
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

1

Object-Oriented Modeling, Simulation and
Automatic Generation of PLC Ladder Logic

Kwan Hee Han
Gyeongsang National University

Republic of Korea

1. Introduction

Most enterprises are struggling to change their existing business processes into agile,
product- and customer-oriented structures to survive in the competitive and global business
environment. Among their endeavor to overcome the obstacles, one of the frequently
prescribed remedies for the problem of decreased productivity and declining quality is the
automation of factories (Zhou & Venkatesh, 1999).
As the level of automation increases, material flows and process control methods of the shop
floor become more complicated. Currently, programmable logic controllers (PLC) are
mostly adopted as controllers of automated manufacturing systems (AMSs), and the control
logic of PLC is usually programmed using a ladder diagram. More recently, manufacturing
trends such as flexible manufacturing facilities and shorter product life cycles have led to a
heightened demand for reconfigurable control systems. To cope with these challenges, a
new effective and intuitive method for logic code design and generation is needed.
However, currently there are no widely adopted systematic logic code development
methodologies to deal with PLC based control systems in the shop floor. So, the control
logic design phase is usually omitted in current PLC programming development life cycle
though it is essential to reduce logic errors in an earlier stage of automation projects before
the implementation of control logic. Moreover, fast customer requirement changes requires
flexibility of manufacturing system. To deal with these frequent configuration changes of
modern manufacturing systems, it is required that logic code can be generated
automatically from the design results without considering complicated control behavior.
To generate error-free ladder code, it is also essential to validate the designed control logic
of an AMS in an effective way. Among many validation methods, computer simulation
methods are widely used because mathematical formalisms have a problem of solution
space explosion as the size of system increases. However, since current simulation methods
have mainly focused on the overall performance evaluation of manufacturing systems such
as factory layouts, resource utilization, and throughput time, they have limitations with
regard to the modeling capabilities of detail logic for the input/output signal-level control of
AMS. Therefore, current PLC ladder programming practices require a more integrated way
to design, simulate, and generate the ladder control logic.
The main objective of this chapter is to propose an object-oriented (O-O) ladder logic
development framework integrating design, validation and automatic generation of ladder

Source: Programmable Logic Controller, Book edited by: Luiz Affonso Guedes,
 ISBN 978-953-7619-63-3, pp. 170, January 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Programmable Logic Controller

2

logic using extended UML (Unified Modeling Language). Proposed framework, as depicted
in Figure 1, consists of three parts: first part deals with UML design of PLC-based control
system. O-O design model consists of three models: functional model, structure model and
interaction model. Second part is concerned with O-O simulation method for validating
designed ladder control logic. By using the results of O-O design model, an O-O simulation
model is constructed and is executed. During the execution of simulation model, factory
automation (FA) engineers can evaluate the system performance and validate the PLC
control logic simultaneously. Last part deals with automatic generation of ladder code from
the validated design result. In order to show the applicability of proposed method, an UML-
based tool for the design and generation of ladder code is also developed. Proposed
framework facilitates the generation and modification of ladder code easily within a short
time without considering complicated control behavior to deal with current trend of
reconfigurable manufacturing systems.
The rest of the chapter is organized as follows. Section 2 reviews related works. Section 3
describes UML design of control logic. Section 4 deals with O-O simulation of designed
PLC-based control system for validating the correctness of control logic. Section5 describes
the automatic generation and verification method of ladder logic. Finally, the last section
summarizes results and suggests directions for future research.

Fig. 1. Proposed object-oriented ladder logic development framework

2. Related works

In order to improve current PLC programming practices, significant efforts have been made
in researches on object-oriented technologies in manufacturing systems. O-O modeling has
been mainly used as a method for the analysis and design of software system. Recently, it is
presented that O-O modeling is also appropriate for the real-time system design like an
AMS as well as the business process modeling.

www.intechopen.com

Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic

3

Several researches were made regarding the O-O modeling methods for the manufacturing
system: Author of this chapter proposed AMS modeling framework called JR-Net (Job-
Resource relation Net), which consists of a layout model, a functional model, and a control
model for the O-O simulation of AMS (Choi et al. (1996), Park et al. (1997)). But, since this
work placed emphasis on the supervisory control level rather than the device control level
in the control model, it did not presented the modeling results of device level control. An O-
O method for the design of automation system was proposed (Calvo et al., 2002), but it only
showed the static structure comprised of a class diagram and a use case diagram. An UML
modeling of AMS and its transformation into PLC code was proposed (Young et al., 2001),
but it did not presented the method of PLC code generation. An UML modeling of flexible
manufacturing system and its simulation implementation was proposed (Bruccleri & Diega,
2003), but it restricted the control level to the supervisory control level.
Among researches about design and validation tools for the PLC control logic, a simulation
method integrating plant layout sub-model and control sub-model, and also a PLC code
generation from simulation result was proposed (Spath & Osmers, 1996), but it omitted
details of generation procedure. A procedure of control logic design was proposed by using
IEC function block diagram (FBD) model, its transformation into Petri net, the validation of
control logic using SIMULINK simulation system, and C code generation (Baresi et al., 2000).
But, it confined their modeling scope to simple control logic which can be represented by
FBD. Author of this chapter developed O-O design tool based on the extension of UML and
showed usefulness of O-O design and simulation approach to ladder logic development
(Han & Park (2007a), Han et al. (2007b)).
In the area of automatic ladder logic generation method, there exist mainly three approaches
as follows: First approach is Petri net-based (Peng & Zhou (2004), Lee et al. (2004), Frey &
Minas (2001), Taholakian & Hales (1997)). Second approach is finite state machine-based
(Jack (2007), Manesis & Akantziotis (2005), Sacha (2005), Liu & Darabi, (2002)). Last
approach is flow chart-like-based (Jack (2007), Hajarnavis & Young (2005)). Among three
approaches, first and second approaches have a state explosion problem when complexity of
control logic increases.
The third approach is relatively easy to use by its sequential and intuitive nature to control
logic programmers. However, the result of ladder code generated by the third approach
proposed by Jack (2007) is different from the code directly written by FA engineers due to its
automatic generation features. Therefore, it is not natural to FA engineers and revealed
difficulties to understand the generated ladder code. Research about functionalities of
Enterprise Controls commercial package of Rockwell Automation was presented, in which
FA engineers design the ladder logic in the form of flow chart within Enterprise Controls,
and ladder code is generated automatically (Hajarnavis & Young, 2005). However, it did not
show how the ladder code is generated. Proposed generation method in this chapter belongs
to the third category, in which ladder logic code is generated from the extended UML
activity diagram which is a kind of flow chart.

3. Object-oriented design of control logic

The most typical features of O-O modeling techniques include the interaction of objects,
hierarchical composition of objects, and the reuse of objects (Maffezzoni et al., 1999). O-O
design for ladder control logic is conducted based on system specifications such as drawings
and problem descriptions. During the design phase, FA engineers develop three models for

www.intechopen.com

 Programmable Logic Controller

4

describing the various perspectives of manufacturing systems: 1) a functional model for
representing functional system requirements of AMS, 2) a structure model for representing
the static structure and relationships of system components, and 3) an interaction model for
representing the dynamic behavior of system components.
A functional model is constructed using an UML use case diagram in which each functional
requirement is described as a use case. A use case diagram describes a top-level system
view. A PLC as a plant controller is represented by a ‘system’ element, and input or output
part of PLC such as a sensor, actuator, and operator is represented by an ’actor’ element of a
use case diagram. Since the UML stick man icon of ‘actor’ is not appropriate for representing
the resource of AMS, new icons are introduced in a functional model using UML stereotype
property. Therefore, in the extended UML use case diagram, as depicted in Figure 2, four
types of actor (i.e., operator, actuator, sensor and MMI) are newly used instead of standard
stickman symbol. PLC input parts such as sensor and operator are located at the left side of
‘system’ symbol, and PLC output parts such as actuator and MMI (Man Machine Interface)
are located at the right side of ‘system’ symbol.

Fig. 2. Use case diagram of example prototype

The details of each use case are described in a use case description list. The use case
description list includes the pre-/post-condition of a use case and interactions of a PLC with
its actors such as sensors and actuators. For realizing a use case, related domain classes
accomplish an allocated responsibility through the interactions among them. These related
classes are identified in the structure model. And the system-level interactions in a use case
description list are described in more detail in the interaction model.
Figure 2 and 3 shows a functional model for the example system in the form of use case
diagram and use case description list. This example application prototype, as depicted in

www.intechopen.com

Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic

5

Figure 4, is a kind of conveyor-based material handling system which identifies defective
products according to their height, extracts defective products, and sorts good products
according to their material property. It has 6 use cases for describing major functions from
power control to product counting as depicted in Figure 2. Figure 3 shows the use case
description of use case 4 (defects extraction) in Figure 2, and describes the high-level
interactions between system (PLC) and its actors such as photo sensors and cylinders.

Fig. 3. Use case description list of example prototype

Fig. 4. Structure of example application prototype

A generic AMS is comprised of 4 parts: there is a ‘plant’ for manufacturing products. A
plant is controlled by a ‘controller’ (PLC) which is managed by an ‘operator’ who monitors

www.intechopen.com

 Programmable Logic Controller

6

plant through MMI. A ‘work piece’ flows through a plant. A plant is further decomposed
into standard resource groups hierarchically.
Any standard resources can be classified using 3-level hierarchy of resource group-device
group-standard device: A plant is composed of ‘resource group’ such as mechanical parts,
sensor, actuator, and MMI. A resource group consists of ‘device group’. For example,
actuator resource group is composed of solenoid, relay, stepping motor, AC servo motor,
and cylinder device group and so on. Sensor resource group is composed of photo sensor,
proximity switch, rotary encoder, limit switch, ultrasonic sensor, counter, timer, and push
button device group and so on. Finally, device group consists of ‘standard devices’ which
can be acquired at the market.
To facilitate the modular design concept of modern AMS, the structure of AMS is modeled
using an UML class diagram based on the proposed generic AMS structure. By referencing
this generic AMS structure, FA engineers can derive the structure model of specific AMS
reflecting special customer requirements easily. Figure 5 represents a static structure model
of an example application prototype. Various kinds of device group class such as proximity
switch and counter are inherited from generic resource group class such as sensor.

Fig. 5. Class diagram of example prototype

Since the real FA system is operated by the signal sending and receipt among

manufacturing equipments such as PLC, sensors, and actuators, it is essential to describe the

interactions of FA system components in detail for the robust design of device level control.

This detail description of interactions is represented in the interaction model.

UML provides the activity diagram, state diagram, sequence diagram, and communication
diagram as a modeling tool for dynamic system behaviors. Among these diagrams, the

www.intechopen.com

Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic

7

activity diagram is most suitable for the control logic flow modeling because of following
features: 1) it can describe the dynamic behaviors of plant with regard to device-level
input/output events in sequential manner. 2) It can easily represent typical control logic
flow routing types such as sequential, join, split, and iteration routing. The participating
objects in the activity diagram are identified at the structure model.
In order to design and generate ladder logic, modification and extension of standard UML
elements are required to reflect the specific features of ladder logic. First of all, it should be
tested whether UML activity diagram is suitable for the description of control logic flow,
especially for the ladder logic flow. The basic control flow at the ladder logic is sequence,
split and join. Especially, three types of split and join control flow must be provided for
ladder logic: OR-join, AND-join, AND-split. UML activity diagram can model basic control
flows of ladder logic well.
Basically, ladder diagram is a combination of input contact, output coil and AND/OR/NOT
logic. Since ‘NOT’ (normally closed) logic flow in the ladder logic cannot be represented
directly in standard UML activity diagram, new two transition symbols for representing
normally closed contact and negated coil are added as normal arcs with left-side vertical bar
(called NOT-IN transition) or with right-side vertical bar (called NOT-OUT transition) as
depicted in Figure 6. In the extended UML activity diagram, logic and time sequence flow
from the top to the bottom of diagram.

Fig. 6. Extensions of transitions in AD

Figure 7 represents the interaction model for the identification and extraction of defective
parts according to the height of products at the example application prototype. (Refer the
use case number 4 in Figure 2 and use case description in Figure 3)
The control logic of Figure 7 for defects extraction is as follows: 1) High_Memory:=
(High_Sensor + High_Memory) * !Extract_Cyl, 2) Low_Memory:= (Low_Sensor +
Low_Memory) * !Extract_Cyl * !OK_LimitSwitch, 3) Extract_Cyl:= {(High_Memory *
Low_Memory) + (!High_Memory * !Low_Memory)} * Extract_Sensor where “!” means
negation (NOT), ‘*’ means conjunction (AND), and ‘+’ means disjunction (OR).

4. O-O simulation for validating control logic

In this phase, O-O simulation model is constructed, and is executed for validating the
designed control logic. When logic errors are found during the simulation execution, FA
engineers correct logic errors and run the simulation model again. After validating control
logic through simulation, FA engineers modify UML design model for reflecting the
simulation result. In this way, the design-simulation cycle is done iteratively for error-free
control logic.

www.intechopen.com

 Programmable Logic Controller

8

Fig. 7. Extended activity diagram for use case 4 in Figure 2 of example prototype

4.1 Construction of O-O simulation model

Based on the results of the O-O design model described in the Section 3, the O-O simulation
model is constructed. The Unigraphics emPLANT software is used as an O-O simulation
tool (Unigraphics, 2006).
First, for constructing an O-O simulation model, top-level functional requirements of
automated manufacturing system are specified by using the use case diagram (Figure 2),
and system-level interactions between the PLC and device actors (i.e., sensors and actuators)
are identified by using a use case description list (Figure 3).
Second, AMS classes at the structure model (Figure 5) are mapped to emPLANT classes
using the system hierarchy and association/inheritance relations among AMS classes
identified in the class diagram. The mapping between generic AMS classes and emPLANT
classes is summarized in Table 1.
Lastly, after determining the static system structure, control logic among system
components is implemented for realizing each use case specified in the interaction model.
The internal logic in the activity diagram is programmed in the simulation model by using
SimTalk language of emPLANT software. For example, defects extraction of Figure 7 is
executed by defect part identification and actuating extract cylinder. Detail control logic of
this method is as follows: First, it inspects the product status according its height (a
defective or good part). According to the inspection result, internal memories for high-level

www.intechopen.com

Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic

9

and low-level detection are updated. If the product is defective and the sensor for extraction
point is ‘ON’, the controller actuates an extraction cylinder The SimTalk code of this logic is
described in Table 2.

Generic AMS class emPLANT class

Controller Frame/ Method

Workpiece Entity

Sensor SingleProc/ Line-sensor

Actuator SingleProc

Mechanical parts
Line/ SingleProc/
Transporter

Plant

MMI Frame/Method

Table 1. Mapping between generic AMS classes and O-O simulation elements

.Models.PLC.extract_cyd_ON
{
is
do
if ((high_Sensor=1 or high_Memory=1) and
(extract_Cyl=0))
then .models.conveyor_system.Plant.set_High_Memory;
end;
if ((low_Sensor=1 or low_Memory=1) and
(extract_Cyd=0) and (OK_Limit_Switch=0))
then .models.conveyor_system.Plant.set_Low_Memory;
end;
if ((high_Memory=1 and low_Memory=1) or
(high_Memory=0 and low_Memory=0)) and
(extract_Sensor=1)
then .models.conveyor_system.Plant.set_Extract_Cyl;
end;
end;
}

Table 2. Example of SimTalk simulation code for Figure 7

4.2 Execution of O-O simulation model

The main characteristics of the O-O model is the easiness of a top-down modeling approach
because extended new classes which share common properties can be created by inheriting
the pre-defined classes, and a system can be decomposed into sub-systems hierarchically.
The O-O simulation model of an example application prototype has two-level hierarchy.
The high-level model for example prototype consists of a controller (PLC), a plant, a source
of products, a storage of defective products, and a storage of good products (upper right
part of Figure 8). Furthermore, this prototype can be abstracted to 2 components (i.e., a
controller and a plant). The low-level model, which is a base model of simulation execution,
decomposes the high-level model into more detailed elements such as sensors, actuators,

www.intechopen.com

 Programmable Logic Controller

10

and MMI (lower right part of Figure 8). After constructing a simulation model and
preparing an experimental frame, a simulation model can be executed in which product
flows are animated through the conveyor line.
In parallel with the animation of products flow, the proposed O-O simulation model can
show the animation of PLC operations in response to the various events about product
flows (Left part of Figure 8). When the sensing of a product by various sensors is signaled
to the input port of a PLC (input ‘ON’ signal), a PLC executes corresponding control logic
and sends a signal to the output port of a PLC (output ‘ON’ signal). The output ‘ON’ signal
is transmitted to the actuator, so the actuator is enabled.
As depicted in Figure 8, during the simulation execution, the ON/OFF animation of the PLC
input/output ports is displayed in parallel with the product flows. Input ports are located at
the left side of a PLC, and output ports are located at the right side of a PLC. The ‘ON’ signal
of input/output ports is displayed by a red color at the screen display.

Fig. 8. O-O simulation model for example application prototype

Through the O-O simulation execution, PLC programmers can easily validate the internal
logic of a PLC, and detect the logic errors at an earlier stage of the logic development by
concurrent checking of product flows and PLC input/output port operations. Therefore, by
adopting the proposed O-O simulation method, the validation of PLC control logic can be
performed in parallel with the conventional performance evaluation.

5. Automatic generation of ladder code and its verification

The following two steps are conducted during the automatic generation phase: Firstly,
ladder code is generated automatically using the interaction model result of design phase.

www.intechopen.com

Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic

11

Secondly, generated ladder code is verified by input/output port-level simulation. In this
phase, a software tool developed by research group including author is also used.
For the automatic generation of ladder logic, the mapping scheme of an UML activity
diagram to a ladder diagram is established. IEC61131-3 standard ladder diagram have 5
major elements: contact, coil, power flow, power rail and function block (FB). Contact is
further classified to normally open and normally closed contact. Coil is further classified to
normal and negated coil. Power flow is further classified to vertical and horizontal power
flow. Power rail is further classified to left and right power rail.
Elements of an activity diagram are classified to two types: an activity type and a transition
type. Activity type is decomposed into start/stop activity, normal activity, special activity
such as counter and timer, and block activity (Refer Figure 7). Transition type is
decomposed into normal transition, NOT-IN transition for normally closed contact, NOT-
OUT transition for negated coil, and logic flow transition. Logic flow transition is further
decomposed into OR-join, AND-join and AND-split.
Figure 9 shows mapping scheme from an activity diagram to a ladder diagram. In order to
store graphical activity diagrams and ladder diagrams in computer readable form, XML
schema called AD-XML and LD-XML is devised for each diagram. In particular, LD-XML is
an extension of PLCopen XML format (PLC Open, 2005).

Fig. 9. Mapping scheme from AD to LD

After the activity diagram for specific control logic is stored in the form of AD-XML, AD-to-
LD transformation procedure is conducted. Since basic ladder lung is a combination of input
contact and output coil, an activity diagram is needed to be decomposed into several
transformation units which having input(s) and output(s) corresponding to each ladder
lung. This basic transformation unit is called IOU (Input Output Unit) which is a 1:1
exchangeable unit to ladder lung except start/stop activity. For example, the activity
diagram depicted in Figure 10, which describes of power control logic (use case number 1 in
Figure 2), has three IOUs. The control logic of Figure 10 is as follows: Conveyor_Motor: =
(PowerON_ Button + Conveyor_Motor) * !PowerOFF_Button.
The transformation procedure is as follows: 1) After the creation of an activity diagram
graphically, store it in the form of AD-XML. 2) Decompose an activity diagram into several
input/output units called IOUs, and store it in the form of two-dimensional table called

www.intechopen.com

 Programmable Logic Controller

12

IOU-Table. IOU-table has four columns named input activity, transition, output activity and
IOU pattern type. Each row of IOU-Table becomes a part of ladder lung after the
transformation process. 3) Determine the pattern type for each identified IOU. There are
five IOU pattern types of activity diagram from the start/stop IOU type to the concatenation
of logic flow transition IOU type. Generated IOU table for Figure 10 is shown at Table 3. 4)
Finally, generate ladder lungs using IOU table and node connection information of AD-
XML.

Fig. 10. IOU (Input Output Unit) decomposition

Table 3. IOU table for Figure 10 (use case 1-power control in Figure 2)

Figure 11 shows five IOU types and their corresponding LD patterns. IOU pattern type is

classified to two types. One is simple type that is transformed to several basic ladder

elements. The other is complex type that is a combination of simple types. Simple type is

further classified to four types according to their corresponding lung structure: Type-1

(start/stop IOU), Type-2 (basic IOU), Type-3 (logic flow transition IOU: OR-join, AND-join,

AND-split), and Type-4 (basic IOU with function block).

Since complex type is combination of several consecutive logic flow transitions, it has most

sophisticated structure among 5 IOU types. Complex type is further classified to two types:

Type 5-1 (join precedent) and Type 5-2 (split-precedent). Classification criteria is whether

‘join’ logic flow transition is precedent to other logic flow transitions or ‘split’ transition is

precedent.

www.intechopen.com

Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic

13

Fig. 11. Five IOU types

Fig. 12. Transformation procedure of join-precedent type 5-1

In order to transform the type-5 IOU to ladder pattern, hierarchical multi-step procedure is
needed. The type-5 IOU is grouped hierarchically into several macro blocks for simplifying
the consecutive control logic. A macro block is considered as a kind of block activity. Later,
one macro block is transformed to one of five LD patterns. In other words, in order to
simplify inputs for succeeding logic flow transition, firstly a macro block is built including
precedent or succeeding logic flow transition. Later, a macro block is substituted by one of 5

www.intechopen.com

 Programmable Logic Controller

14

ladder lung pattern. Fig. 12 shows the example of transformation procedure for the join-
precedent type 5-1.
Ladder code is automatically generated based on the IOU table and node connection
information of AD-XML. The generated ladder code is stored in the form of LD-XML, and is
graphically displayed by reading LD-XML file as depicted in Figure 13. After ladder code is
generated, it is necessary to verify the generated code. The simulation for code verification is
conducted by input/output port level.
The ladder diagram in Figure 13 is generated from the control logic of activity diagram in
Figure 7. As depicted in Figure 13, one can simulate the result of logic flow by closing or
opening an input contact of specific lung, and monitoring the result of output coils and
input contacts of other lungs.

Fig. 13. Ladder code genration and port-level simulation of Figure 7

6. Conclusion

Currently, most enterprises do not adopt systematic development methodologies for ladder
logic programming. As a result, ladder programs are error-prone and require time-
consuming tasks to debug logic errors. In order to improve current PLC programming
practices, this chapter proposes an integrated object-oriented ladder logic development
framework in which control logic is designed, validated, generated automatically, and
finally verified.
Proposed framework consists of three phases: First is the design phase. Second is the
simulation phase. Third is the generation and verification phase. During the phase I, object-
oriented design model is built, which consists of three sub-models: functional sub-model,
structure sub-model and interaction sub-model. Based on the design result, O-O simulation
model is constructed and executed for validating control logic during Phase II. After

www.intechopen.com

Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic

15

correcting logic errors in Phase II, two steps are conducted during the phase III. Firstly,
ladder code is generated automatically using the validated interaction model of design
phase. Secondly, generated ladder code is verified by input/output port simulation.
A framework in this chapter facilitates the generation and modification of ladder code easily
within a short time without considering complicated control behavior to deal with current
trend of reconfigurable manufacturing systems. In addition, this framework serves as a
helpful guide for systematic ladder code development life cycle.
As a future research, reverse transformation method from a ladder diagram to an activity
diagram is needed for the accumulation of ladder logic design documents since design
documents of control logic are not well prepared and stored in the shop floor.

7. References

Baresi L., Mauri M., Monti A., and Pezze M. (2000). PLCTools: design, formal validation,
and code generation for programmable controllers, Proceedings of 2000 IEEE
Conference on Systems, Man and Cybernetics, Nashville, USA

Bruccoleri M., and Diega S. N. (2003). An object-oriented approach for flexible
manufacturing control systems analysis and design using the unified modeling
language, International Journal of Flexible Manufacturing System, Vol.15, No.3, pp.195-
216

Calvo I., Marcos M., Orive D., and Sarachaga I. (2002). Using object-oriented technologies in
factory automation, Proceedings of 2002 IECON Conference, pp.2892-2897, Sevilla,
Spain

Choi B.K., Han K.H., Park T.Y., (1996). Object-oriented graphical modeling of FMSs,
International Jouranl of Flexible Manufacturing System , Vol.8, No.2, pp.159-182

Frey G. and Minas M. (2001). Internet-Based Development of logic controllers using signal
interpreted Petri nets and IEC 61131, Proceedings of the SCI 2001, Vol.3, pp.297-302,
Orlando, FL, USA

Hajarnavis V. and Young K. (2005). A comparison of sequential function charts and object
modeling with PLC Programming, Proceedings of American Control Conference,
pp.2034-2039

Han K. H. and Park J. W. (2007a). Development of object-oriented modeling tool for the
design of industrial control logic, Proceedings of the 5th International Conference on
SERA, pp.353-358, Busan, Korea

Han K. H. , Park J. W. and Choi Y. (2007b). Object-oriented modeling and simulation for the
validation of industrial control logic, Proceedings of the 37th international conference
on CIE, pp. 2377-2384, Alexsandria, Egypt

Jack H. (2007). Automating manufacturing systems with PLCs. http://clay-
more.engineer.gvsu.edu/~jackh/books.html

Lee G. B., Zandong H. and Lee J. S. (2004). Automatic generation of ladder diagram with
control Petri net, Journal of Intelligent Manufacturing, Vol.15, No.2, pp.245-252

Liu J. and Darabi H. (2002). Ladder Logic Implementation of Ramadge-Wonham
supervisory controller, Proceedings of Sixth International Workshop on Discrete Event
Systems, pp.383-389

Maffezzoni C., Ferrarini L., and Carpanzano E. (1999). Object-oriented models for advanced
automation engineering, Control Engineering Practice, Vol.7, No.8, pp.957-968

www.intechopen.com

 Programmable Logic Controller

16

Manesis S. and Akantziotis K. (2005). Automated synthesis of ladder automation circuits
based on state diagrams, Advances in Engineering Software, Vol.36, No.4, pp.225-233

Park T.Y., Han K.H., Choi B.K., (1997). An object-oriented modeling framework for
automated manufacturing systems, International Journal of Computer Integrated
Manufacturing, Vol.10, No.5, pp.324-343.

Peng S. S. and Zhou M. C. (2004). Ladder diagram and Petri net based discrete event control
design methods, IEEE Transactions on Systems, Man and Cybernetics-Part C., Vol.34,
No.4, pp.523-531

PLC Open (2005). XML formats for IEC 61131-3, http://www.plcopen.org
Sacha K. (2005). Automatic code generation for PLC controllers, LNCS 3688, pp.303-316
Spath D., and Osmers U. (1996). Virtual reality- an approach to improve the generation of

fault free software for programmable logic controllers, Proceedings of IEEE
International Conference on ECCS, pp.43-46, Montreal, Canada

Taholakian A. and Hales W. M. M. (1997). PN <-> PLC: a Methodology for designing,
simulating and coding PLC based control systems using Petri nets, International
Journal of Production Research, Vol.35, No.6, pp.1743-1762

Unigraphics (2006), emPlant, www.ugs.com/products/tecnomatix/plant_design/
em_plant.shtml.

Young K. W., Piggin R., and Rachitrangsan P. (2001). An object-oriented approach to an
agile manufacturing control system design, International Journal of Advanced
Manufacturing Technology, Vol.17, No.11, pp.850-859

Zhou M. C. and Venkatesh K (1999). Modeling, simulation and control of flexible
manufacturing systems, World scientific publishing, Farrer Road, Singapore

www.intechopen.com

Programmable Logic Controller

Edited by Luiz Affonso Guedes

ISBN 978-953-7619-63-3

Hard cover, 170 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Despite the great technological advancement experienced in recent years, Programmable Logic Controllers

(PLC) are still used in many applications from the real world and still play a central role in infrastructure of

industrial automation. PLC operate in the factory-floor level and are responsible typically for implementing

logical control, regulatory control strategies, such as PID and fuzzy-based algorithms, and safety logics.

Usually PLC are interconnected with the supervision level through communication network, such as Ethernet

networks, in order to work in an integrated form. In this context, this book was written by professionals that

work and research in automation area and it has two major objectives. The first objective is present some

advances in methodologies and techniques for development of industrial programs based on PLC. The

second objective is present some PLC-based real applications from various areas such as manufacturing

system, robotics, power system, communication system, and education.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Kwan Hee Han (2010). Object-Oriented Modeling, Simulation and Automatic Generation of PLC Ladder Logic,

Programmable Logic Controller, Luiz Affonso Guedes (Ed.), ISBN: 978-953-7619-63-3, InTech, Available from:

http://www.intechopen.com/books/programmable-logic-controller/object-oriented-modeling-simulation-and-

automatic-generation-of-plc-ladder-logic

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

