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Chapter

Magnetohydrodynamics in
Biomedical Applications
Hamid Farrokhi, David O. Otuya, Anna Khimchenko

and Jing Dong

Abstract

This chapter discusses recent advances in biomedical applications of magneto-
hydrodynamics (MHD). The magnetohydrodynamic (MDH) effect is a physical
phenomenon describing the motion of a conducting fluid flowing under influencing
of an external magnetic field. The chapter covers four primary areas of research:
(1) laser beam scanning, (2) nano-particle manipulation, (3) imaging contrast
enhancement, and (4) targeted drug delivery. The state-of-the-art devices based on
magnetohydrodynamic principles are also presented, providing a broad view of
biomedical MHDs. As the field of biomedical MHDs continues to grow, advances
towards micro-scale transitions will continue to be made, maintaining its clinically
driven nature and motion towards real-world applications.

Keywords: magnetohydrodynamics, beam scanning, nanoparticles,
imaging contrast, targeted drug delivery, magnetic constructs

1. Introduction

Magnetohydrodynamic (MDH) effect is a physical phenomenon that describes
the motion of charge conducting fluid flowing which his influenced by an external
magnetic field. Its applications have been studied extensively across multiple disci-
plines ranging from the study of solar winds [1, 2] to MHD-driven biomedical
sensors [3] and actuators [4–7]. This chapter narrows the focus of MHD applica-
tions to biomedical sciences. The chapter introduces four primary MHD biomedical
applications: (1) magnetohydrodynamic-based laser beam scanning, (2) nanoparti-
cle manipulations for biomedical applications, (3) biomedical imaging contrast
enhancement, and (4) targeted drug delivery.

This chapter aims to present the current state of the art in the field with regards
to biomedical and clinical applications of the MHD effect.

2. Magnetohydrodynamic-based laser beam scanning

2.1 Introduction

Adaptive optics (AO) enables correcting of complex aberrations for a broad
range of applications [1, 2]. Conventional AO systems use spatial light modulators
[3, 4] or solid deformable mirrors (DM) [5, 6] to compensate the phase changes
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resulting from non-uniformity in the properties of the medium through which light
travels or from faults in the geometry of the component. There is two types of
spatial light modulators operating in reflective and transmission modes. Due to
using small liquid crystals, this type of wavefront shaping able to provide very high
spatial resolution. However, there is a limitation in the correction magnitude which
is usually in the range of a few micrometers. To resolve this issue, solid deformable
mirrors have been developed and adopted widely to correct wavefront in optical
systems. It consists of a solid reflecting surface connected to an actuator structure.
By controlling the actuators, the shape of the reflective surface can be changed to
compensate the wavefront distortions. The high cost of the actuators and intricate
fabrication process are the main problems of the solid deformable mirrors. The
current solid deformable mirrors can only provide small inter-actuator strokes, with
the maximum deflection in the range of tens of micrometers.

AO systems have been used in laser beam shaping [7–9] and eye imaging sys-
tems [10–12] to effectively address both the low-intensity high-order aberrations
and the high-intensity low-order aberrations. For example, high-resolution retinal
imaging using AO plays a vital role in vision science and will help the early clinical
diagnosis of eye diseases. For dealing with the ocular aberrations for a large popu-
lation, e.g., myopic eyes, adaptive optics using two deformable mirrors have been
designed [10–12]. The large-stroke DM with a limited number of actuators is used
to correct large-intensity low-order aberrations. The second DM with a low stroke
and a high spatial correction resolution is used to address the small-intensity high-
order aberrations. However, its application in ophthalmology is limited by the
complexity and the high cost. A new type of liquid deformable mirror [13–15] has
been designed based on the actuation of the magnetic fluid. Although the liquid
mirrors are constrained to the horizontal setup, the magnetic fluid deformable
mirrors (MFDM) offer large strokes, low cost, and easy fabrication. Using the single
inter-actuator, the strokes more than 100 μm can obtain with less power consump-
tion. However, to produce a large mirror surface deformation, the size of the
electromagnetic coils needs to be large. This makes the density of actuators low, and
it is not suitable for high-order aberrations. A full-order correction with the high
spatial resolution is achieved using a two-layer design layout with small electro-
magnetic coils has been designed. New wavefront corrector, MFDM, has major
advantages such as large stroke, low cost, easy fabrication process, which can be
easily customized for different applications. In the following sections, we will
explain the technology and possible applications in in-vivo imaging and probing.

2.2 Magnetic fluid deformable mirror (MFDM)

The main elements of the MFDM are a layer of magnetic fluid, a thin film of a
reflective material coated on the free surface of the fluid, a two-layer layout of the
miniature electromagnetic coils placed beneath the fluid layer, and a Maxwell coil(s)
(see Figure 1). The properties of the magnetic fluid used in the study are given in
Table 1. Based on the definition, the magnetic fluid is a stable colloidal suspension of
nano-sized, single-domain ferri/ferromagnetic particles. The fluid can be coated with
a silver liquid-like thin film to improve the reflectance.

To achieve the correction of full-order aberrations with a high spatial resolution,
the new design of MFDM is presented (see Figure 1 for the details). The upper layer
actuators of small size and high density are used to compensate for small-amplitude
high-order aberrations, and the lower layer actuators with big size and low density
are used to correct for large amplitude low order aberrations. The electromagnetic
coils are circular coils wound on a cylindrical core. Table 2 shows the physical
parameters are of the coil. Each layer of the coil is arranged in a hexagonal array.
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The upper layer coils are radially spaced at 2.1 mm from the center to center, and
the lower layer coils are radially spaced at 4.2 mm, respectively.

To make the response of the actuators linear, the Maxwell coil was used to apply
an external uniform magnetic field. The Maxwell coil consists of three individual

coils, where both lateral/outer coils should have a radius of
ffiffiffiffiffiffiffiffi
4=7

p
R, at a distance

of
ffiffiffiffiffiffiffiffi
3=7

p
R from the middle coil with a radius of R = 100 mm [16] (see Figure 1).

Table 3 shows the parameters of the coil. The three coils are wired using American
wire gauge (AWG) 25 magnet wire. The turn ratio of 64:49 is used for the top and
bottom coils relative to the middle coil [16]. Also, magnetic fluids typically show
low reflectance to light and can be coated with silver liquid-like thin films to
improve the reflectance [17, 18]. The self-assembly method has been usually used to

Figure 1.
Schematic design of the magnetic fluid deformable mirror (MFDM) (adapted from [20]).

Magnetic fluid Parameters

Saturation magnetization 22 mT

Relative permeability 2.89

Density 1190 kg/m3

Viscosity 3 cp

Thickness 1 mm

Table 1.
Parameters of the magnetic fluid.

Magnetic fluid Parameters

Position Upper Lower

Core-type Air-cored Air-cored

Material Copper Copper

Wire gauge AWG37 AWG36

Internal diameter 1 mm 2 mm

External diameter 2 mm 4 mm

Length 1 mm 8 mm

AWG, American wire gauge.

Table 2.
Parameters of the miniature electromagnetic coil.
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prepare the silver liquid-like thin film for the MFDM. Firstly, the solution of silver
nanoparticles was dissociated by centrifugation to remove the supernatant, and
ethanol was then infused to purify the silver nanoparticles. The obtained silver
nanoparticles were mixed with the ethanol/dodecanethiol solution, kept at room
temperature for 24 h, and then centrifuged. Then the ethyl acetate was added into
the silver nanoparticles obtained from the previous step. This solution was then
applied to the surface of the magnetic fluid. When the ethyl acetate evaporated, the
hydrophobic dodecanethiol encapsulated silver nano-particles automatically
stacked and spread on the surface of the magnetic fluid to form a large scale area of
silver liquid-like film.

Figure 2 shows the fabricated mirror in which two-layer layout of the coils are
installed within the Maxwell coil. Ferrofluid with layer thickness of about 1 mm is
placed on top of the miniature coils, which is coated with the thin silver liquid-like
film.

2.3 Working principle of MFDM

The MFDM is demonstrated by a cylindrical layer of a magnetic fluid as shown
in Figure 3. The top free surface of the fluid layer is coated with a reflective film to
be the deformable surface of the mirror. The surface deflection at the point (rk, θk)
is indicated by ζ(rk, θk, t), where k = 1, 2, 3, …, k is a discrete number of surface
points. The magnetic field produced by any specific coil, centered at the horizontal
location (rij, θij), is idealized as that of a point source of magnetic potential ψij(t),
where i = 1, 2 is the ith layer of actuators, and j, j = 1, 2, 3, …, Ji is the jth coil of
each layer.

Magnetic fluid Parameters

Nominal diameter of the middle coil 200 mm

No. of turns in the middle coil 1152

No. of turn in the top and bottom coil 883

Average resistance of the middle coil 71.2 Ω

Average resistance of the coils 42.3 Ω

Wire gauge AWG 25

Wire material Copper

Bobbin material Aluminum

Table 3.
Parameters of the Maxwell coil(s).

Figure 2.
Assembly of the prototype MFDM (adapted from [20]).
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Maxwell’s equations govern the magnetic field. Since the magnetic field of the
miniature coils is taken as point sources of magnetic potential located at the fluid
boundary, electromagnetic field can be considered as a current-free one. Using this
assumption, the displacement currents in the fluid are negligible, Maxwell’s equa-
tions can be written as:

∇�H ¼ 0,∇ � B ¼ 0 (1)

where B is the magnetic flux density, which is related to the magnetic field H
and the magnetization M by the following equation:

B ¼ μH ¼ μ0 H þMð Þ (2)

μ and μ0 are the magnetic permeability of the magnetic fluid and free space,
respectively. Assuming the applied field linearly magnetizes the magnetic fluid, the
magnetization vector M can be written as

M ¼ χH (3)

where χ = μ/μ0 – 1 is considered to be constant. Considering that the magnetic
field extends into space above and below the fluid layer, Maxwell’s equations are
applied to all three sub-domains (1)–(3) as shown in Figure 3. The scalar
potentials ψ(l), l = 1, 2, 3 describe the magnetic field vectors H(l) in these sub-
domains as follows:

H lð Þ ¼ �∇ψ lð Þ, l ¼ 1; 2; 3 (4)

Using Eqs. (2)–(4), the magnetic flux density B lð Þ in these sub-domains can be

written in terms of the scalar potentials ψ lð Þas:

B lð Þ ¼ �μ0 1þ χð Þ∇ψ lð Þ, l ¼ 1, 2, 3 (5)

The magnetic flux intensity (B) meets the principle of superposition. Assume
the fluid is irrotational, then based on the principles of conservation of mass and
momentum and the theories on magnetic fields, the perturbation part of the surface
dynamic governing equations can be written as [19].

∇
2ψ ¼ 0, � d≤ z≤ ς (6)

∇
2ψ lð Þ ¼ 0, l ¼ 1, 2, 3 (7)

�ρ
∂ϕ

∂t
þ ρgςþ χB0

∂ψ 2ð Þ

∂z
� σ

∂
2ð Þς

∂r 2ð Þ
þ
1

r

∂ς

∂r
þ

1

r 2ð Þ

∂
2ð Þς

∂θ 2ð Þ

� �
¼ 0, z ¼ ς (8)

Figure 3.
Geometric representation of a circular MFDM (adapted from [20]).
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where ρ is the density of the fluid, σ is the surface tension, φ, and ψ(l), l = 1, 2, 3
are the perturbation components of the fluid velocity potential and the magnetic
potential, respectively. Using the following two boundary conditions:

�
∂Φ

∂z
¼

∂ς

∂t
, z ¼ ς (9)

�
∂Φ

∂z
¼ 0, z ¼ �d (10)

The solutions concerning the input ψij(t) thus are obtained as follows:

ζ rk; θk; tð Þ ¼ eζij tð ÞJm λrkð ÞΘ θkð Þ (11)

ϕ rk; θk; z; tð Þ ¼ �
1

λ

cosh λ zþ dð Þ½ �

sinh λdð Þ

d eζij
dt

Jm λrkð ÞΘ θkð Þ (12)

ϕ 2ð Þ rk; θk; z; tð Þ ¼ � Aij tð Þ
μ

μ0
coshcosh λzð Þ � sinhsinh λzð Þ

� �
þ

χ

μ
B0

eζij tð Þcosh λzð Þ

� �

Jm λrkð ÞΘ θkð Þ

(13)

where Jm(�) is the Bessel function of the first kind, λ is the separation constant,
and

Θ θð Þ ¼ sinmθ;m ¼ 1; 2; 3…cosmθ;m ¼ 0; 1; 2; 3…f g (14)

Aij tð Þ ¼
1

Y �λhið Þ
� Z �λhið ÞB0

eζij tð Þ þ
κ

πR2 Jmþ1 εð Þ½ �2
ψ ij tð ÞR rij

� �
Θ θij
� �

( )
(15)

Y �λhið Þ ¼ �
1

tanh λdð Þ � coth λdð Þ

�
μ

μ0
αþ χð Þcosh cosh �λhið Þ �

μ

μ0
α� χð Þ �

χ2

α

� �
sinh �λhið Þ

	 
 (16)

Z �λhið Þ ¼ �
1

tanh λdð Þ � coth λdð Þ
� αcosh �λhið Þ � χsinh �λhið Þf g

χ

μ

α ¼
μ

μ0
tanh λdð Þ � coth λdð Þ, κ ¼ 1 m ¼ 02 m 6¼ 0f g (17)

Considering that the miniature coils are located far from the walls of the fluid
container, so at r = R yields Jm(λR) = 0, which can be solved numerically and yields
an infinite number of solutions εmn = λR, m = 0, 1, 2, …, n = 1, 2, 3, …, providing the
eigenvalue λmn for each mode as λmn = εmn/R. Combining Jm(λr) and Θ(θ), we define
the following mode shapes as Hmnc = Jm(λmnr)�cos(mθ) andHmns = Jm(λmnr)�sin(mθ).

For any coil ψij(t) on each layer, based on Eq. (8) and the damping effect
associated with the fluid viscosity η, the following surface dynamic equation with
respect to the mode shape Hmnc can then be obtained as:

d2 eζ ijmnc tð Þ

dt2
þ 4

η

ρ
λ2mn

deζ ijmnc tð Þ

dt
ω2
imn

eζ ijmnc tð Þ

¼ �
χ

ρ
B0

tanh λmndð Þ

Y �λmnhið Þ
λ2mn

κ

πR2 Jmþ1 εmnð Þ½ �2
ψ ij tð ÞHmnc rij; θij

� � (18)
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where

ω2
imn ¼ gtanh λmndð Þλmn þ

σ

ρ
tanh λmndð Þλ3mn þ

χ

ρ
B2
0tanh λmndð Þλ2mn

Z �λmnhið Þ

Y �λmnhið Þ
(19)

m = 0, 1, 2, … and n = 1, 2, 3, …
The main idea of the derivation of Eq. (18) is similar to the result of MFDMwith

a single-layer layout of actuators and more details can be found in [19]. A similar set
of equations can be obtained concerning the mode shape Hmns as:

d2 eζ ijmns tð Þ

dt2
þ 4

η

ρ
λ2mn

deζ ijmns tð Þ

dt
ω2
imn

eζ ijmns tð Þ

¼ �
χ

ρ
B0

tanh λmndð Þ

Y �λmnhið Þ
λ2mn

κ

πR2 Jmþ1 εmnð Þ½ �2
ψ ij tð ÞHmns rij; θij

� � (20)

where m and n = 1, 2, 3, …
The generalized displacements eςijmnc(t) and eςijmns(t), obtained from the solution

of the second-order differential Eqs. (18) and (19) respectively, and the
corresponding mode shapes Hmnc and Hmns evaluated at any desired location
(rk, θk), give the total surface displacement at the location as:

ζ rk; θk; tð Þ ¼
X2

i¼1

XJi

j¼1

X∞

m¼0

X∞

n¼1

eζ ijmnc tð ÞHmnc rk; θkð Þ

þ
X2

i¼1

XJi

j¼1

X∞

m¼0

X∞

n¼1

eζijmns tð ÞHmns rk; θkð Þ

(21)

Eqs. (18)–(19) show that the surface response ζ(rk, θk, t) has linear relation with
the input ψij(t) applied by each coil. Note that the static surface response model of
the mirror can be attained by the perturbed magnetic field of each actuator. For
more details refer to Ref. [20].

This section introduced the current method to improve the correction perfor-
mance of the MFDM for full-order aberrations, a new MFDM with a two-layer of
actuators.

3. Nanoparticle manipulations for biomedical applications

The application of magnetic nanoparticles (NPs) has been extensively studied in
biomedicine such as in imaging contrast enhancement [21] (see more detail in
Section 4), magnetic separation [22], hyperthermia treatment [23], and targeted
drug delivery [24] (see more detail in Section 5).

Due to their size, NPs can interact with biological systems at the molecular level
and pass through biological barriers [24]. Using an external magnetic field to
manipulate and to guide magnetic NPs to the wanted location has obtained special
attention.

Several studies describe different magnetic nanoparticles as well as different
delivery techniques [25]. Magnetite NPs (e.g., Fe3O4) are the most widely used
due to several appealing properties [26]. This type of NPs exhibit superpara-
magnetism which means that they do not have magnetic moment when there is no
external field but become magnetized when an external magnetic field is applied.
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This property is of great value for a variety of biomedical applications as magnetite
NPs do not form into a mass together and can move easily through blood vessels
[26]. The typical shape of these NPs is a sphere with the size of around 5–100 nm.
Most importantly, Fe3O4 NPs are biocompatible which makes it suitable for many
biomedical applications [27].

Currently, one of the leading research interests is associated with the delivery of
magnetic NPs to a target location. Several approaches have been proposed to
address the issue. For example, the surface of magnetic NPs has been modified with
biomolecules to identify and attach to target cells. Also, injection of magnetic NPs to
some localized regions has been suggested [28]. Furthermore, using an external
force to control the NPs in the desired direction remotely has been proposed [29].
When an electric current passes through the micro-coils, it generates a non-uniform
magnetic field which attracts the NPs at its minimal. The magnitude of the magnetic
field B relates to the size of the wire as B ∝ I/d, gradients of the field as ∇B ∝ I/d
[22], and curvatures as ∇2B ∝ I/d [23], where I is the electric current through the
wire [30]. The magnetic gradient makes it possible to trap magnetic NPs within a
micrometer and sub-micrometer regions using small coils. The focusing depth of
the micro-coils is in the range of tens of microns to several millimeters. The fluid
containing magnetic NPs is usually placed on the top of the device allowing for
magnetic manipulation of NPs. Such a method has been shown in several works for
trapping and positioning of magnetic NPs by different types of micro-
electromagnets [29, 31]. This provides the possibility of controlling the strength of
the field using external parameters such the current passing through micro-coils.

As an example, this method [32] is used for focusing and selective destruction of
red blood cells (RBCs) via magnetic NPs. The experiment was accomplished above
the micro-electromagnet serving concurrently as a source of the magnetic field and
as a local heater. The motion and focusing of the blood cells near wires which carry
the electric current were observed in the previous study. It was also found that the
increase of the electric current through the micro-electromagnet leads to the local
cell hemolysis. All the previous results have been obtained for the case when the
guiding magnetic field was produced by just one conducting contour. In this work,
experimental data was obtained for the modified micro-electromagnet with two
contours, where the current in each path can be individually controlled. This mod-
ification gives an extra degree of freedom to tune the magnetic field profile and to
manipulate magnetic nanoparticles.

The schematics of the micro-magnetic prototype with biological substance and
the external electric circuit are shown in Figure 4(A). The device is fabricated on
the top of a fused silica substrate. It consists of two Cu wires fabricated by standard
optical lithography techniques. The width of the wires is 10 μm, and the height of
the wires is 2 μm. The minimum spacing between the wires is 20 μm. Each of the
two wires has individual contacts (1 mm � 1 mm) on the sides of the structure for
connection with the outer electric circuit. The circuit includes a power source and
two electrical relay switches allowing for the individual control of electric current in
each wire. The wires are covered by a 300 nm thick layer of silicon dioxide depos-
ited via PECVD which allows for both electrical insulations as well as corrosion
protection for the Cu wires. The top part of the structure is the working area where
the manipulation of biological cells takes place. As a test biological substance,
human red blood cells (RBC) are obtained from fresh blood samples. RBC was
selected both due to their availability as well as their robustness [33]. Samples were
prepared by triple washing using centrifugation at 2000 rpm on an Eppendorf 5424
centrifuge in phosphate buffered saline solution (PBS) at room temperature. PBS
was prepared from 10� PBS (Fisher Scientific, USA) concentrate solution with a
final concentration of 2000–4000 cells/μl. From this RBC solution, 30 μl of the
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solution are then mixed with 1 μl of commercially available ferrofluid from Ferrotec
containing 1.1% magnetite (Fe3O4) particles in aqueous solution.

The electric current passing through the wire generates a non-uniform magnetic
field around it. The gradient of this non-uniform magnetic field causes the magnetic
NPs to be attracted towards the wires. Therefore, the movement of magnetic NPs
pulls biological cells in the same direction [32]. Figure 4(B) shows the numerical
results of the magnetic energy above the two straight wires. The red and black
curves show the magnetic energy when the current is 100 mA in one of the wires.
The blue curve shows the magnetic energy when the current passes through both
wires. There is an overlap between the magnetic fields in the region and the wires
(as depicted by the red dashed line in Figure 4(B)). This overlap is important for
sequential trapping of magnetic NPs by applying a current through one or the other
wires. The maximum of the field gradient is about 1.4 mT/μm in the vicinity of the
current-carrying wire.

The individual control of electric current (hence magnetic field) in the two
contours allows for a variety of experiments to be conducted on biological cell
manipulation. This application shows that the biological cell manipulation is possible
due to the presence of magnetic nanoparticles. To support this statement, some
studies performed control experiments with RBC samples without adding magnetic
nanoparticles [34]. It is shown that applying a magnetic field without nanoparticles
initiates a slight motion of RBCs away from the field source which is attributed to
local heating and the expanding solution. However, when the study is conducted by
adding 1.1% magnetic nanoparticles, applying the magnetic field results in the cells
focusing near the field source. The focusing is attributed to the drag effect, where a
flow of magnetic nanoparticles drags the cells in the same direction. The potential
application of this is that with time-varying magnetic field one can move RBCs
towards or away from the specific region. This technique can be further evolved for
precise controlling of cellular motion and drug-carrying cells. There are many ques-
tions related to the mechanism of magnetic nanoparticles interaction with living cells
which deserve separate studies and it is out of the scope of this chapter. Nanoparticle
manipulation using magnetic field potentially may be useful in various areas includ-
ing molecular biology, medicine, gene engineering, and drug delivery technology.

Figure 4.
(A) Schematics of the micro-electromagnet and the external electric circuit. The device is fabricated on the top of
a fused silica substrate. It consists of two Cu wires fabricated by optical lithography. The width of the wires is
10 μm, and the height of the wires is 2 μm. The wires are covered by the 300 nm of silicon dioxide. The top part
of the structure is the working area where solution with biological cells and magnetic nanoparticles is placed.
(B) Results of numerical modeling showing the surface profile of the scaled magnetic energy B2 produced by the
current-carrying wires. The red and the black curves show the scaled magnetic energy when 100 mA electric
current is flowing through one of the contours. The blue curve shows the scaled magnetic energy when an electric
current is flowing through both contours (adapted from [34]).
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4. Biomedical imaging contrast enhancement

MHD plays an important role in biomedical imaging, ranging from magnetic
resonance imaging (MRI) that employs the endogenous magnetization contrast of
water in tissue to magnetofluids acting as contrast agents in a number of imaging
modalities. These contrast agents enhance the ability to detect tumors, infection,
inflammation, infarction or lesions in the body. This section highlights the role of
magnetic fluids as contrast enhancing agents in MRI, X-ray computed tomography
(CT) and optical coherence tomography (OCT) imaging.

4.1 Contrast agents in MR imaging

MRI is one of the major biomedical applications of MHD. MRI is a non-invasive
tomographic medical imaging technique based on nuclear magnetic resonance
(NMR) that provides high-resolution images of soft anatomical structures such as
brain, heart, ligaments, and eyes [35–41]. This information is vital in delineating
healthy from diseased tissues or organs. MRI takes advantage of the inherent mag-
netic dipole moments of the atomic nuclei in our bodies, specifically hydrogen
nuclei contained in water—that makes about 70% of our body mass. Three mag-
netic fields comprising of a static magnetic field (SMF), a time-varying gradient
magnetic fields (GMF) and a pulsed radiofrequency field (RF) are used to probe the
magnetization/demagnetization map of the body. The water molecules that
occupies most of the tissue in the body consist of hydrogen atoms with nuclei that
possesses a quantum-mechanical spin. The hydrogen nucleus spin is associated to a
magnetic dipole moment (Figure 5(A)) that gets aligned to a strong magnetic field
B0 with a bulk magnetizationMz0 along B0 when the body is placed in it as shown in
Figure 5(B). Since these hydrogen nuclei dipoles have an angular momentum from
the rotation about their own axes, they precess around the B0 magnetic field axis
with an angular frequency that follows Larmor equation ω ¼ γB0, where γ is the
gyromagnetic ratio constant of the hydrogen nucleus. The precession gives rise to a
transverse magnetic field that can be detected by a coil conveniently placed in the
system to pick up this signal. The equation of the signal detected is proportional to
S tð Þ ¼ γB0ρsin θð Þ sin ωtð Þ,here γ is the gyromagnetic ratio constant of the hydrogen
nucleus, B0 the magnetic field intensity of the static magnetic field, ρ the density of
hydrogen nuclei of the tissue, θ the flip angle between the axis of the SMF and the

Figure 5.
(A) The hydrogen nucleus possesses a quantum-mechanical spin (angular momentum) that is associated with a
magnetic dipole moment. (B) When the body is placed in a strong magnetic field B0, the hydrogen nuclei dipoles
get aligned with the field B0 with a net magnetization vector MZ0. The dipoles precess around the axis of the
magnetic field with an angular frequency that follows Larmor equation ω ¼ γB0, where γ is the intrinsic
gyromagnetic ratio constant of the hydrogen nucleus.
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rotation axis of the hydrogen nucleus and ω the Larmor angular frequency. When a
resonant pulsed RF magnetic field is applied perpendicular to the SMF, the hydro-
gen nuclei process around the SMF axis in phase. After removal of RF pulse, the
spins begin to diphase and so the detected transverse magnetic fieldMT signal starts

to decrease. It does so according to the equation MT tð Þ ¼ MT 0ð Þ exp �t
T2

� �
, where T2

is called the spin-relaxation time. The nuclei return to their initial equilibrium state
before the RF pulse by emitting an MR signal which also occurs by stimulation from
surrounding nuclei. The process is assumed to occur in a simple exponential manner

according to the equation MZ tð Þ �M0 ¼ MZ0 �M0ð Þ 1� exp �t
T1

� �� �
,where T1, the

time required for the nuclei system to return to 63% the equilibrium state, is called
the spin-lattice relaxation time [42–44] (Figure 6).

Tissue/organ contrasts in MRI arises from differences in mainly these two basic
physical parameters: the difference in the spin-relaxation time T1 in the different
organs required for the realignment to the SMF by the hydrogen nuclei of after the
RF pulse is removed; the time constant T2 with which the spins’ signals arising from
a given tissue will diphase after the pulsed RF signal is removed. Figure 7 shows the
variation in the longitudinal magnetizationMZ characterized by T1 and the decay in

Figure 6.
(A) When a 90° RF pulse is applied to the aligned magnetic dipoles, the net magnetization gets tipped to the
transverse xy-plane. Dephasing of the spins results in a quick decrease of the net magnetization in the xy-plane
MT. The dephasing occurs exponentially and characterized by T2. (B) After the pulsed magnetic field is
removed, the longitudinal magnetic field MZ begins to grow exponentially to a maximum of MZ0; this growth is
characterized by a parameter called T1, which the time it takes for the net magnetization along B0 to grow to
63% of the maximum value MZ0.
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the transverse magnetization MT, characterized by T2 in the different tissues in
the body [45].

Magnetic fluids play an important role as contrast enhancing agents in MRI.
These contrast agents serve to shorten the relaxation time of the water molecules
surrounding the tissue or organs with the contrast agent molecules, which then
increases the signal intensity detected and thereby providing a positive contrast.
The contrast agents used in MRI can broadly be divided into two major categories:
the T1-weighted contrast agents and T2-weighted contrast agents. T1-weighted
contrast agents shorten the T1 relaxation time to improve the T1 relaxation contrast,
brightening the T1-weighted image. T1 contrast agents usually consist of gadolinium
(Gd) compounds. On the other hand,T2 contrast agents serve to brighten the
T2-weighted images by shortening the T2 relaxation time. T2 contrast agents consist
mainly of superparamagnetic iron oxide and iron platinum. Table 4 summarizes
the major commercially available magnetic fluids used as contrast agents in MRI
imaging today.

Figure 7.
(A) The T1 relaxation time, known as the spin-lattice relaxation time, is the measure of how fast the net
magnetization vector (NMV) occurs along the SMF. Different tissue in the body possesses different T1 relaxation
times (a) which act as a contrast for the different tissue and even of diseased tissues such as tumors. (B) T2

relaxation refers to the progressive dephasing of spinning dipoles following the 90° pulse as seen in a spin-echo
sequence due to tissue-particular characteristics (b).

Compounds Trade name Target organs and tissue Reference

T1-weighted contrast agents

Gadopentetate dimeglumine

(Gd-DTPA)

Magnevist® Glioma [46, 47]

Gadoterate meglumine (Gd-

DOTA)

Dotarem® Brain and spine [48]

Polyamidoamine Dendrimer® Angiography and tumor

differentiation

[49]

Gadoxetate disodium (Gd-EOB-

DTPA)

Primovist® Liver [50]

Gadodiamide (Gd-DTPA-BMA) Omniscan® Blood vessels [51]

Gadobenate dimeglumine

(Gd-BOPTA)

MultiHance® Liver [52]

Gadoteridol (GD-HP-DO3A) ProHance® Brain and spine [53]

Gadoversetamide

(C20H34GdN5O10)

OptiMARK® Brain, spine, and liver [54]

Gadobutrol (Gd-BT-DO3A) Gadovist®/

Gadavist®
Angiography [55]

Gadocoletic acid trisodium Gadocoletic acid Angiography [56]
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4.2 Contrast agents in X-ray and CT

Computed tomography (CT) is a powerful non-invasive diagnostic imaging
technique [64]. CT can be employed for imaging hard organs or tissues (e.g., bones)
or soft ones such as the gastrointestinal (GI) tract, the cardiovascular system, renal
tract, liver, lungs, cartilage, and tumorous tissue with the aid of contrast agents. A
CT image is obtained by rotating an X-ray source(s) (or detector/detector array)
around an object or vise verse, with a detector(s) positioned directly opposite the
radiation source(s). Generally, X-ray scans are taken at small angular increments
during rotation around the object over 360° or 180° [65]. An X-ray attenuation (or
phase or scattering) map or projections are thus obtained. The projections are then
processed mathematically to create a 3D rendering of the scanned object.

Another diagnostic imaging method related to CT is X-ray fluoroscopy—form of
a projection imaging with contrast agent. Fluoroscopy allows for the acquisition of
real-time, continuous images of the internal organs. Like in MRI, imaging contrast
agents are often used in X-ray imaging for better contrast resolution. Usually, small
iodinated agents are injected into blood vessels for use in fluoroscopic angiography,
allowing for the evaluation of blood flow and visualization of the vasculature
system, while barium contrast media are introduced orally or with an enema to
investigate the anatomy (and pathology) of the gastrointestinal tract. The X-ray
absorption coefficient μ can be expressed as:

μ≈
ρZ4

AE3 (22)

where ρ is the density of the material, Z the atomic number, A the atomic mass
and E the X-ray energy. Therefore, materials of higher density and atomic number,
higher density tissues, absorb X-ray better [66].

While lanthanide-based contrast agents are a common stay in MRI, their appli-
cation in CT as contrast agents is being explored based on their high atomic num-
bers [64]. The two major reasons motivating the investigation of gadolinium-based
compounds as CT contrast agents include use in patients who are contraindicated
for iodinated agents based on allergic reactions or renal insufficiency and the fact
that Gd has higher K edges than iodine providing better contrast enhancement at
higher X-ray photon energies, potentially reducing radiation exposure to patients
[67]. A summary of some of the gadolinium compounds used in MRI as contrast
agents are listed in Table 4. Clinically approved gadolinium-based contrast agents

Compounds Trade name Target organs and tissue Reference

Gadomelitol Vistarem®

(Gadomelitol)

Angiography [57]

Gadoteric acid (Gd-DOTA) ClariscanTM Brain and spine [58]

T2-weighted contrast agents

Ferumoxide (AMI-25)

(Fe3O4�γFe2O3)

Feridex® Liver, spleen, Bone marrow [59, 60]

Ferumoxsil (AMI-121)

(Fe3O4�γFe2O3)

Lumirem® Liver, spleen, gastrointestinal

tract

[61]

Ferumoxtran (Fe3O4�γFe2O3) Sinerem® Lymph nodes, blood [62]

Ferrixan (Fe3O4) Resovist® Liver [63]

Table 4.
Commonly used MRI contrast agents for medical diagnosis.
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have been tested in CT for imaging the cardiovascular system and for pulmonary
and aortic angiography. Table 5 summarizes some of the Gd compounds that have
been tested as contrast agents in CT.

4.3 Magnetic contrast agents in OCT imaging

OCT is non-invasive cross-sectional imaging modality that uses light to
interrogate tissue providing a 3D rendering of the tissue under investigation [74].
Figure 8 depicts the principle of OCT. A low-coherence light from a laser source
is split into two halves, with one half guided to a mirror (reference arm) and the
other half used to illuminate the tissue under investigation (sample arm). The
reflections from the reference arm and from the tissue are recombined by beam
combiner and detected. The electrical signal from the photodetector is bandpass
digitized and demodulated before being stored on a computer. The low-coherence
in the light being used allows for interference between the two arms to occur only
when the two optical path lengths are equal. Therefore, fine scanning of the
reference armmirror allows for interference to occur with light originating from the
different depths of the tissue. Transverse scanning of the optical beam then allows
for a 3D imaging of the tissue [75].

Figure 8.
Schematic illustrating the concept of low coherence interferometry. Using a short coherence length light source
and a Michelson-type interferometer, interference fringes are observed only when the path lengths of the two
interferometer arms are matched to within the coherence length (lc) of the light source (adapted from [41]).

Compound Trade

name

Target organ Reference

1. Gadopentate dimeglumine

(Gd-DTPA)

Magnevist® Urinary tract, aorta, blood vessels in

cranium

[68, 69]

2. Gadodiamide (Gd-DTPA-BMA) Omniscan® Arterial angiography, [70]

3. Gadoteridol (Gd-HP-DO3A) ProHance® Aorta, brain tumors, [71]

4. Gadobutrol (Gd-BT-DO3A) Gadovist® Alternative to iodinated agents [72]

5. Gadoxetate disodium

(Gd-EOB-DTPA)

Primovist® Liver, spleen, urinary tract [73]

Table 5.
Lanthanide-based contrast agents for CT and X-ray.
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The ability of a tissue to be magnetized is quantified as magnetic susceptibility χ

and can be used as means of contrast in OCT imaging. Biological tissue is compar-

atively non-magnetic χj j � 10�5
� �

when compared to ferromagnetic iron oxides,

whose χ is 105 times greater than that of tissue. This means that the χ difference
between tissue and magnetic particles can be exploited to provide contrast in OCT
imaging of tissue doped with magnetic nanoparticles whose localized exogenously
induced motion can be resolved by OCT and used as a contrast feature [76]. The
motion of the nanoparticles in the tissue is caused by a magnetic gradient force:

F
!
¼

V χ � χmedð Þ∇ B
!



2

2μ0
(23)

where F is the force acting on the magnetic nanoparticles with susceptibility of
χ within its surrounding tissue medium with susceptibility of χmed, B being the
magnetic flux density, V is the volume of the tissue nanoparticles and magnetic
permeability in vacuum [77].

As shown in Figure 9, when the magnetic nanoparticles get laterally displaced
by the magnetic force, the OCT the increase in the light scattered back also gets
shifted laterally. Figure 9(B–D) shows the variation in the OCT signal variation
that follow changes in the nanoparticles position arising from the magnetic force.

5. Targeted drug delivery

5.1 Introduction

As it was initially assumed byWidder et al. in 1978 [78], magnetic constructs can
target specific locations, such as tumor sites, holding enormous potential for site-
specific drug delivery, see Figure 10. This subchapter discusses a clinically driven
application of MHD focusing on magnetic drug targeting. MHD drug targeting
refers to the magnetically targeted and/or triggered therapeutic agent delivery

Figure 9.
Magnetomotive OCT tissue configuration. (A) A sample is doped with magnetic microparticles, placed in a
magnetic field and shone with an optical imaging beam. The contrast mechanisms illustrated by two states of a
magnetic microparticle (filled and dash-outlined shapes, respectively) within the imaging focal volume and the
associated (A–D).
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method that augments the concentration of the agent in the target area. In the first
part, drug-loaded magnetic constructs are discussed as individual intra-vascular
vehicles for site-specific drug delivery. In the second part, magnetohydrodynamic
(micro) pumps for controlling magnetic nanoparticles dispersed in a base fluid are
discussed. These are reviewed and summarized separately based on the knowledge
already available in literature.

5.2 Magnetic constructs

Due to their superior properties such as biocompatibility, biodegradability, large
loading capacity, and controlled release ability, magnetic constructs have attracted a
lot of attention. They offer mean to remotely direct therapeutic agents to well-
localized sites of interest, improving control on dosing, reducing the concentration
requirements up to 20% [79], associated toxicity, and fluctuation in circulating drug
levels [80–82]. While drug release usually occurs by passive diffusion, triggering via
enzymatic activity, physiological conditions [83] or magnetically [84–86], see
Figure 11, can be performed. On-site controlled drug release is another important
factor for effective therapeutics. For example, when the magnetic construct is
exposed to an alternating magnetic field, drug release can occur. Via facilitated drug
release, collateral tissue damage and toxic side effects may be further decreased or
fully eliminated [87, 88]. This is important for applications balancing between
efficacy and toxicity, e.g., chemotherapies [89].

The use of magnetic constructs as therapeutic agents has increased exponentially
since the earliest studies by Senyei et al. [90] and magnetic carriers of increased
sophistication have been developed [91]. While nanoparticles are the simplest
magnetic constructs, currently, there are many different types of carriers for mag-
netic targeting. Generally, any biocompatible magnetic materials, magnetic mate-
rials coated by a biocompatible polymer or inorganic material, or magnetic
materials precipitated inside the pores of a biocompatible polymer or inorganic
material can be used. While the use of iron oxide particles in the form of magnetite
(Fe3O4) or maghemite (γ-Fe2O3) predominates, any metal, e.g., cobalt or nickel, or

Figure 10.
Magnetic constructs (A) or constructs with evenly distributed magnetic material (B) applied parenterally
(intravenously or intra-arterially), can be used as intravascular vehicles for targeted drug delivery if
drug-loaded (C) or -coated (D).
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metal derivatives, e.g., μ-oxo N,N0-bis(salicylidene)ethylenediamine iron-Fe(salen)
[92–94], are used. Magnetic constructs can be porous or hollow single magnetic
nano/microparticles encapsulating the drug in pores and cavities [95], non-
magnetic polymeric or inorganic nano/microparticles encapsulating both magnetic
material and drug [96], magnetosomes [97], micelles [98] or liposomes, micro/
nanoswimmers or micro/nanomotors prepared by layer-by-layer deposition [99] or
3D-printing [100], nanoparticle clusters [96, 101].

The basic principle of magnetically targeted drug delivery is based on the
physical phenomenon of the translational motion of a magnetic construct when a
magnetic field gradient is applied. Magnetic construct with a therapeutic agent
encapsulated into the construct and/or conjugated on its surface is injected
systemically (or delivered locally via catheter) and transported by the blood
circulation to the target location. While intravenous injection is associated with
higher clearance from the bloodstream, it is being used more frequently when
compared to the intra-arterial routes. A strong, high-gradient magnetic field is then
applied to allow translating magnetic constructs to the target location and capturing
them. Literature suggests that flux density at the target location must be of the
order of a few hundred millitesla with a few teslas per meter field gradient for
slow blood flow arteries and up to a few hundred for fast blood flow arteries.

Magnetic constructs are driven by the magnetic force Fm dependent on the
magnetic induction B:

B ¼ μ0 H þMð Þ ¼ μ0H (24)

where μ0 is a permeability of free space, H is a magnetic field strength andM is a
total magnetization of the magnetic construct which could be neglected in case of
diluted suspension.

In the case of supermagnetic constructs in a diamagnetic base solution, the
magnetic moment m on a magnetic construct:

m ¼ VmM ¼ VmΔχH ¼ Vm χm � χwð ÞH (25)

where Vm is a volume magnetic construct, Δχ is an effective susceptibility given
via a difference between susceptibility of a magnetic construct χm and susceptibility
of a base solution χw.

Under the assumption that magnetic constructs are very small and could be
assumed to be point-like particles:

Fm ¼ m � ∇ð ÞB ¼
Vm ∆χ

μ0
B � ∇ð ÞB ¼ Vm∆χ∇

B2

2μ0

� �
¼ Vm∆χ∇

1

2
B �H

� �
(26)

Figure 11.
Targeted drug release.
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On the one side, the magnetic force Fm dependents on the magnetic constructs
size (amount of magnetic material). While magnetic constructs are flexible in their
dimensions from a few nanometers up to a few micrometers, there is a trade-off
between larger magnetic force and the appropriate physiological response [82, 102,
103]. On the other side, the magnetic force is proportional to the magnetic gradient.
The magnetization of the magnetic constructs, however, increases with the external
magnetic field only while the magnetic field is below the saturation field.

In order to increase magnetic force up to several orders of magnitude further,
magnetizable implant (biocompatible wire, needle, stent, filament or seed) creating
a high-gradient magnetic field at the target location under the influence of an
external magnetic field could be used, see Figure 12 [104]. While implant can solve
problem of magnetic force strength and distance decay, as well as being successfully
used at MRI facilities in applications related to cardiovascular, digestive and urinary
systems under clinically feasible conditions, it makes the procedure of magnetic
drug targeting minimally invasive. The concept has been successfully demonstrated
in vivo [105] and is promising for magnetically targeted thrombolytic therapy.

Although magnetic drug targeting is appealing, most studies demonstrate only
in vitro results for superficial organs due to difficulties in manipulating magnetic
particles in vivo and rapid decrease of magnetic force with distance [79]. While
some technical challenges remain, several drug delivery systems have been devel-
oped for the treatment of pulmonary disorders [106, 107], cancer [108–110], and
cardiovascular diseases [111].

5.3 MHD (micro)pumps

The concept of MHD (micro)pump is relatively new and was developed by Jang
and Lee [112] only in 1999 with an initial goal of applying in drug delivery applica-
tions. The working fluid of MHD (micro)pump is magnetic fluids. The term
nanofluid was previously introduced by Choi and Eastman [113] in 1995 and
describes colloidal suspensions of magnetic nanoparticles or nanotubes (dØ
< 100 nm) in a based solution e.g., water, oil, ethylene glycol mixture etc. Magnetic
fluids, also called ferro- or nano-fluids, simultaneously exhibit liquid and magnetic
properties, leading to the possibility to control their flows with magnetic fields.

In a typical setup, see Figure 13, a uniform magnetic field of strength B creates a
controllable force (Lorentz force) F as a driving source in the flow for control and
manipulation [114–119]. MHD (micro)pump can be fully described by a combina-
tion of Navier–Stokes equations of fluid dynamics and Maxwell’s equations of
electromagnetism. Considering the absence of moving parts, MHD (micro)pump

Figure 12.
Implant-assisted magnetic drug targeting with the magnetic stent implanted in the vasculature.
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possess a simpler fabrication process when compared to mechanical (micro)pumps
[120]. MHD (micro)pumps have attracted the attention of many researchers as they
could achieve high flow rates and produce bi-directional flow. To use MHD (micro)
pumps for drug delivery, however, the stability of the flow rate is critical. The flow
rate of MHD (micro)pumps depends on the current and the magnetic flux density
[112]. Nevertheless the flux density from a permanent magnet is higher than that of
an electromagnet, some authors hypothesized that electromagnets are more useful
as their polarity could be reversed, leading to the change of the flow direction [82].
The use of direct current (DC) and alternate current (AC) MHD (micro)pumps
have been demonstrated [120]. While the application of direct current (DC)
(micro)pumps is often associated with bubbles leading to electrode corrosion, they
can achieve higher flow rates (Figures 14 and 15).

5.4 Magnetic separation via particle labeling

Magnetic separation is being used in many biomedical applications, particularly
cellular separation [121]. It is achieved via labeling the desired biological entity, e.g.,
red blood cells, with biocompatible magnetic nanoparticles. Labeled objects are
separated from the base solution by passing the mixture through a high magnetic
field gradient immobilizing the labeled entities via the magnetic force:

Fm ¼ 6πηRmΔυ (27)

Figure 13.
Schematic of MHD (micro)pump (A) and its simplification (B). When an electric potential difference V is
applied between the electrodes, an electric current circulates through the electrically conducting magnetic fluid
perpendicularly to the uniform magnetic field of strength B so that driving Lorentz force F is produced.

Figure 14.
Magnetic separation. Left: while magnetically labeled objects (yellow) are attracted by the magnet, non-
magnetic objects (gray) and base fluid can be filtered out. Right: after removing the magnetic force captured
objects are recovered.
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where η is a base solution viscosity, Rm is a radius of magnetic nanoparticle, Δυ is
a relative velocity of nanoparticle with respect to the base solution.

6. Current biomedical devices based on magnetohydrodynamics

In this section, we describe some of the applications of MHD such as pumps,
integrated fluidic networks, stirrer, and micro-coolers.

6.1 MHD-based micro-pumps

One the best-known application of MHD is in the field of fluid pumping. The
device consists of a conduit with two electrodes on either side. When a potential
difference is applied across the electrodes, current flux J flows through the solution.
In the presence of a magnetic field B, the electric field J interacts with the magnetic
field B to generate a Lorenz force J � B which drives fluid motion.

Below is an example of MHD-based micro-pumped on PDMS platform.

6.2 MHD-based microfluidic networks

In lab-on-chip applications, it is often necessary to transport fluids and reagents
across networks of conduits. Controlling the flow usually requires the use of pumps
and valves. It is hard to implement mechanical pumps and valve in a lab-on-chip
setting. MHD provides a proper solution that does not require a mechanical com-
ponent. The basic idea is to equip many of the network’s conduits, if not all, with
individually controlled electrodes. By careful control of the electrode’s currents and
in the presence of a magnetic field, it is possible to direct the fluid flow along any
desired direction [123, 124].

Figure 16 shows a simple example of an MDH microfluidic network fabricated
using low temperature co-fired ceramic tapes (LTCT). By programming, electrodes
can circulate the fluid around the tours at any desired direction and even maintain
their temperature allowing for various biological processes like thermal cycling and
potentially polymerase chain reaction (PCR) for DNA amplification.

Figure 15.
Schematic of the polydimethylsiloxane (PDMS)-glass microfluidic chip for the liquid-metal-based
magnetohydrodynamic (MHD) micropump (adapted from [122]).

20

Nanofluid Flow in Porous Media



6.3 MHD-based stirrer

Although the characteristic lengths associated with the microfluidic devices are
small (e.g., in the order of 100 μm), diffusion alone does not allow sufficiently fast
mixing. For example, at room temperature, myosin’s diffusion coefficient in water
is about 10�11 m2/s, and the diffusion time along with a length of 100 μm is very
large, about 103 s. Since Reynolds number (Re) of flows in micro-devices are usually
very small (Re≪ l), the flows are laminar, well-organized which cause poor mixing.

MHD provides us with rather easy means for mixing and stirring. Two different
types of MHD stirrers have been reported in the literature. One relies on altering the
flow direction to enhance dispersion [126, 127], while another type induces second-
ary flows to improve the mixing. For more details, refer to [126, 127].

In the current studies, it is shown that MHD is very suitable for providing better
stirring in the microfluidic setting.

6.4 MHD-based micro-coolers

Since MHD can facilitate fluid circulation, it can be used to facilitate cooling.
Liquid metals are particularly suitable for this purpose due to their high thermal
conductivity, high boiling point temperature, ad large electric conductivity. Since
MHD propulsion is easy to implement, miniaturize and does not require mechanical
components, it is ideal for micro-cooling applications, such as those required in
microelectronics. Although various patents address MHD micro-coolers, it is not
known whether any products are in actual use.

7. Conclusions

In summary, this chapter covers important aspects of the MHD applied in the
biomedical field. A new MFDM with the two-layer layout is proposed to improve

Figure 16.
A prototype of an MHD microfluidic network. The conduits are labeled with numbers (adapted from [125]).
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the correction performance of the DM for full-order aberrations. The results
showed the effectiveness of the method to correct full-order aberrations for adap-
tive optics systems. Furthermore, RBC manipulation by the magnetic field is dem-
onstrated via an external magnetic field produced by a system of two current-
carrying wires. It is shown that cell motion towards and away from the wires, as
well as periodic motion in the region between the wires. This approach will likely
have application in various fields including molecular biology, medicine, gene
engineering, and drug delivery technology.

MHD plays an integral part in biomedical imaging, ranging from the endogenous
magnetization properties of tissue that play an important role in MRI imaging to the
ferromagnetic/superparamagnetic fluids that act as contrast enhancing agent in
several imaging techniques such as MTI, CT/X-ray and OCT imaging. Several com-
mercial contrast agents are in clinical use today. Research continues to be under-
taken on new contrast agents and on the utility of MRI contrast agents in areas such
as CT/X-ray and OCT imaging.

Moreover, the same magnetic constructs allow for a combination of enhanced
diagnostic imaging (MRI, CT, OCT) and therapeutics (targeted drug delivery).
While some technical challenges remain, several drug delivery systems have been
successfully developed for treatment of pulmonary disorders, cancer, and cardio-
vascular diseases. At the end, we briefed current MHD-based devices with potential
biomedical applications. MHD-based microfluidics operates at low voltages, can
direct the liquid to flow along any desired path without a need for valves and
pumps, and continuously circulate the sample in a closed loop, and furthermore can
chaotically stir the sample without moving part.
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