat oxidation is ignored. However, with the ongoing fat oxidation, the 24-h
Rnp will not rise above 1, but it would show an increasing trend toward 1 as
demonstrated in Figure 4. The glucose equivalent energy for needed fat energy is
denoted here as GFRC, in kcal, and a simple formula in Eq. (A4) expresses at least
at the beginning of the adaptation of the quantitative relationships:

DNL{® = GFRF,, = AEB;, (A4)

During the RC diet, the acute phase DNL{RC is thought to come mainly from the
fat pool through lipolysis. I modeled this in a way which clearly shows how the
initial adaptation to RC diet would proportionally compare with the RF diet. This
formula is in Eq. (A5):

__ % AgB, (A5)

DNL{R® = GFRC), =
Qc + Qpnr

Here GFRC}, stands for the glucose equivalent energy in kcal to meet the fat
energy demand. The factor o;/(Qc + Qppy,) is to express that only a fraction of AEB;,
is needed coming from fat pool with RC diet compared with glucose energy source
with RF diet. The modelling equation in Eq. (A5) of the RC diet differs from Eq.
(A4) of the RF diet because the Simonson’s rule [13] does not apply in the RC
scenario, but it will very much apply to RF scenario where lipogenesis occurs from
glucose, and each gram of lipid synthetized from glucose consumes Qpy; = 2.32
kcal/g energy. The graph of Figure 5 shows well that the theoretical models in
Eq. (A4) and (A5) run very close to the measured values.

Here we give our modeling of the adaptive thermogenesis which occurs with
energy imbalance with metabolic changes to oppose the body composition change.
In practical terms with negative energy balance, the adaptive thermogenesis T},
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diminishes the total energy expenditure; vice versa with weight gain, the adaptive
thermogenesis T, adds the total energy expenditure leading to lesser weight
increase than expected by simple calorie counting. For modeling this phenomenon,
we chose to use Hall’s equation for adaptive thermogenesis [35] as in Eq. (A6):

1 MEI,_y — MEIL_4 T,
catk - Th ==~ ] 1= a2 b cares - Thn (A6)
T MEI, T

Here, c47 means adaptive thermogenesis coefficient, a parameter which must be
estimated. The value for the time constant is assumed to be 7 = 7 according to Hall
[35]. If uncertainty exist, then parameter estimation is needed also for 7. MEI;_
means metabolized energy intake at baseline steady state, and MEI;_; is the energy
intake at the end of the adaptation period when the next steady state has been reached.

The total adaptive thermogenesis sums up over time from i = 0 until final day
i =k as in Eq. (A7), assuming a quasi-stable c47), over the examined time period:

(A7)

k
1 MEIL;_y — MEI,;_ T;_
( ) =0 j=1 . 1 + Tkl)

T =
k(carr) ; CATk - T MEI,

For days with transition from one steady state to another, the total energy
expenditure TEE}, is replaced by the sum of energy production EP, and the adaptive
thermogenesis/sink T, as in Eq. (A8):

TEE, = EP, + T, (A8)

The daily energy production can be determined from Eq. (A9):
EP, = PAE;, + BMR, (A9)

For theoretical purpose, we want to update here our proposed thermodynamic
Lagrangian functional presented already in [8] to determine the unknown parame-
ters awy, and ¢y, for WFE calculations. In doing so, we utilize the principles of
indirect calorimetry and the principle of “least action or stationary action” [8].

The extended model WFE-DNL-AT is empowered to calculate DNL as well as
AT. For this purpose the determination of the following unknown parameters are
needed, awy, Qwy> ¢DNLE> and caTy, by using known values of Wy, Fy,, EPy,, MEI,
CIy, and ¢;,. The new form of the thermodynamic Lagrangian functional contains
now implicitly DNLy, as a function of ¢pnrk, Clk, Qwp» and Rwy and the adaptive
thermogenesis/thermal loss T}, as a function of the parameter c47), as shown in
Eq. (A10):

£=>" [(ewy - Rwi + Qg) - AFy, + MEI — PAE}, — BMR;, — Ti(cari)]”
k=0

+ Xawk : [AWk — AWy, - ——

2 A10
+ 2wy - [Qwp - AW — MEI, + EPy + Ty(cary) — op - AF] (A10)

Qwy - Rwe ¢onLk - Cly
Qwy - Rwr +or TEE - (QWk Rwy, + QF)

+ ADNLE | P —

+ Meary, - [TEE), — EPy, — Ti(cary))
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Note that TEE}, can be calculated from the energy balance equation which is the
sum of Egs. (A1) and (A2).

The Lagrangian functional £ contains all energy forms entering and exiting the
human body along with the subsidiary conditions for the unknown parameters awy,
Qwp> CDNLE> and ca7), from beginning day k£ = 0 to end k = 7 of observation. The
equations with the constraints for the unknown parameters awy, Qy,» ATk, and
cpnLi, add up to zero, and they are entered with their time-dependent Lagrange
multipliers and Aawy, AQw,> Acpnrk, and Acaty as in Eq. (A10). A minimization
procedure will give the estimations for the unknowns awy, o> cpnLE> and caTy.
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