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Chapter

Partial Entropy and Bundle-Like
Entropy for Topological
Dynamical Systems
Kesong Yan and Fanping Zeng

Abstract

Entropy is an important notion for understanding the complexity of dynamical
systems. Several important entropy-like invariants based on the preimage structure
for noninvertible maps have been defined and studied by some authors. In this
chapter, following the idea of Hurley, we first further study the relationship among
the topological entropy, pseudo-orbit, and preimage entropies for topological
dynamical systems from the view of localization. Secondly, two entropy-like
invariants, which are called the partial entropy and bundle-like entropy, for
nonautonomous discrete dynamical systems are introduced. A relationship between
the topological entropy and such two entropies is established.

Keywords: topological entropy, point entropy, pseudo-orbit, partial entropy,
bundle-like entropy
2000 Mathematics Subject Classification: Primary: 37B40, 37A35, 37B10, 37A05

1. Introduction

Bya topological dynamical system,wemeanapair X,Tð Þ,whereX is a compactmetric
spacewith ametric d andT is a continuous surjectivemap fromX to itself [1]. An
important notion for understanding the complexity of dynamical systems is topological
entropy, whichwas first introduced byAdler et al. [2] in 1965, and later Dinaburg [3]
andBowen [4] gave two equivalent definitionson ametric spacebyusing separated sets
and spanning sets. Roughly speaking, topological entropymeasures themaximal expo-
nential growth rate of orbits for an arbitrary topological dynamical system.

When a considered mapping T is invertible, it is well-known that T and the

inverse mapping T�1 have the same topological entropy. However, when the map T
is not invertible, the “inverse” is set-valued, yielding the iterated preimage set
T�n xð Þ ¼ z∈X : Tnz ¼ xf g of a point x∈X which is in general a set rather than a
point, so different ways of “extending the procedure into the past” lead to several
new entropy-like invariants for non-invertible maps.

In 1991, Langevin and Walczak [5] regard the “inverse” as a relation and formu-
late a notion of entropy for this relation (analogous to the entropy of a foliation [6]),
based on distinguishing points by means of the structure of their “preimage trees,”
which is called preimage relation entropy. The interested reader can see [7] or [8] for
more details on this invariant. Later, several important entropy-like invariants based
on the preimage structure for non-invertible maps, such as pointwise preimage
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entropies, preimage branch entropy [1, 8–10], partial preimage entropy, conditional
preimage entropy [11], etc., have been introduced, and their relationships with topo-
logical entropy have been established. To learn more about the results related to the
preimage entropy for noninvertible maps, one can see [12–23].

The local entropy theory for topological dynamical systems started in the early
1990s with the work of Blanchard (see [24, 25]). Nowadays this theory has become
a very interesting topic in the field of dynamical systems and has also proven to be
fundamental to many other related fields. For example, Blanchard defined the
notion of entropy pairs and used it to obtain a disjointness theorem [26]. The notion
of entropy pairs can also be used to show the existence of the maximal zero-entropy
factor, called the topological Pinsker factor, for any topological dynamical system
[25]. In order to gain a better understanding of the topological version of a K-
system, the theory of entropy tuples [27–29] was developed. To learn more about
the theory related to the local entropy, we refer the interested reader to see the
survey paper [30] and references therein.

We remark that in reality, it is difficult to find a real orbit in the system, but a
pseudo-orbit can be used to approximate the real orbit, and so there have been a lot of
applications in many fields. Since the works of Bowen [31] and Conley [32], pseudo-
orbits have proved to be a powerful tool in dynamical systems. For instance, Hammel
et al. [33, 34] have investigated the role of pseudo-orbits in computer simulations of
certain dynamical systems; Barge and Swanson [35] made use of pseudo-orbits to
study rotation sets of circle and annulus maps. Also, a remarkable result by
Misiurewicz [36] showed that the topological entropy can be computed by measuring
the exponential growth rate of the numbers of pseudo-orbits (related results can see
[37]). In [1], Hurley showed that the point entropy with pseudo-orbits that is defined
by replacing inverse orbit segments by inverse pseudo-orbit segments in the defini-
tion of pointwise preimage entropy is in fact equal to the topological entropy.

In this chapter, following Hurley [1] we further study the preimage entropy for
topological dynamical system from the view of localization. In Section 2, we con-
sider the calculation of topological entropy for open covers from pseudo-orbits
(Theorem 2.3). In Section 3, we investigate the relationship among the topological
entropy for open covers and several preimage entropy invariants, which is viewed
as the local version of the Hurley inequality (Theorem 3.1). In Section 4, we show
that the topological entropy for open covers can be computed by measuring the
exponential growth rate of the number of pseudo-orbits that end at a particular
point (Theorems 4.2 and 4.3).

A nonautonomous discrete dynamical system is a natural generalization of a
classical dynamical system; its dynamics is determined by a sequence of continuous
self-maps f n : Xn ! Xnþ1, which defined on a sequence on compact metric spaces
(Xn, dn). The topological entropy of nonautonomous discrete dynamical systems was
introduced by Kolyada and Snoha [38]. In Section 5, following the idea of [1, 39], we
introduce two entropy-like invariants, which are called the partial entropy and
bundle-like entropy, for nonautonomous discrete dynamical systems, and study the
relationship among them and the topological entropy (Theorems 5.2, 5.3, and 5.5).

2. Topological entropy and pseudo-orbits

2.1 Topological entropy via open covers

Topological entropy was defined originally by Adler et al. [2] for continuous
maps on compact topological spaces. Let X,Tð Þ be a topological dynamical system.
A finite open cover of X is a finite family of open sets whose union is X. Denoted by
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CoX is the set of finite open covers of X. Given two open covers U,V ∈ CoX, U is said to
be finer than V (U ≽V) if each element of U is contained in some element of V. Let
U∨V ¼ U∩V : U ∈U, V ∈Vf g. It is clear that U∨V ≽U and U∨V ≽V.

Let U ∈ CoX . For two nonnegative integers M≤N, denoted by UN
M ¼ ∨N

n¼MT
�nU,

where T�nU ¼ T�n Uð Þ : U ∈Uf g for all positive integers n. For any K ⊂X, define
N UjKð Þ as the minimal cardinality of any subcovers of U that covers K. We write
N UjXð Þ simply by N Uð Þ. The topological entropy of U with respect to T is defined by

htop T,Uð Þ ¼ lim
n!∞

1

n
logN Un�1

0

� �

¼ inf
n≥ 1

1

n
logN Un�1

0

� �

: (1)

The topological entropy of T is

htop Tð Þ ¼ sup
U ∈ CoX

htop T,Uð Þ: (2)

2.2 Separated sets, spanning sets, and topological entropy

In this subsection, we recall two equivalent definitions, which are given by
Dinaburg [3] and Bowen [4]. Let X,Tð Þ be a topological dynamical system.
Given a nonempty subset K of X, for any ϵ>0 and n∈ℕ, a subset E of K is called an
n, ϵð Þ-separated set of K if any x 6¼ y∈E implies dn x, yð Þ≥ ϵ, where

dn x, yð Þ≔ max
0≤ i≤ n�1

d Tix, Tiy
� �

:

Denote the maximal cardinality of any n, ϵð Þ-separated subset of K by s n, ϵ, Kð Þ.
A subset F of K is called an n, ϵð Þ-spanning set of K, if for any x∈K, there exists y∈F
with dn x, yð Þ< ϵ. Denote the minimal cardinality of any n, ϵð Þ-spanning set for K by
r n, ϵ, Kð Þ.

The following lemma is well-known, and its proof is not difficult, so we omit its
detail proof.

Lemma 2.1. Let X, Tð Þ be a topological dynamical system. For any subset K of X and
any integer n≥ 1, we have the following properties:

1.r n, ϵ, Kð Þ≤ s n, ϵ, Kð Þ≤ r n, ϵ=2, Kð Þ for all ϵ>0.

2.N Un�1
0 jK

� �

≤ r n, δ, Kð Þ for any n∈ℕ and any U ∈ CoX with the Lebesgue number 2δ.

3. s n, ϵ, Kð Þ≤N Un�1
0 jK

� �

for any U ∈ CoX with diam Uð Þ< ϵ.

By Lemma 2.1, we obtain directly the following result.

Theorem 2.2. (see [3, 4, 40]). Let X, Tð Þ be a topological dynamical system. Then

htop Tð Þ ¼ lim
ϵ!0

lim sup
n!∞

1

n
log s n, ϵ, Xð Þ ¼ lim

ϵ!0
lim sup
n!∞

1

n
log r n, ϵ, Xð Þ:

2.3 Topological entropy via pseudo-orbits

Let X, dð Þ be a compact metric space. Denote Xn as the n-fold Cartesian product
of X (n≥ 1Þ. Fixing a positive number ϵ, a subset E⊂Xn is said to be n, ϵð Þ-separated

if for any two distinct points ~x ¼ x0, x1,⋯, xn�1ð Þ, ~y ¼ y0, y1,⋯, yn�1

� �

∈E, there is a

0≤ i≤ n� 1 such that d xi, yi
� �

> ϵ. By the compactness of X, any n, ϵð Þ-separated set
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is finite. If Z ⊂Xn is a nonempty subset, then we denote the maximal cardinality of
any n, ϵð Þ-separated subset of Z by s n, ϵ, Zð Þ.

Let Z ⊂Xn be a nonempty subset. A subset F⊂Z is called n, ϵð Þ-panning for Z if

for each ~z ¼ z0, z1,⋯, zn�1ð Þ∈Z, there is a ~y ¼ y0, y1,⋯, yn�1

� �

∈F with d zi, yi
� �

< ϵ

for every 0≤ i≤ n� 1. We denote the minimal cardinality of any n, ϵð Þ-spanning
subset of Z by r n, ϵ, Zð Þ.

For each positive integer n≥ 1, we let On denote the set of all orbit segments of
length n, that is,

On ¼ x, Tx,⋯, Tn�1x
� �

∈Xn
: x∈X

� �

:

Note that a point ~w ¼ x, Tx,⋯, Tn�1x
� �

∈On is uniquely determined by its initial

point x∈X. Thus, we have

htop Tð Þ ¼ lim
ϵ!0

lim
α!0

lim sup
n!∞

1

n
log s n, ϵ, Onð Þ

¼ lim
ϵ!0

lim
α!0

lim sup
n!∞

1

n
log r n, ϵ, Onð Þ:

Topological entropy has been characterized by Misiurewicz [36] and Barge and
Swanson [37] in terms of growth rates of pseudo-orbits. Let X, Tð Þ be a topological
dynamical system. For α>0, an α-pseudo-orbit for T of length n is a point ~x ¼

x0, x1,⋯, xn�1ð Þ∈Xn with the property that d T xj�1

� �

, xj
� �

< α for all 1≤ j≤ n� 1.
Let Ψn αð Þ⊂Xn denote all α-pseudo-orbits of length n. It was shown in [36, 37] that

htop Tð Þ ¼ lim
ϵ!0

lim
α!0

lim sup
n!∞

1

n
log s n, ϵ,Ψn αð Þð Þ

¼ lim
ϵ!0

lim
α!0

lim sup
n!∞

1

n
log r n, ϵ,Ψn αð Þð Þ:

In the following, we will show that the topological entropy for an open cover
can be characterized by pseudo-orbits. Before proceeding, let us first introduce a
definition of pseudo-orbit entropy via open covers. Let X,Tð Þ be a topological
dynamical system. For each integer n≥ 1 and U ∈ CoX, we define an open cover Un of
the product space Xn by

Un ¼ U0 � U1 �⋯�Un�1 : Uj ∈U for each j ¼ 0, 1,…, n� 1
� �

,

where

U0 �U1 �⋯�Un�1 ¼ u0, u1,…, un�1ð Þ : uj ∈Uj for each j ¼ 0, 1,…, n� 1
� �

:

Given α>0, it is not hard to see that an ¼ N UnjΨn αð Þð Þ is a nonnegative sub-
additive sequence, that is, anþm ≤ an þ am for all positive integers n and m. The
α-pseudo-orbit entropy of U is then defined by

hΨ T,U, αð Þ ¼ lim
n!∞

1

n
logN UnjΨn αð Þð Þ ¼ inf

n≥ 1

1

n
logN UnjΨn αð Þð Þ, (3)

and the pseudo-orbit entropy of U is defined by

hΨ T,Uð Þ ¼ lim
α!0

hΨ T,U, αð Þ: (4)
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Theorem 2.3. Let X, Tð Þ be a topological dynamical system. If U ∈ CoX, then we have

htop T,Uð Þ ¼ hΨ T,Uð Þ: (5)

Proof. To prove (5), it suffices to note that hΨ T,U, α1ð Þ≤ hΨ T,U, α2ð Þ whenever

α1 < α2 and inf0< α≤ 1N UnjΨn αð Þð Þ ¼ N UnjOnð Þ ¼ N Un�1
0

� �

. Thus, we have

hΨ T;Uð Þ ¼ lim
α!0

hΨ T;U; αð Þ

¼ inf
0< α≤0

inf
n≥ 1

1

n
logN U

njΨn αð Þð Þ

¼ inf
n≥ 1

inf
0< α≤ 1

1

n
logN U

njΨn αð Þð Þ

¼ inf
n≥ 1

1

n
logN U

n�1
0

� �

¼ htop T;Uð Þ:

This completes the proof of the theorem. □

Remark 2.4. Combining (2) and (5), we have

htop Tð Þ ¼ sup
U ∈ CoX

hΨ T,Uð Þ:

On the other hand, let us define hΨ Tð Þ ¼ supU ∈ CoX
hΨ T,Uð Þ, which is called the

pseudo-orbit entropy of T. Using the same techniques of topological entropy (see
Lemma 2.1), we can easily show that

hΨ Tð Þ¼ lim
ϵ!0

lim
α!0

lim sup
n!∞

1

n
log s n, ϵ,Ψn αð Þð Þ

¼ lim
ϵ!0

lim
α!0

limsup
n!∞

1

n
log r n, ϵ,Ψn αð Þð Þ:

So, it is in fact to give a simpler proof of Theorem 1 of [37] by Theorem 2.3.

3. Pointwise preimage entropies for open covers and local Hurley’s
inequality

When T is not invertible, one can ask about growth rates of inverse images
f�n xð Þ. In this section we describe two ways of doing this, which were introduced
by Hurley in [1].

3.1 Preimage branch entropy

Let X, Tð Þ be a topological dynamical system. Given x∈X let Tn xð Þ denote the
tree of inverse images of x up to order n, which is defined by

Tn xð Þ ¼ z0, z1,⋯, znð Þ : zn ¼ x and zj ¼ T zj�1

� �

for all 1≤ j≤ n
� �

:

Each z0, z1,⋯, znð Þ∈Tn xð Þ is called a branch of Tn xð Þ, and its length is n. Note
that every branch of Tn xð Þ ends with x. Let T n ¼ ∪x∈XTn xð Þ; we define a metric on
T n as follows: suppose that ~z ¼ z0, z1,⋯, znð Þ and ~w ¼ w0, w1,⋯, wnð Þ are two
branches of the length n, the branch distance between them is defined as
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dB, n ~z, ~wð Þ ¼ max
0≤ j≤n

d zj, wj

� �

:

Let On ¼ Tn xð Þ : x∈Xf g. Given two trees Tn xð Þ and Tn yð Þ in On, the branch
Hausdorff distance between them, dbH Tn xð Þ, Tn yð Þð Þ is the usual Hausdorff metric
based upon dB, n; that is,

dbH Tn xð Þ;Tn yð Þð Þ ¼ max max
~z ∈Tn xð Þ

min
~w ∈Tn yð Þ

dB,n ~z; ~wð Þ; max
~w ∈Tn yð Þ

min
~z ∈Tn xð Þ

dB,n ~z; ~wð Þ

� �

:

Note that dbH Tn xð Þ, Tn yð Þð Þ< ϵ if and only if each branch of either tree is dB,n
within ϵ of at least one branch of the other tree. Two trees Tn xð Þ and Tn yð Þ in On are
said to be dbH- n, ϵð Þ-separated if dbH Tn xð Þ, Tn yð Þð Þ< ϵ, that is, there is a branch ~z of
one of the trees with the property that dB, n ~z, ~wð Þ> ϵ for all branches ~w of the other
tree. Let t n, ϵð Þ denote the maximum cardinality of any dbH- n, ϵð Þ-separated sets of
On. Define the entropy by

hb Tð Þ ¼ lim
ϵ!0

lim sup
n!∞

1

n
log t n, ϵð Þ,

which is called the preimage branch entropy of T.

3.2 Pointwise preimage entropies

Let us recall two non-invertible invariants defined by Hurley [1] in 1995.
Hurley’s invariants are about the maximum rate of dispersal of the preimage sets of
individual points, which are called pointwise preimage entropies in [8]. The difference
between these two invariants is when the maximization takes place:

hp Tð Þ¼ sup
x∈X

lim
ϵ!0

lim sup
n!∞

1

n
log s n, ϵ, T�n xð Þð Þ

¼ sup
x∈X

lim
ϵ!0

lim sup
n!∞

1

n
log r n, ϵ, T�n xð Þð Þ,

hm Tð Þ¼ lim
ϵ!0

lim sup
n!∞

1

n
log sup

x∈X

s n, ϵ, T�n xð Þð Þ

¼ lim
ϵ!0

lim sup
n!∞

1

n
log sup

x∈X

r n, ϵ, T�n xð Þð Þ:

It is clear that hp Tð Þ≤ hm Tð Þ, and in [18] the authors constructed an example for
which hp Tð Þ< hm Tð Þ. In addition, Hurley established the following relationships
among preimage branch entropy, pointwise preimage entropy, and topological
entropy (see [1], Theorem 3.1):

hm Tð Þ≤ htop Tð Þ≤ hm Tð Þ þ hb Tð Þ:

We call it the Hurley inequality.

3.3 Local Hurley’s inequality

In this subsection, we mainly study the relationship among the topological
entropy for open covers and several preimage entropy invariants, which is viewed

6
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as the local version of the Hurley inequality. To do it, we first introduced a
definition of preimage entropy via open covers.

Let X,Tð Þ be a topological dynamical system. Given U ∈ CoX, define two pointwise
preimage entropies of U with respect to T by

hp T,Uð Þ ¼ sup
x∈X

lim sup
n!∞

1

n
logN Un�1

0 jT�n xð Þ
� �

and

hm T,Uð Þ ¼ lim sup
n!∞

1

n
log sup

x∈X

NðUn�1
0 jT�n xð ÞÞ

� 	

:

Theorem 3.1. (Local Hurley’s inequality). Let X, Tð Þ be a topological dynamical
system. If U ∈ CoX, then we have

hp T,Uð Þ≤ hm T,Uð Þ≤ htop T,Uð Þ≤ hm T,Uð Þ þ hb Tð Þ:

Proof. It is obvious that N Un�1
0 jT�n xð Þ

� �

≤N Un�1
0

� �

for every x∈X and every

integer n≥ 1. So that hp T,Uð Þ≤ hm T,Uð Þ≤ htop T,Uð Þ. Now we show the last
inequality htop T,Uð Þ≤ hm T,Uð Þ þ hb Tð Þ.

Let ϵ>0 be a Lebesgue number of U. Fix n≥ 1, and let Y denote a dbH- n, ϵ=3ð Þ-
separated set of On with cardinality t n, ϵ=3ð Þ. Let Z denote the set of all root
points of trees in Y, where the root point of the tree Tn xð Þ is x. For each z∈Z, let

V z,Uð Þ be a subcover of Un�1
0 with cardinality N Un�1

0 jT�n zð Þ
� �

that covers T�n zð Þ,

and let

V ¼ ⋃
z∈Z

V z,Uð Þ:

We claim that V is an open cover of X.
In fact, let x∈X be given and let w ¼ f n xð Þ. Since Y is a dbH- n, ϵ=3ð Þ-separated

set of On with maximal cardinality, there is a tree Tn yð Þ∈Y such that
dbH Tn wð Þ, Tn yð Þð Þ< ϵ=3. Now we consider the branch ~w of Tn wð Þ begins with x,

i.e., ~w ¼ x, f xð Þ,⋯, f n�1 xð Þ, f n xð Þ ¼ w
� �

∈Tn wð Þ. Then there exists a branch

~y ¼ y0, y1,⋯, yn ¼ y
� �

∈Tn yð Þ such that dB,n ~w, ~yð Þ< ϵ=3. This means that

d Tj y0
� �

, Tj xð Þ
� �

< ϵ=3 for each 0≤ j≤ n. Thus, there exists V ∈V y,Uð Þ such that

x∈V. This yields the claim that V is an open cover of X. So that N Un�1
0

� �

≤ ∣V∣,
where ∣V∣ denotes the cardinality of V. Using the claim, we have

N U
n�1
0

� �

≤ ∣V∣ ≤
X

z∈Z

∣V z;Uð Þ∣ ¼
X

z∈Z

N U
n�1
0 jT�n zð Þ

� �

≤ ∣Z∣ � sup
x∈X

NðUn�1
0 jT�n xð ÞÞ

� 	

¼ ∣Y∣ � sup
x∈X

NðUn�1
0 jT�n xð ÞÞ

� 	

¼ t n; ϵ=3ð Þ � sup
x∈X

NðUn�1
0 jT�n xð ÞÞ

� 	

:
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So that,

htop T;Uð Þ ¼ lim
n!∞

1

n
logN U

n�1
0

� �

≤ limsup
n!∞

1

n
log t n; ϵ=3ð Þ þ log sup

x∈X

NðUn�1
0 jT�n xð ÞÞ

� 	
 �

≤ limsup
n!∞

1

n
log t n; ϵ=3ð Þ þ limsup

n!∞

1

n
log sup

x∈X

NðUn�1
0 jT�n xð ÞÞ

� 	

¼ limsup
n!∞

1

n
log t n; ϵ=3ð Þ þ hm T;Uð Þ≤ hb Tð Þ þ hm T;Uð Þ:

This completes the proof of the theorem. □

We remark that Theorem 3.1 generalizes the classical Hurley’s inequality given
in [26, Theorem 3.1]. A direct consequence of Theorem 3.1 is.

Corollary 3.2. (Hurley’s inequality). Let X, Tð Þ be a topological dynamical system.
Then we have

hp Tð Þ≤ hm Tð Þ≤ htop Tð Þ≤ hm Tð Þ þ hb Tð Þ: (6)

Proof. It follows directly from Lemma 2.1 that

hp Tð Þ ¼ sup
U ∈ CoX

hp T,Uð Þ and hm Tð Þ ¼ sup
U ∈ CoX

hp T,Uð Þ: (7)

Thus, combining (2), (7), and Theorem 3.1 gives (6). □

4. Point entropy for open covers with pseudo-orbits

In [1], Hurley considered pseudo-orbits for inverse images and showed that the
topological entropy can be characterized in terms of growth rates of pseudo-orbits
that end at a particular point. Let X, Tð Þ be a topological dynamical system. Recall
that if α>0, then an α-pseudo-orbit x0, x1,…, xn�1ð Þ∈Xn is an approximate orbits

segment for T in the sense that d T xj
� �

, xjþ1

� �

< α for all 0≤ j≤ n� 1.
For each x∈X, let Ψn α, xð Þ⊂Xn denote the set of all α-pseudo-orbits of length n

that end at x, i.e., an element of Ψn α, xð Þ is an α-pseudo-orbit y0, y1,⋯, yn�1

� �

with
yn�1 ¼ x. It was shown in [1], (Propositions 4.2 and 4.3) that

htop ¼ lim
ϵ!0

lim
α!0

limsup
n!∞

1

n
log max

x∈X
sðn; ϵ;Ψn α; xð ÞÞ

� 	

¼ sup
x∈X

lim
ϵ!0

lim
α!0

limsup
n!∞

1

n
log s n; ϵ;Ψn α; xð Þð Þ:

(8)

In either formula s n, ϵ,Ψn α, xð Þð Þ can be replaced by r n, ϵ,Ψn α, xð Þð Þ.
In the following, we will show that the topological entropy for an open cover can

be characterized by pseudo-orbits for inverse images. Before proceeding, let us
consider the following definitions, which use the notation introduced in Section 2.3.

Let X,Tð Þ be a topological dynamical system. For each integer n≥ 1, U ∈ CoX, and
α>0, we define

Nmax n,U, αð Þ ¼ max
x∈X

N UnjΨn α, xð Þð Þ: (9)
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Clearly,

N UnjΨn α, xð Þð Þ≤Nmax n,U, αð Þ≤N UnjΨn αð Þð Þ (10)

for every x∈X. In addition, by the compactness of X, there is some point y∈X
such that

N UnjΨn α, yð Þð Þ ¼ Nmax n,U, αð Þ:

Lemma 4.1. Let X, Tð Þ be a topological dynamical system and U ∈ CoX . Suppose that
ε>0 is a Lebesgue number of U and 0< α< ε=4. Then there is a constant K ¼ K αð Þ such
that for every n≥ 1,

N UnjΨn αð Þð Þ≤K �Nmax n,U, αð Þ: (11)

Proof. Let x1, x2,⋯, xKf g be a finite α-dense subset of X, i.e., ⋃n
i¼1B xi, αð Þ ¼ X,

where B xi, αð Þ ¼ z∈X : d xi, zð Þ< αf g. For each 1≤ i≤K, let V i be a subcover of U
n

that covers Ψn α, xið Þ with cardinality N UnjΨn α, xið Þð Þ. Define V ¼ ⋃K
i¼1V i. Clearly,

∣V∣ ≤
PK

i¼1∣V i∣ ≤K �Nmax n,U, αð Þ. So, to complete the proof of the lemma, it suffices
to show V is a subcover of Un that covers Ψn αð Þ.

In fact, let ~y ¼ y0, y1,⋯, yn�1

� �

be an α-pseudo-orbit. Since x1, x2,⋯, xKf g is an

α-dense subset of X, there is some xi satisfying d T yn�2

� �

, xi
� �

< α. This implies ~z ¼

z0, z1,⋯, zn�2, zn�1ð Þ ¼ y0, y1,⋯, yn�2, xi
� �

is an α-pseudo-orbit ending at xi. Since V i

is a subcover of Un that covers Ψn α, xið Þ, there is some V ∈V i such that ~z∈V. Since
zj ¼ yj for all 0≤ j≤ n� 2 and ϵ is the Lebesgue number of U, in order to show that

~y∈V, we need only to show that d yn�1, xi
� �

< ϵ=2; this is obviously, as

d yn�1, xi
� �

≤ d yn�1, T yn�2

� �� �

þ d T yn�2

� �

, xi
� �

< 2α< ϵ=2. □

Theorem 4.2. Let X, Tð Þ be a topological dynamical system. If U ∈ CoX, then we have

htop T,Uð Þ ¼ lim
α!0

lim sup
n!∞

1

n
log sup

x∈X

NðUnjΨn α, xð ÞÞ

� 	

: (12)

Proof. Combining (10) and (11), we have

Nmax n,Uð Þ≤N UnjΨn αð Þð Þ≤K �Nmax n,Uð Þ

for each fixed 0< α< ϵ=4 and all n≥ 1, where ϵ is a Lebesgue number of U and
K ¼ K αð Þ in Lemma 4.1 is independent of n. This implies that

lim sup
n!∞

1

n
logNmax n,U, αð Þ ¼ lim sup

n!∞

1

n
logN UnjΨ αð Þð Þ (13)

for all positive number 0< α< ϵ=2. Thus, we have

htop T,Uð Þ¼ lim
α!0

lim
n!∞

1

n
logN UnjΨn αð Þð Þ by Theorem 2:3

� �

¼ lim
α!0

lim sup
n!∞

1

n
logN UnjΨn αð Þð Þ

¼ lim
α!0

lim sup
n!∞

1

n
logNmax n,U, αð Þ by 4:6ð Þ

� �

¼ lim
α!0

lim sup
n!∞

1

n
log sup

x∈X

NðUnjΨn α, xð ÞÞ

� 	

by 4:1ð Þ
� �
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This completes the proof. □

Theorem 4.3. Let X, Tð Þ be a topological dynamical system. If U ∈ CoX, then we have

htop T,Uð Þ ¼ sup
x∈X

lim
α!0

lim sup
n!∞

1

n
logN UnjΨn α, xð Þð Þ: (14)

Proof. It follows directly from (10) and (12) that

htop T;Uð Þ ¼ lim
α!0

limsup
n!∞

1

n
log sup

x∈X

NðUnjΨn α; xð ÞÞ

� 	

≥ sup
x∈X

lim
α!0

limsup
n!∞

1

n
logN U

njΨn α; xð Þð Þ:

Now we start to prove the converse inequality.
Note that for the given n≥ 1 and α>0, there is a point y n,U, αð Þ∈X such that

NðUn∣Ψn α, y n,U, αð Þð Þ ¼ max
x∈X

N UnjΨn α, xð Þð Þ:

Taking a sequence of integers ni ¼ ni αð Þ ! ∞ such that

lim sup
n!∞

1

n
logN UnjΨn α, y n,U, αð Þð Þð Þ ¼ lim

i!∞

1

ni
logN Uni jΨni α, y ni,U, αð Þð Þð Þ:

By restricting to a subsequence, we can assume without loss of generality that
the sequence yi αð Þ ¼ y ni,U, αð Þ converses to a limit q αð Þ.

Let ϵ be a Lebesgue number of U. If 0< β< ϵ=4 and d yi αð Þ, q αð Þ
� �

< β, then V is a

subcover of Un that covers Ψn α, yi αð Þ
� �

whenever V is a subcover of Un that covers
Ψn αþ β, q αð Þð Þ. This implies that

N UnjΨn αþ β, q αð Þð Þð Þ≥N UnjΨn α, yi αð Þ
� �� �

(15)

whenever d yi αð Þ, q αð Þ
� �

< β.

Now we choose a sequence αj ! 0 such that q αj
� �

converges to some point q∈X.
Similar to the proof as above we have

N Un∣Ψn αj þ 2β, q
� �

≥N UnjΨn αj, q αj
� �� �� ��

(16)

whenever d q αj
� �

, q
� �

< β. Combining inequalities (15) and (16), one has

N UnjΨn αj þ 2β, q
� �� �

≥N UnjΨn αj, yi αj
� �� �� �

(17)

whenever d yi αj
� �

, q αj
� �� �

< β and d q αj
� �

, q
� �

< β. If j is a fixed integer with

d q αj
� �

, q
� �

< β, then (17) holds for all sufficiently large integers i. Thus,

limsup
n!∞

1

n
logN UnjΨn αj þ 2β, q

� �� �

≥ limsup
i!∞

1

ni
logN Uni jΨni αj þ 2β, q

� �� �

≥ lim
i!∞

1

ni
logN Uni jΨni αj, yi αj

� �� �� �

¼ limsup
n!∞

1

n
log max

x∈X
NðUnjΨn αj

� �

, xÞÞ

� 	

:

(18)
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Now let j ! ∞ and use the fact that both sides (18) are nonincreasing as α
decreases to conclude that

limsup
n!∞

1

n
logN U

njΨn 3β; qð Þð Þ

≥ lim
j!0

limsup
n!∞

1

n
logN U

njΨn αj þ 2β; q
� �� �

≥ lim
j!∞

limsup
n!∞

1

n
log max

x∈X
NðUnjΨn αj

� �

; xÞÞ

� 	

¼ inf
α>0

limsup
n!∞

1

n
log max

x∈X
NðUnjΨn α; xð ÞÞ

� 	

¼ lim
α!0

limsup
n!∞

1

n
log max

x∈X
NðUnjΨn αð Þ; xÞÞ

� 	

:

(19)

Therefore, combining (12) and (19), we have

htop T;Uð Þ ¼ lim
α!0

limsup
n!∞

1

n
log max

x∈X
NðUnjΨn αð Þ; xÞÞ

� 	

≤ inf
β>0

limsup
n!∞

1

n
logN U

njΨn 3β; qð Þð Þ

¼ inf
α>0

limsup
n!∞

1

n
logN U

njΨn α; qð Þð Þ

¼ lim
α!0

limsup
n!∞

1

n
logN U

njΨn α; qð Þð Þ

≤ sup
x∈X

lim
α!0

limsup
n!∞

1

n
logN U

njΨn α; xð Þð Þ:

(20)

This completes the proof. □

5. Partial entropy and bundle-like entropy for nonautonomous discrete
dynamical systems

In [38, 41], topological entropy for certain nonautonomous discrete dynamical
system was defined and studied. In this section, we study the topological entropy
for nonautonomous discrete dynamical systems by introducing two entropy-like
invariants called the partial entropy and bundle-like entropy as being motivated by
the idea of [1, 39].

5.1 Topological entropy for nonautonomous discrete dynamical systems

Let X be a collection of countable infinitely many compact metric space Xi, dið Þ
and F be a collection of countable infinite many continuous maps f i : Xi ! Xiþ1,
i ¼ 1, 2,⋯. Then the pair X,Fð Þ is called a nonautonomous discrete dynamical system.

For any integer n≥ 1, we define a metric ~dn on
Qn

i¼1Xi as follows: for any two

points ~xn ¼ x1, x2,⋯, xnð Þ, ~yn ¼ y1, y2,⋯, yn
� �

∈
Qn

i¼1Xi,
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~dn ~xn, ~yn
� �

¼ max
1≤ i≤ n

di xi, yi
� �

:

Fixing an integer n≥ 1 and a positive number ϵ. A subset Z of
Qn

i¼1Xi is called ~dn-

n, ϵð Þ-separated if for any two distinct points ~xn, ~yn ∈Z we have ~dn ~xn, ~yn
� �

> ϵ.

Denote the maximal cardinality of any ~dn-separated subset of Z by s n, ϵ, Zð Þ. A

subset W ⊂Z is called ~dn- n, ϵð Þ-spanning for Z if for each ~zn ∈Z, there is a ~wn ∈W

such that ~dn ~zn, ~wnð Þ< ϵ. Denote the minimal cardinality of any ~dn-spanning subset
of Z by r n, ϵ, Zð Þ.

The following result is trivial, so we omit its detail proof.
Lemma 5.1. Suppose that n is a positive integer and Z is a nonempty subset of

Qn
i¼1Xi.

Then for each ϵ>0, we have

r n, ϵ, Zð Þ≤ s n, ϵ, Zð Þ≤ r n, ϵ=2, Zð Þ:

For each n≥ 1 let Zn be a nonempty subset of
Qn

i¼1Xi. Then it follows immedi-
ately from Lemma 5.1 that

lim
ϵ!0

lim sup
n!∞

1

n
log r n, ϵ, Znð Þ ¼ lim

ϵ!0
lim sup
n!∞

1

n
log s n, ϵ, Znð Þ: (21)

Given a nonautonomous discrete dynamical system X,Fð Þ, denoted by On,F or
On for short the set of all orbit segments of length n for each n≥ 1, i.e.,

On ¼ On,F≔ x1, x2,⋯, xnð Þ : x1 ∈X1 and xiþ1 ¼ f i xið Þ, i ¼ 1, 2,⋯, n� 1
� �

:

Then the common limit in (21) by taking Zn ¼ On is defined to be the topological
entropy of X,Fð Þ, written htop X,Fð Þ or htop Fð Þ for short if there is no confusion.

5.2 Partial entropy and bundle-like entropy

Let X,Fð Þ be a nonautonomous discrete dynamical system. A collection P ¼
Pi : i≥ 1ð Þ is said to be a cover of X if each Pi covers Xi, respectively. We now define
two entropies, partial entropy and bundle-like entropy, for X,Fð Þ relative to P.

For any integer n≥ 1 and D∈Pn, let Wn Dð Þ⊂
Qn

i¼1Xi denote the set of all orbit
segments of length that end at some point xn ∈D, i.e.,

Wn Dð Þ ¼ x1, x2,⋯, xnð Þ∈On : xn ∈Df g:

Put smax ,Pn
n, ϵð Þ ¼ supD∈Pn

s n, ϵ,Wn Dð Þð Þ. Define the entropy by

hp,P X,Fð Þ ¼ lim
ϵ!0

lim sup
n!∞

1

n
log smax ,Pn

n, ϵð Þ,

which is called the partial entropy of X,Fð Þ relative to P and written shortly by
hp,P Fð Þ if there is no confusion.

Let On,Pn
¼ Wn Dð Þ : D∈Pnf g. For any two elements, Wn Dð Þ and Wn Eð Þ of

On,Pn
, denoted by dH Wn Dð Þ,Wn Eð Þð Þ, the usual Hausdorff metric between

them is based upon metric ~dn of
Qn

i¼1Xi defined as before and by s n, ϵ, On,Pn

� �

the maximum cardinality of any dH- n, ϵð Þ-separated subset of On,Pn . Define the
entropy by
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hb,P X,Fð Þ ¼ lim
ϵ!0

lim sup
n!∞

1

n
log s n, ϵ, On,Pn

� �

,

which is called the bundle-like entropy of X,Fð Þ relative to P and written shortly
by hb,P Fð Þ if there is no confusion.

Also, we have the spanning set versions of definitions of hp,P Fð Þ and hb,P Fð Þ,
respectively.

5.3 Some relationships between htop Fð Þ and hp,P Fð Þ

Theorem 5.2. Let X,Fð Þ be a nonautonomous discrete dynamical system, and P ¼
Pi : i≥ 1ð Þ be a cover of X. Then we have

hp,P Fð Þ≤ htop Fð Þ≤ hb,P Fð Þ þ hp,P Fð Þ:

Proof. Note that smax ,Pn
n, ϵð Þ≤ s n, ϵ, Onð Þ for any cover P of X and any ϵ>0.

Then the former inequality is obtained. Now we show the later one. If hb,P Fð Þ ¼ ∞,
then there is nothing to prove. Now assuming hb,P Fð Þ<∞.

Fixing a sufficiently small ϵ>0 and an integer n≥ 1, let Y be a dH- n, ϵð Þ-sepa-
rated subset of On,Pn

with cardinality s n, ϵ, On,Pn

� �

. For each Wn Dð Þ∈Y, let M Dð Þ

be a ~dn- n, ϵð Þ-separated subset of Wn Dð Þ with cardinality s n, ϵ,Wn Dð Þð Þ. Put

M ¼ ∪Wn Dð Þ∈YM Dð Þ. We claim that M is a ~dn- n, 3ϵð Þ-spanning subset of On.

In fact, for any x ¼ x1, x2,⋯, xnð Þ∈On, since Y is a dH- n, ϵð Þ-separated subset of
On,Pn

with maximum cardinality and Pn covers Xn, there is an E∈Pn with xn ∈E

and aWn Dð Þ∈Y such that dH Wn Dð Þ,Wn Eð Þð Þ≤ ϵ. Then it follows that there is a y ¼

y1, y2,⋯, yn
� �

∈Wn Dð Þ such that ~dn x, yð Þ≤ ϵ. Also note that M Dð Þ is a ~dn- n, ϵð Þ-
separated subset ofWn Dð Þ with maximum cardinality; there is a z∈M Dð Þ such that
~dn y, zð Þ≤ ϵ. Hence we have

~dn x, zð Þ≤ ~dn x, yð Þ þ ~dn y, zð Þ< 3ϵ:

This yields the claim that M is a ~dn- n, ϵð Þ-spanning subset of On. So we have
r n, 3ϵ, Onð Þ≤ ∣M∣, where M denotes the cardinality of M. Using the claim we have

r n, 3ϵ, Onð Þ≤ ∣M∣ ≤ ∣Y∣ � max jM Dð Þj: Wn Dð Þ∈Yf g

≤ s n, ϵ, On,Pn

� �

� smax ,Pn
n, ϵð Þ:

Taking limits as the requirements of the related definitions of entropies estab-
lishes the desired inequality. This completes the proof. □

Let P δð Þ be a finite cover of a compact metric space X consisting of open balls
with radius less than some δ>0. Write FX ¼ f i : f i : X ! X is continous, i≥ 1

� �

and PX δð Þ ¼ P δð Þ,P δð Þ,⋯ð Þ.
Theorem 5.3.

htop FXð Þ ¼ hp,PX δð Þ FXð Þ ¼ lim
ϵ!0

lim
δ!0

lim sup
n!∞

1

n
log smax ,P δð Þ n, ϵð Þ:

Proof. Note that lim n!∞
1
n log ∣P δð Þ∣ ¼ 0. Then, by Theorem 5.2, we have the

former equality. Now we show the later equality.
Clearly, s n, ϵ, Onð Þ≥ smax ,PX

δð Þ n, ϵð Þ for any δ>0, so we have
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lim sup
n!∞

log s n, ϵ, Onð Þ≥ lim
δ!0

lim sup
n!∞

1

n
log smax ,PX δð Þ n, ϵð Þ:

This implies

htop FXð Þ≥ lim
ε!0

lim
δ!0

limsup
n!∞

1

n
log smax ,PX δð Þ n, εð Þ: (22)

On the other hand, from the proof of Theorem 5.2, it follows that

r n, 3ϵ, Onð Þ≤ s n, ϵ, On,P δð Þ

� �

� smax ,PX δð Þ n, ϵð Þ

for any integer n≥ 1, any sufficiently small ϵ>0 and any δ>0. Noting that

s n, ϵ, On,P δð Þ

� �

≤ ∣P δð Þ∣ for any integer n≥ 1, then we have

lim sup
n!∞

1

n
log r n, 3ϵ, Onð Þ≤ lim

δ!0
lim sup
n!∞

1

n
log smax ,PX δð Þ n, ϵð Þ:

This implies

htop FXð Þ≤ lim
ϵ!0

lim
δ!0

lim sup
n!∞

1

n
log smax ,PX δð Þ n, ϵð Þ: (23)

Thus, combining (22) and (23) gets the later equality. This completes the
proof. □

Remark 5.4. The first equality of Theorem 5.3 is in fact a simpler version of
Theorem 7.6 of [40] (a useful result for calculating the classical topological entropy)
when restricting to the autonomous discrete dynamical systems.

Given a nonautonomous discrete dynamical system X,ℱð Þ, when does htop Fð Þ ¼

hp,P Fð Þ for any cover P ofX? The following theorem gives an answer to this question.
Theorem 5.5. Let X,Fð Þ be a nonautonomous discrete dynamical system. Then

htop Fð Þ ¼ hp,P Fð Þ for any cover P of X if the following conditions hold:

(1) For each integer i≥ 1, there exists δi >0 such that diþ1 f i xð Þ, f i yð Þ
� �

≥ di x, yð Þ

whenever di x, yð Þ≤ δi for x, y∈Xi.
(2) For each integer i≥ 1, every x∈Xiþ1 has an open neighborhood Ux whose

preimage f�1
i Uxð Þ is an union of disjoint open sets on each of which f i is a

homeomorphism.

(3) lim supn!∞
1
n logN ϵn, Xnð Þ ¼ 0 for every monotonic decreasing sequence ϵnf g

with lim n!∞ϵ ¼ 0, where each N ϵn, Xnð Þ denotes the minimal cardinality of the open
cover of X consisting of open ϵn-ball for the compact metric space Xn.

Proof. It suffices to show that hb,P Fð Þ ¼ 0 for any cover P of X by Theorem 5.2.

Let Pmax ¼ Pi, max : i≥ 1
� �

be the cover of X in which each Pi, max cover Xi

consisting to singletons of Xi, i.e., Pi, max ¼ zf g : z∈Xif g. It is easy to see that
hb,P Fð Þ≤ hb,Pmax

Fð Þ for any cover P of X. So from Theorem 5.2, it follows that what
we want to prove is hb,Pmax

Fð Þ ¼ 0.
For each n≥ 2, by condition (1), there exists a δn�1 >0 such that

dn f n�1 xð Þ, f n�1 yð Þ
� �

≥ dn�1 x, yð Þ

for any x, y∈Xn�1 whenever dn�1 x, yð Þ≤ δn�1. Also, by condition (2) and the
compactness of Xn, there exists an ϵn >0 such that the ϵn-ball B xn, ϵnð Þ about any

point xn ∈Xn has preimage f�1
n�1 B xn, ϵð Þð Þ equals the union of disjoint open sets of
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diameter less than δn�1. Then we get a sequence ϵnf g. Furthermore, we can take ϵn
such that ϵnf g is monotonic decreasing sequence and lim n!∞ ϵn ¼ 0.

Now, given yn ∈Xn and ~x ¼ x1, x2,⋯, xnð Þ∈Wn B yn, ϵn,
� �� �

, we want to find a

point ~y ¼ y1, y2,⋯, yn
� �

∈On with ~dn ~x, ~yð Þ ¼ dn xn, yn
� �

and then ~dn ~x, ~yð Þ< ϵn. In fact,

for 1< k< n, we can easily find a point yk,⋯, yn
� �

∈
Qn

i¼kXi with dj xj, yj

� 

≤ ϵj and

djþ1 xjþ1, yjþ1

� 

≥ dj xj, yj

� 

, for j ¼ n� 1, n� 2,⋯, k. Let V be the piece of

f�1
k�1 B xk, ϵkð Þð Þ with xk�1 ∈V. Since yk ∈B xk, ϵkð Þ, there is a unique point

yk�1 ∈V∩f�1
k�1 yk

� �

such that dk�1 xk�1, yk�1

� �

< δk�1. Then we have

dk�1 xk�1, yk�1

� �

≤ dk xk, yk
� �

≤ dn xn, yn
� �

< ϵn < ϵk�1:

This argument shows that r n, ϵn, On, commamax

� �

≤N ϵn, Xnð Þ. Thus, by condition
(3), we get

lim sup
n!∞

1

n
log r n, ϵn, On, commamax

� �

≤ lim sup
n!∞

1

n
logN ϵn, Xnð Þ ¼ 0:

For any sufficiently small ϵ>0, there exists N >0 such that ϵn < ϵ for any n≥N.

Then we have r n, ϵ, On,Pn, max

� 

≤ r n, ϵn, On,Pn, max

� 

and hence hb,Pmax
Fð Þ ¼ 0. This

completes the proof. □

6. Conclusion

Several important entropy-like invariants based on the preimage structure for
non-invertible maps have been defined and studied by some authors. In this chapter,
we first further study the preimage entropy for topological dynamical system from
the view of localization. We show that the topological entropy for an open cover can
be characterized by pseudo-orbits (Theorems 2.3, 4.2, and 4.3). We also establish an
inequality relating the topological entropy for open covers and several preimage
entropy invariants, which is viewed as the local version of the Hurley’s inequality
(Theorem 3.1). Finally, we discuss the topological entropy for nonautonomous dis-
crete dynamical systems by introducing two entropy-like invariants called the partial
entropy and bundle-like entropy. We establish some relationships among such two
invariants and the topological entropy (Theorem 5.2, 5.3, and 5.5).
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