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Chapter

Food Safety: The Risk of 
Mycotoxin Contamination in Fish
Constanze Pietsch

Abstract

Mycotoxins are commonly found in animal feeds, and fish feeds are no exception 
to this. The need to feed fish in aquaculture with compounded feeds leads to the 
increasing inclusion of plant-derived feed ingredients that have a higher probability 
of containing mycotoxins. Since fish appear to be quite sensitive to mycotoxins, 
further research on mycotoxin toxicity in fish is recommended. Depending on the 
chemical characteristics of an individual mycotoxin and the biotransformation 
abilities of the different fish species, certain mycotoxins can could be found in the 
edible parts of a fish. Thus, the consumption of fish products increases the potential 
risk of mycotoxin exposure for humans. This chapter reviews the risks associ-
ated with different groups of mycotoxins and makes recommendations on how to 
minimize these risks in the future.

Keywords: fish, aquaculture, mycotoxin toxicity, toxin residues

1. Introduction

Estimating risk requires sufficient knowledge of the frequency with which 
mycotoxins occur and the levels that can be expected. However, sufficiently detailed 
information on the actual levels of contamination in fish feeds is often not available. 
In addition, there is a high degree of variability between mycotoxins due to differences 
in fungal distribution and climatic conditions worldwide. Nevertheless, the following 
sections will summarize our current knowledge of mycotoxin occurrence in feed 
ingredients, fish feeds, and fish tissues in order to compile sufficient evidence to 
prove that some mycotoxins pose a considerable risk for consumers due to their high 
prevalence, incidence, toxicity, and/or stability as they pass into the food chain.

2. Exposure of fish to mycotoxins

Fish production in aquaculture has increased rapidly over the previous decades. 
Consequently, increasing numbers of fish have to be fed in aquaculture, which 
requires an increasing amount of fish feed. Since the global availability of fishmeal, 
which is a major ingredient in fish feed, is limited, cereals are common alternatives. 
Based on recent estimations, it has been determined that fishmeal is still a major 
component in fish feed in Europe [1], despite the fact that its percentage in com-
mercial feeds has decreased over the last decades. The disadvantage of plant-based 
ingredients is that there is a higher probability of them being contaminated with 
mycotoxins. The second most prominent feed ingredient in aquaculture feeds in 
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Europe is wheat flour [1], followed by soybean products. Other feed ingredients are 
often present in fish feeds at average percentages of less than 10%, and these ingre-
dients may also contain considerable amounts of mycotoxins. One example of such 
a problematic feed ingredient may be distillers’ grain with solubles (DDGS) [1, 2].

The most important mycotoxins in feed ingredients in terms of risk to fish and 
consumers, since they are either known to be toxic and/or occur at high concentra-
tions, include aflatoxin B1 (AFB1), deoxynivalenol (DON), nivalenol (NIV), zearale-
none (ZEN), ochratoxin A (OTA), T-2 toxin (T2), fumonisin B1 (FB1), moniliformin 
(MON), enniatins (ENNs), and beauvericin (BEA). Nevertheless, there are a number 
of reasons why mycotoxin contamination levels in feed ingredients can vary widely, 
for example, different fungal species or strains often grow on specific feed ingredients. 
Especially, high OTA levels have been found in corn (up to 1850 μg/kg, [3]), followed 
by wheat (up to 1024 μg/kg, [4]), soybean, and sunflower products (up to 350 and 
240 μg/kg, respectively, [3]). Furthermore, Fusarium mycotoxins can contaminate 
peas and soybeans [5], and FB1 can be found in significant amounts in corn [6].

The occurrence of mycotoxins in feed ingredients is also known to vary as a result 
of climate effects and differences in the distribution of various fungal species and 
strains that have differing abilities to form toxins [7–9]. The problem with mycotoxin 
contamination in feed ingredients is thought to have increased as a result of climate 
changes and the shipping of commodities on a global scale, which has led to the world-
wide distribution of many fungal species, often resulting in higher contamination in 
cereals [9–11]. However, the presence of mycotoxins in feed ingredients does not mean 
that these substances will also be present in compounded animal feeds, since a number 
of mycotoxins have been reported to possess different degrees of stability when ther-
mally processed and extruded [12]. Furthermore, the processing of feed ingredients, 
which includes cleaning, sorting, milling, and the application of thermal processes, 
also influences the mycotoxin load in the final products [13–16]. Nevertheless, the 
extent of the reduction in mycotoxin contamination during these procedures differs 
widely for each mycotoxin [15, 17–20]. Generally, mycotoxins that are most stable 
and widely distributed and, in most cases, occur at high concentrations in certain 
feed ingredients are problematic for fish production. Two mycotoxins that are already 
problematic at relatively low concentrations in fish feeds and will be reviewed in the 
section on fish toxicity are AFB1 and OTA due to their high toxicity.

The most prominent member of the fumonisins in naturally contaminated 
animal feeds is FB1 [21], which often occurs at high concentrations in feed 
ingredients (e.g., [22, 23]). However, since fumonisins are relatively unstable 
and easily affected by feed production processes, they are assumed to be less 
problematic than other mycotoxins. Nonetheless, feed processing may yield 
mycotoxin metabolites, in some cases resulting in increased toxicity [24].

ZEN is a mycotoxin that commonly occurs after crops have been infected have 
been infected with Fusarium species in the field, but this toxin can also develop dur-
ing the storage of the cereals [25, 26]. ZEN contamination appears to be common 
in commercial fish feeds [27, 28], which raises concerns about the effects of chronic 
exposure to this mycotoxin, since besides exhibiting toxic characteristics, it is also a 
potent natural estrogen [29].

The trichothecenes include some very important mycotoxins, such as T-2 toxin, 
DON, and NIV. Recent research has focused on DON since it is known for its high 
prevalence and incidence in feed ingredients and animal feeds in Europe [30]. 
However, Fusarium fungi are also known to produce some less commonly described 
mycotoxins, known as emerging mycotoxins, which include BEA, ENNs, and MON 
[31, 32]. Although ENNs and BEA have been reported to be extremely prevalent in 
cereals [33], there has not been enough detailed research into their presence in feed 
components, compounded animal feeds, or farmed animals that have been exposed 
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to these mycotoxins. The other important Fusarium-related mycotoxin is MON. Up 
to 1.2 mg/kg MON has been detected in feeds for higher vertebrates [34], whereas 
the levels present in commercial fish feeds remain unknown.

As mentioned above, mycotoxin contamination often occurs on crop fields, but 
improper storage of feed ingredients and feeds also contributes to the final toxin 
levels in fish diets. Toxin production depends on the fungi’s ability to produce certain 
chemical compounds as well as environmental factors, such as physical, chemical, 
and biological factors [35]. Accordingly, similar to the aflatoxins, the occurrence 
of OTA seems to be connected to temperature and humidity in the environment 
during growth and harvesting of crops, and the storage of feed ingredients and 
feeds. However, for most investigated fish feeds, low OTA levels have been observed 
[28]. In contrast, recent research has shown that inappropriate storage over a period 
of 6 weeks of a commercial feed for salmonids can lead to the development of 
considerable amounts of OTA (up to 400 μg/kg feed, unpublished results, C. Pietsch).

Although dietary contamination is the main route of exposure for fish in 
aquaculture, mycotoxins may also be introduced to aquatic environments directly. 
For example, levels of 90 μg/L OTA have been reported in waste water originating 
from wine production. Furthermore, ZEN can be found in surface waters and in 
waste-water treatment plants at ng/L levels, which may be environmentally relevant 
due to the estrogenic effects of this mycotoxin [36–38]. Thus, the stability of 
mycotoxins in water may also have an effect on relevant exposure concentrations in 
aquatic environments [39].

When data on contamination levels and incidence in common feed ingredients 
are compiled, there may be significant uncertainties due to the fact that these 
studies use different methodologies for mycotoxin detection and quantification. 
Another problem when compiling data from scientific studies is that several studies 
have not reported accuracy and reliability parameters for their methods, mean-
ing the measured toxin values probably contain uncertainties, since the sample 
preparation and detection procedures differed. Furthermore, actual mycotoxin 
concentrations in feed components, animal feeds, and animal tissues are often 
underestimated, since matrix effects and the problems of detecting masked myco-
toxins, which can often not be detected by routine measurement techniques. Since 
research is continuously improving detection methods for mycotoxins, an increased 
number of comparative studies addressing the advantages and disadvantages of 
detection methods for more commonly and emerging mycotoxins, such as can be 
found in the study by Pascale [40], should be conducted.

Another problem with estimating actual contamination levels in feeds and 
animal tissues is that metabolites of even commonly occurring mycotoxins are often 
not analyzed together with their parent compound, although metabolites may occur 
in significant amounts as has been shown for DON [41]. Furthermore, toxin levels 
in the control diets used in experimental fish studies have often been reported to 
contain no mycotoxins, despite the fact that the necessary toxin analyses were rarely 
performed to provide proof for this assumption. This may lead to an underestima-
tion of the actual toxin levels in both control diets and experimental diets if only 
a restricted number of mycotoxins are measured. As a result, actual mycotoxin 
exposure data for fish contain various uncertainties. Therefore, more complete feed 
contamination databases are required so that risk assessments can be improved.

3. Presence of mycotoxins and their toxicity in fish

If the risk to humans by consuming fish products is to be calculated, the first 
step would be to estimate the uptake and retention of mycotoxins in different fish 
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species and in different parts of the fish (Figure 1). Therefore, the following sections 
will summarize what is known about chemical characteristics in fish bodies and the 
toxicity in the animals resulting from the most important mycotoxins.

DON has a mean lowest-observable effect level (LOEL) in fish of 3541 ± 776 μg/
kg (±SEM; Figure 2), whereas the contamination levels in commercial fish feeds 
range from 0 to 825 μg/kg [27, 28, 41]. Similar to findings in chickens, DON appears 
to be excreted rapidly by carp (Cyprinus carpio), leaving no relevant residues in 
the edible parts [42, 43]. FB1 metabolization also occurs quickly in chicken and the 
remaining values in tissues stay low. However, exact information on the kinetics or 
biotransformation of fumonisins in fish is not available [44, 45]. Due to this and the 
large differences in the toxicity of fumonisins in fish (Figure 2), no exact risk can be 
calculated for farmed fish [1]. Typical disorders in higher vertebrates resulting from 
FB1 exposure have often been linked to the disruption of the sphingolipid metabo-
lism [46], and similar effects have also been observed in fish [47]. Nevertheless, 
a low potential risk has been assumed for most vertebrates, with the exception of 
pigs [45]. Despite the fact that the guidance values for fumonisins in complete fish 
feeds have been set by the European Commission and the US to 10 mg/kg based, 
some countries have chosen to set different guidance levels [48, 49]. Although FB1 
can affect fish at low concentrations, for example in carp (exposed to 500 μg/kg 
[50, 51]), the concentration range of the lowest-observable effects in fish is relatively 
broad, with a mean range of 26,480 ± 7124 μg/kg (±SEM; Figure 2), a level that is not 
achieved for either actual or estimated natural contamination of fish feeds [1, 52].

Previous studies have reported lethal concentrations of OTA that lead to 50% 
mortality (LC50) ranging from 2 to 58 mg/kg body weight in various higher ver-
tebrate species [53, 54]. Fish species appear to be particularly sensitive to OTA, 
and since disposition appears to mainly take place in the kidneys of fish and not in 
muscles [55], this not only affects its toxicity, but is also relevant for food safety. 
High sensitivity to OTA in fish has been demonstrated in several studies. The LC50 
value for OTA in adult seabass (Dicentrarchus labrax L.) was found to be 280 μg/kg 
body weight [56], 360 μg/l for zebrafish (Danio rerio) embryos [57], and 5.53 mg/ kg 

Figure 1. 
Exposure routes and factors influencing mycotoxin retention in fish.
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body weight in rainbow trout (Oncorhynchus mykiss) [58]. However, the route of 
exposure may play a role when comparing these different studies. Furthermore, the 
absorption efficiency in the gut also determines the bioavailability of the myco-
toxins in fish, as has been demonstrated for oral exposure to OTA in common carp 
[59]. If the LOEL for exposure of fish to OTA are summarized (Figure 2), the mean 
range is 1077 ± 566 μg/kg (±SEM), which indicates that the currently recommended 
guidance value for OTA in cereals and cereal products intended for animal feed of 
250 μg/kg does not protect fish from potential damage [48]. This is in stark contrast 
to the guidance level of 20 μg/kg that exists in some non-EU countries [49].

ZEN has a mean toxicity value of 2389 ± 1285 μg/kg (±SEM), based on the LOEL 
calculations for five different fish species shown in Figure 2. Although the number 
of studies reporting effects of ZEN in fish is very limited, they may indicate that 
fish are more sensitive to water-borne ZEN than to dietary ZEN, which is why 
the mean LOEL level, including both, dietary and water-borne exposure for fish, 
shows quite a high standard error of the mean. ZEN concentrations above the LOEL 
levels in water samples have not been reported for aquatic environments [36–38]. 
Although the actual ZEN contamination of commercial fish feeds appears not to 
exceed the current guidance level for this mycotoxin in cereals and cereal products 
in the EU of 2000 μg/kg [27, 48], dietary exposure to this mycotoxin may still 
do harm to farmed fish. The guidance values in other countries that recommend 
maximum ZEN levels of 20–1000 μg/kg have a higher probability of protecting fish 
from damage [49], since the ZEN levels in fish feeds often do not exceed concentra-
tions of 200 μg/kg [27, 60]. Nevertheless, more exact reports on ZEN toxicity in fish 
and the actual contamination levels in commercial fish feeds are needed to support 
these assumptions.

T-2 toxin has a mean toxicity of 3201 ± 1236 μg/kg (±SEM) in fish, based on 
the currently available LOEL for different fish species (Figure 2). This level is 
considerably higher than the actual contamination level found in salmonid fish feed 

Figure 2. 
Variability in mycotoxin toxicity for fish, as shown by the differences in the lowest-observable effect levels 
(LOEL) in different fish species. References: 92 studies for AFB1 [63, 64, 70–149] comprising 21 different fish 
species, 7 studies for OTA [56–58, 94, 150–152] comprising 5 fish species, 15 studies for FB1 [47, 50, 51, 153–165] 
reporting levels for 7 fish species, 12 studies for DON [42, 144, 166–175] yielding information for 5 different fish 
species, 10 studies for ZEN [144, 176–184] reporting LOEL for 5 different species, 10 studies [185–193] reporting 
effects of different levels of T-2 toxins on 4 different fish species, and 3 studies [162, 194, 195] for 3 different 
species exposed to MON.
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in South America [28], and much lower than the guidance levels of 250 mg/kg for 
T-2 toxin set by the European Commission for cereal products in compound feeds 
[61] and individual recommendations in other countries (max. 80–100 mg/kg) for 
T-2 toxin in complete feed and all grains [49]. From these data, it can be assumed 
that fish do not regularly suffer from T-2 toxicity, and there have been no reports of 
accumulation of this mycotoxin in edible parts of the fish.

The situation for AFB1 is, however, quite different. The mean LOEL for fish has 
been calculated to be 1248 ± 275 μg/kg (±SEM) (Figure 2). However, AFB1 appears 
to be readily absorbed by the intestine [62] and a LOEL of less than 1 μg/kg has been 
observed in Nile tilapia (Oreochromis niloticus) and rainbow trout [63, 64], which 
shows that this mycotoxin can be a problem for farmed fish. In commercial fish 
feeds, AFB1 levels are commonly less than 10 μg/kg [65, 66], but may be consider-
ably higher in some cases [67–69]. Critical levels for fish have been estimated to be 
a mean of 4.30 μg/kg in commercial feeds [1], which indicates that farmed fish are 
exposed to a risk from AFB1 intoxication.

Less information is available on the toxicity of ENNs and BEA in fish, but 
from initial experiments it can be assumed that at least some ENN toxins have 
toxic effects on zebrafish embryos (unpublished results, C. Pietsch). However, 
how relevant this toxicity is in comparison to the actual ENN contamination in 
commercial feeds remains unclear. Similar to other emerging mycotoxins, these 
substances have already been detected in the plasma of pigs after exposure to 
ENNs [196], indicating that the uptake of these substances occurs in vertebrates. 
In addition, it has been shown that food processing affects the presence on ENNs 
and BEA in bread [197, 198], and thermal processes, in particular, also appear 
to influence the ENN content in fish tissue [199]. Finally, the presence of high 
ENN and BEA levels in feed ingredients appears to overestimate the actual risk of 
fish feed contamination and the potential effects on farmed fish [1]. Thus, more 
research is needed on the toxicology and the biotransformation of ENNs and BEA 
in vertebrates.

An issue that also makes mycotoxin research difficult is the fact that we do not 
know enough about mycotoxin mixtures and their effects. Natural contamination of 
feed ingredients leads to the occurrence of several mycotoxins at the same time and 
their interactions remain mostly unknown.

4. Fish products and food safety

Exposure assessments are often based on a deterministic approach, which 
obtains the estimated daily intake (EDI) levels by assuming a human body weight 
of 60 kg for an adult. The EDI of each mycotoxin is commonly calculated as μg/kg 
body weight per day for each mycotoxin. Accordingly, the Joint FAO/WHO Expert 
Committee and Food Additives and Scientific Committee on Food have established 
a tolerable weekly intake (TWI) levels for humans for OTA of 120 ng/kg body 
weight and tolerable daily intake (TDI) levels of 250 ng/kg body weight for ZEN, 
100 ng/kg body weight for T-2 and HT-2 toxins together, and 1000 ng/kg body 
weight for DON [200, 201]. For aflatoxins, no tolerable intake levels have been set 
since these toxins are listed as human carcinogens. The tolerable intake levels should 
be compared to the actual contamination levels found in fish products. However, 
the frequency of mycotoxin occurrence in fish products has not been investigated in 
detail. Recent studies indicate that less than 10% of fish and meat food samples are 
contaminated with mycotoxins, with DON contamination occurring in 17% of the 
29 fish samples [202]. In addition, the accuracy of the reports also strongly depends 
on the accuracy and the number of samples that were analyzed.
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Even if fish are exposed to feed-borne mycotoxins, and the resulting effects are 
not great, possible retention of these toxins in edible parts of the fish may pose a risk 
for human consumption. A risk to humans is assumed when the toxin concentrations 
in food exceed the safety limits. For AFB1, this level has been set at 2 μg/kg by the  
European Union for food designated for human consumption [49]. However, the 
exact risk to humans is difficult to predict, since the behavior of the chemicals in 
the fish strongly depends on the chemical structures of the mycotoxins. In addition, 
toxin concentration in the feeds and duration of exposure also play an important role, 
therefore different studies may lead to different results. One example is the absence 
of accumulation of aflatoxin in the musculature of common carp in the study by 
Svobodova and Piskac [136], which contradicts the findings of Akter et al. [91]. The 
AFB1 content in the hepatopancreas of gibel carp (Carassius auratus gibelio) was found 
to be considerably higher than in their muscle tissues (2.4–11.8 μg/kg) after 12 weeks 
of oral exposure [104]. An extrahepatic deposition of AFB1 has also been confirmed 
in trout [62, 203], but the detection of this toxin in kidneys is more relevant from a 
toxicological point of view than from a food safety point of view. The study by Selim 
et al. [121] showed that exposure to 200 μg/kg AFB1 for 2 weeks was sufficient to lead 
to detectable toxin residues in fish musculature (>20 μg/kg AFB1), which increased 
to levels of more than 90 μg/kg AFB1 after 10 weeks of exposure. Furthermore, 
feeding European seabass (Dicentrarchus labrax L.) with 18 μg/kg body weight AFB1 
resulted in toxin concentrations of 2.5 μg/kg AFB1 in the fish musculature after 28 
days of feeding, and even higher levels of 4.25 μg/kg AFB1 after 42 days of exposure 
[94]. Compared to this, oral exposure of lambari fish (Astyanax altiparanae) to AFB1 
increased the body residues after feeding for at least 90 days [204]. In addition, this 
study showed that feeding an AFB1 concentration of 50 μg/kg feed for 120 days also 
resulted in aflatoxin accumulation in muscle and liver tissues that were as high as in 
the feed. In other fish species, residues exceeding the safety limit were detected in the 
liver but not in the fish musculature [89, 104]. From these studies, it can be concluded 
that aflatoxin contamination can be a threat to humans after fish have been fed AFB1 
contaminated diets for certain duration. These values show that consuming fish 
can considerably add to the toxicological burden that can already be expected from 
consuming cereals, for which the daily intake through consumption of cereal-based 
products has been reported to reach levels of up to 7.9 ng/kg body weight [205] and 
3 ng/kg body weight if peanuts are consumed [206]. An interesting finding was 
described in a study using walleye (Sander vitreus) which had been exposed to consid-
erable amounts of AFB1 that had accumulated in their edible parts. The accumulation 
of AFB1 in the musculature may be reversible by feeding mycotoxin-free diets for 2 
weeks [107], which also confirms similar findings in other fish species [104].

Fish muscle did not contain OTA in a Polish study [207]. In seabass 
(Dicentrarchus labrax) and sea bream (Sparus aurata) muscles, only low OTA levels 
have been detected [208]. It has already been reported that contaminated cereals 
and feed ingredients lead to the introduction of OTA into the food chain, posing 
a risk for humans [209]. Consuming fish appears to contribute to the presence of 
OTA in the food chain and also adds to the detectable levels of OTA in humans [2]. 
However, compared to the daily intake through direct consumption of cereal-based 
products that has been reported to be up to 22.2 ng/kg body weight for OTA [205], 
the amount that fish products may contribute to the toxicological burden appears to 
be lower. Nevertheless, this adds to the earlier assumption that naturally contami-
nated feeds also lead to the introduction of this mycotoxin into the food chain which 
may pose a risk to human consumers [210, 211]. The knowledge presented here on 
the presence and toxicity of this toxin in fish supports this assumption. The poten-
tial risk due to OTA exposure is probably caused by the fact that OTA is even more 
stable in the environment than aflatoxins [212, 213].
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In contrast, the presence of fumonisins in fish appears not to be relevant for con-
sumers, since they rarely occur in farmed fish (e.g., in a survey in Switzerland in only 
one fillet sample containing less than 0.06 μg/kg FB1 + FB2, personal communication 
C. Pietsch). In addition, it was not possible to identify a high risk to humans as a result 
of consuming fish products contaminated with other mycotoxins, such as ZEN and 
DON, since no relevant toxin levels could be detected in the musculature of DON- or 
ZEN-treated rainbow trout and common carp [42, 214, 215]. Interestingly, ZEN 
exposure did result in retention in the ovaries of farmed trout [184]. Furthermore, the 
study by Nácher-Mestre et al. [216] found no detectable mycotoxin levels in gilthead 
sea bream or Atlantic salmon (Salmo salar) after 8 months of dietary exposure to 
DON levels of up to 79.2 μg/kg and fumonisins at levels of up to 754 μg/kg. A study 
into fish as food reported mean DON levels of 1.19 μg/kg [202]; and since DON was 
the major mycotoxin in the fish samples analyzed in this study, it was also assumed 
to be the main contributor to the daily human mycotoxin exposure. ZEN retention in 
human breast milk has already been related to consuming meat, fish, dry fruits, and 
spices [217]. However, compared to the presence of Fusarium toxins in cereals, it can 
still be assumed, based on the fact that rapid metabolization takes place in fish, that 
the retention of DON and ZEN in fish is low. Therefore, there can be no assumption 
of a higher risk to humans of consuming these mycotoxins in fish compared to the 
risk of exceeding the toxicological reference values by consuming cereal products 
directly [202, 206, 218].

In the 29 fish samples in the study by Carballo et al. [202], mean ENN A con-
centrations of 0.89 μg/kg were observed. ENNs were also detected in 20% of the 
salmon flesh samples and 10% of rainbow trout samples in the study by Tolosa et al. 
[199], but further processing including cooking or smoking appears to mitigate 
the toxin content [219]. In contrast, fish from Egypt contained predominant 
xerophilic molds with Aspergillus species being the major ones (58.2%), followed 
by Penicillium species (32.7%) in salted products and also in smoke-cured bonga 
shad and African catfish (Ethmalosa fimbriata and Clarias gariepinus) [220, 221]. 
However, a study in Kenya only showed aflatoxins in dried fish, and not in fresh 
ones [222]. Smoked-dried fish from Nigeria may also contain potential mycotoxin 
producing fungi and aflatoxins [223–226]. Similar results from Egyptian smoked 
fish confirmed that the moisture and salt concentrations that occur during food 
processing influence the OTA and AFB1 contents in the fish products, possibly 
exceeding the permissible limits for both mycotoxins [227].

Mycotoxins can also occur in sun-dried fish products, which are typically found 
in tropical and subtropical regions where high temperatures and humidity consid-
erably influence fungal growth and toxin formation. Accordingly, samples of dried 
seafood contained high levels of ZEN and OTA (317.3 and 1.9 μg/kg, respectively). 
Furthermore, low amounts of AFB2 (1.2 μg/kg) were also observed in the muscle of 
crucian carp (Carassius carassius), even after storage for 3 months at room tempera-
ture [228], emphasizing the high stability of aflatoxins.

5. Conclusions

Taken together, mycotoxin contamination in feed ingredients and fish feeds is an 
increasing problem that will have to be addressed by crop farmers, feed producers, 
and researchers. One step that could be taken is to prevent heavily contaminated 
raw materials being introduced into the feed production processes, which would 
lower potential mycotoxin contamination levels. Nevertheless, other mycotoxins 
are still formed during storage, and improved guidelines and recommendations for 
storage of feed ingredients and animal feeds should be published. Since mycotoxins 
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are present in animal feeds, in some cases at toxicological relevant levels, this may 
cause health problems in fish and limit production in aquaculture. More data on 
the presence of mycotoxins in fish would allow better risk assessments for human 
consumers to be carried out. Furthermore, the data sets for some mycotoxins 
indicate that more strict guidance levels are needed for fish feeds to protect 
farm animals from harm and prevent accumulation of potentially problematic 
mycotoxins such as AFB1 and OTA in the food chain.
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