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1. Introduction    

Apart from object detection, plot extraction and tracking, automatical classification is 
becoming one of the challenges of modern sensor systems. 
In civil applications for example, different classification techniques are used for air traffic 
control (ATC) purposes. The primary purposes of air traffic control systems are collision 
prevention, the organization and control of the air traffic; furthermore it should provide 
information as well as other support for pilots. In most cases the general traffic situation is 
well known (aircraft, flight number, flight road, flight departure and destination, etc.), but 
the exact prediction of natural processes (weather, bird migration, wind mill rotation 
activities, insect migration, etc.) still remains rather difficult. For this reason the demanded 
expectations are stable feature extraction methods and classification technologies. 
In meteorological applications, weather radars use backscattered echo signals to locate 
precipitation, calculate its motion, estimate its type (rain, snow, wind, hail, etc.) and forecast 
its future position and intensity. For this purpose modern weather radars are mostly pulse-
Doppler radars. These are able to detect the motion of rain droplets as well as to estimate the 
intensity of precipitation. The structure of storms and severe weather can be derived from 
these data. In order to improve the efficiency of new weather radar product families, strong 
feature extraction and classification algorithms are required. 
In the automotive industry, due to higher safety measure requirements in road traffic, the 
adaptive cruise control (ACC) is becoming unavoidable. These systems often use a radar 
setup to slow the vehicle down when approaching another vehicle or other obstacles and 
accelerate again to the present speed as soon as traffic allows it. ACC technology is widely 
considered as a key component for future generation's smart cars, as a form of artificial 
intelligence that can be used as a driving aid. For that reason robust signal feature extraction 
and classification methods are required. 
For airborne applications, two kind of radars can be integrated in air platforms, in order to 
support the navigation and missions. The first category encompasses primary radars, the 
second category secondary radars. Civil airborne primary radar systems support the pilot 
by providing actual information like position or weather. Civil secondary surveillance 
radars (SSR) are radar systems supporting air traffic control (ATC). These systems do not 
only detect and measure the position of aircraft but also request additional information from 
the aircraft itself such as its identity or altitude. While primary radar systems measure only 
the range and bearing of targets based on reflected radio signals, SSRs rely on radar 
transponders aboard aircrafts. These transponders reply to interrogation signals by 
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transmitting responding signals containing specific encoded information. The SSR 
technology is based on the military "identification, friend or foe" (IFF) technology, which 
was developed during World War II. These two systems are still compatible today. 
Nowadays monopulse secondary surveillance radars (MSSR) represent a improved version 
of SSR. For military applications radars are used in fighter aircraft for finding enemy aircraft 
and controlling air-to-air missiles, rockets, and guns. It is used in bombers to find surface 
targets, fixed or moving, and to navigate and avoid obstacles. It is used in large aircraft as an 
airborne warning and control system, searching the skies over great distances for enemy 
aircraft, tracking them, and controlling interceptors. It also is used to search the seas for 
surface vessels or surfaced submarines.  
Furthermore special space technology is used in commercial as well as non-commercial 
spaceflight activities. For such purposes spaceborne radar systems are often used in 
spacecraft, in order to locate patterns of activity. Such critical applications need robust 
preprocessing, feature extraction, pattern classification, fusion and recognition methods.  
The knowledge of the target class has significant influence on the identification, threat 
evaluation and weapon assignment process of large systems. Especially, considering new 
types of threats in Anti Asymmetric Warfare the knowledge of a target class is of significant 
importance. The target class can also be used to optimize track and resource management of 
today's agile sensor systems. 
This chapter consists of the following sections (cf. Fig. 1): 1. the data acquisition section part, 
2. introduction to methods of signal preprocessing, 3. introduction to methods of feature 
extraction, 4. basics of classification and sub-classification methods, 5. introduction to fusion 
methods, 6. recognition, typing or identification basics, 7. some experimental results, 8. some 
product examples of modern radar systems and finally 9. a brief conclusion.   
 

 
Fig. 1. Simplified structure of a modern radar classification function chain 
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2. Data acquisition 

For the data acquisition part an active or passive radar frontend can be used. Either a 
primary or a secondary radar is usually taken into consideration. This radar uses self- or 
friendly generated waveform to reconstruct information from the environment with 
different objects or targets. The data acquisition part usually provides backscattered radar 
echo signal in I- and Q-form in the baseband.  
For following chapter parts, we will assume that a backscattered radar echo signal is given. 
A simplified data acquisition chain can be resumed as following: 
 

 
Fig. 2. Simplified diagram of a radar data acquisition process 

3. Methods of signal preprocessing 

The aim of signal preprocessing in modern radar classification function chains is to prepare 

and condition the acquired signal in order to simplify the feature extraction and later 

classification or recognition of the required patterns. 

Generally the following three steps are indispensable: 
1. Filtering and noise suppression; 2. Clutter suppression; 3. Normalisation 
Filtering and noise suppression consists of all processes in the classification chain that are 
required to eliminate deterministical and well-known noise effects. For this purpose finite 
impulse response filters (FIR) as well as infinite impulse response filters (IIR) can be used. 
The filter design requires a good understanding of the defined radar, environment and 
target scenario. The following filter types are commonly used for suppressing noise in low, 
high, bandpass or stopband form (Stimson, 1998; Kouemou et al., 1996; Kouemou, 2000; 
Kammeyer & Kroschel, 2002): 

www.intechopen.com



www.intechopen.com



Radar Target Classification Technologies 

 

233 

 

www.intechopen.com



 Radar Technology 

 

234 

 ( ) ( ) ( )
∞

−

−∞

= ⋅ − ⋅∫, iωτ
hX t ω x τ h τ t e dτ  (1) 

where h is a windowing function (Kouemou, 2000; Kammeyer & Kroschel, 2002; Kroschel, 

2004). In Fig. 5 an example of a short-time Fourier transform of a time signal can be seen. 

 

 

Fig. 5. Example of a short-time Fourier transform 

4.2 Cepstral-analysis 
The feature extraction process can also use a spectral-based technique similar to those which 

are used in speech processing, namely the Melscale Frequency Cepstral Coefficients 

(MFCC). It is well-known that moving targets create a modulated radar return signal whose 

characteristics in spectrum can be used to distinguish between the classes. This process is 

based directly on the complex I/Q radar Doppler signals. Due to several moving parts with 

different velocities of a target, the radar return signal may cover the whole frequency band, 

depending on the pulse repetition frequency (PRF), from -PRF / 2 to PRF / 2 . Hence no 

linear filter is applied in order to retain any important frequencies. The common MFCC 

process is adapted to complex radar signals. The radar return signal of several hundred 

milliseconds is framed using a half-overlapping Hamming window in order to create signal 

segments representing the short quasi-stationary parts of the Doppler signal. The following 

feature extraction process is done for every frame and each frame results in a feature vector 

(Kouemou, 2000; Kouemou & Opitz, 2007a; Kouemou & Opitz, 2007b): 

1. Apply the Fast Fourier Transform (FFT) to the signal resulting in the spectrum 

( ){ } , 1,...,s n n T=F , where T  is the number of samples.  

2. Calculate the power spectrum 

 ( ){ } ( ){ } ( ){ }∗= ⋅P F Ff fs n s n s n  (2) 

3. Mirror the power spectrum at zero frequency and add the negative frequencies  

( 1,..., /2n T= )  to the positive ones  ( /2 1,...,n T T= + )  to get a positive spectrum 

( ){ }f s nP#  of half the length as the sum of amplitudes of negative and positive 

frequencies, i.e. for 1,..., /2n T= : 

 ( ){ } ( ){ } ( ){ }= + + −P P P# /2 /2f f fs n s T n s T n  (3) 
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4. Apply a k channel mel filter bank to ( ){ }f s nP#  of triangular shaped filters by 

multiplying with the transfer function ( )iH n  of the ith filter to get the filter bank results 

( )Y i . The number of channels is adapted to operator's capabilities.  

5. Calculate the logarithm ( )( )log Y i   

6. Decorrelate the result with the Discrete Cosine Transform (DCT) to get the so called mel 
cepstrum 

7. Take only the first m of the k coefficients of the mel cepstrum result 
8. The feature vector can be extended adding dynamic features by using the first and 

second derivative of the coefficients with respect to time 
9. The zero coefficient is replaced by a logarithmic loudness measure 

  ( ){ }
=

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑P#

/2

0
1

10log
T

f
n

c s n  (4) 

The mel filter bank in step 4 is based on half-overlapping triangular filters placed on the 
whole frequency band of the signal. The lower edge of the first filter may be placed on a 
frequency greater than zero in order to filter out any dominant ground clutter.  
As a result from the method above we achieve a sequence of MFCC feature vectors which 
represent the radar Doppler signal. 
 

 

Fig. 6. Example of extracted cepstral based feature vectors of person (bottom), and tracked 
vehicle (top) 

4.3 Wavelet-transform 

The Wavelet transform W  of a radar echo signal f (cf. Fig. 7) is basically defined by the 

following equations with normalisation factor a and time shift factor b:         

            { } 1/2
( , ) ( )

t b
f a b a f t dt

a
ψ− −⎛ ⎞= ⎜ ⎟
⎝ ⎠∫W  (5) 
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 { } ( )/2
, 0 0 0( )m m

m n f a f t a t nb dtψ− −= −∫W  (6) 

where in both cases we assume that the "Mother Wavelet" ψ  satisfies the condition  

  0dtψ =∫  (7) 

By restricting a and b to discrete values one can obtain formula (6) from (5): in this case 

0 0 0,m ma a b nb a= =  with ,m n∈Z , 0 01, 0a b> >  fixed. 

The most popular Wavelets are: the Daubechies (Daubechies, 1992), Meyer, Mallat (Mallat, 
1999), Coiflet, Symlet, Biorthogonal, Morlet and the Mexican Hat. 
The Wavelet based feature extraction methodology that was developed for this study is 
decomposed in five main steps (Kouemou, & Opitz, 2005; Kouemou & Opitz, 2008b): 
1. Design of the Wavelet type 
2. Definition of the Wavelet observation window as subfunction of time on target 
3. Definition  of the Wavelet scaling function 
4. Definition of the Wavelet dependency function to the radar operating pulse repetition 

frequency 
5. Definition of the statistic adaptation model by combining the Wavelet extracted feature 

to the Discrete Hidden Markov Model   
 

 
Fig. 7. Example of Wavelet extracted feature from a given air target using a Pulse-Doppler 
radar 

4.4 Fuzzy-logic 
The calculation by using the fuzzy logic module works slightly different. For this approach 
physical parameters, for example the velocity, the acceleration, the RCS, etc., of the target 
have to be measured. We need supporting points hn to set up the fuzzy membership 
functions. Those membership functions have to reflect physical limits stored in knowledge 
data base (Kouemou et al., 2008; Kouemou et al., 2009; Kouemou & Opitz, 2008a). 
For each class, membership functions are set up and membership values m depending on 
the supporting points are calculated as follows: 

 
2 1

1
1

1 1 2

1

( , ) ( ) 1

0

h h

if w h

m i j w h if h w h

else

−
−

⎧ ≤
⎪⎪= − + ≤ ≤⎨
⎪
⎪⎩

 (8) 
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where w is the measured value for the considered physical attribute. With those 

membership values, the elements of a matrix P# , containing probabilities for each parameter 
and each considered target class, are: 

 
( )

( )
1

,
,

,
N

k

m i j
i j

m i k

P

=

=
∑

#  (9) 

An example membership function is illustrated in Fig. 8, where in the upper picture the 
membership function for a knowledge-based module, a special case of the fuzzy-logic 
approach, is shown, while in the lower picture the membership function for a trapezoidal 
fuzzy logic module can be seen. 
 

 

Fig. 8. Example of  membership functions of target classes 'buoy', 'person' and 'boat' for 
knowledge-based and fuzzy logic module 

The next step in order to receive the result vector is the introduction of a so called weighting 

matrix W. The weighting matrix contains elements ωi,j ,with i=1…M and j=1…N. The 
weighting matrix represents the influence of the single physical values i on the classification 
result for a given target class j.  
The elements of W depend on several conditions, like available measurement data of radar, 
quality of knowledge database and terrain character, environmental or weather conditions. 
Further feature extraction methods also considered in modern radar target classification are 
different types of autoregressive filters, auto- and crosscorrelation functional analysis as 
well as linear and non-linear prediciton-codeanalysis (Kammeyer & Kroschel, 2002; 
Kroschel, 2004). 
Further applications use the properties of the Karhunen-Loewe transform as well as 
moments of higher order (Gardner, 1980; Gardner, 1987; Gardener, 1988; Gardner & 
Spooner, 1988; Fang, 1988; Fang, 1991). 
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5. Classification technologies 

In this section two main philosophies for classification and subclassification will be 
presented. The first philosophy consists of a learning process. The second philosophy 
consists of knowledge based evidence. The different kind of classification and 
subclassification methods in most modern radar systems can be divided into deterministical 
methods, stochastical methods and neural methods. The deterministical methods in this 
section are essentially based on the handling of logical operators and knowledge based 
intelligence. The stochastical methods described in this section are based on finite 
stochastical automats. The finite stochastical automats which will be presented are usually 
based on different variants of learning Hidden Markov Models. Furthermore the neural 
methods illustrate the capability of solving pattern recognition problems in modern radar 
systems by using different kind of artificial neural networks. For specific classification or 
subclassification challenges in modern radar applications hybrid classifiers can also be 
recommended. These classifiers use – depending on the situation – learnable or non-
learnable algorithms. The learnable algorithms can be designed using supervised or 
unsupervised learn concepts. 

5.1 Classical knowledge based approach 
For calculation with the classical knowledge-based approach, we need known limits for the 
considered physical values applying to the considered target classes. For example, the 
knowledge database needs to hold maximum velocities for persons as well as for tracked 
vehicles and all others. With the limit interval L from the knowledge database and the 

measured value v, we can calculate the elements of matrix P# : 

 
1

, ,
0

Q
i j

if v L
P i j

else

⎧ ∈⎪= ∀⎨
⎪⎩

#  (10)   

Q represents the number of classes for which the measured value v is within the limits of the 
interval L. Therefore, the summing up of all 1/Q terms always has to yield 1. 
Three technologies for radar target classification will be described in this section. One based 
on a classical knowledge based approach, one based on neural networks and the other based 
on stochastic automats. 

5.2 Neural networks 
Many different families of artificial neural networks are state-of-the-art in modern radar 
classification and identification issues. They can be divided into statical and dynamical 
networks (Rosenblatt, 1962) on one side, and into self-organising (Kohonen, 1982; Kohonen, 
1984; Kohonen, 2001) and supervised learnable networks  on the other side (Zell, 1994). 
In this section the time delay neural networks (TDDN) as an example for dynamical feed-
forward networks will be briefly introduced. 
The time delay neural networks (TDNN) were developed by Waibel and Lang for 
classifying phonemes of speech in 1987. They belong to the class of forward networks and 
were firstly used in the speech recognition. Nowadays the classical architecture of TDNN 
was extended with special techniques for radar classification purposes. Classically, these 
networks consist of an input layer, an output layer and one or more hidden layers (cf. Fig. 
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9). The hidden layers lie between the input and the output layer. The number of hidden 
layers has to be determined depending on the application. 
 

 

Fig. 9. Exemplary structure of a time delay neural network 

Every layer is described by a matrix. The columns of the input layer represent the created 

frequency bank of the recorded Radar Doppler signals. The rows describe the time delay of 

the input pattern. A layer consisting of 32 rows denotes that an incoming information will 

be included in the calculation for 32 time units. The layers are divided into varying long 

time steps ∆t according to the application. 

The connection between the layers depends on the size of the so called receptive field. A 
receptive field means that a row of the subsequent layer is only connected to a defined 
number of rows of the preceding layer. For instance a receptive field of size 10 means that 10 
rows of the first layer are each connected to a row of the subsequent layer. Thus a row of the 
subsequent layer can only see a short time period of the preceding layer. 
Of course the neurons of a layer can be connected to every neuron of the preceding layer. 
Thus the recognition and training time of the networks would increase significantly. By the 
use of a receptive field of size r the number of connections can be reduced. Without this 
factor the combination of a layer of size 32x16 with a subsequent layer with 23x5 neurons 
would require 58,880 connections (32·16·23·5=58,880). For r=10 a row of the hidden layer 
sees only a temporal sequence over ten rows of the input layer. This reduces the number of 
connections significantly (instead of 58,880 only 10·16·23·5=18,400). Thereby the length of the 
subsequent layer is determined by the receptive size of the previous layer: 

 1l d r= − +  (11) 

whereas the parameters are the following: 

• l  is the length of the subsequent layer 

• d is the number of time pattern frames 

• r is the size of the receptive field 
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The number of components (of columns) of the hidden layers is chosen according to the 
application. The more components exist, the more precise the recognition will be. However, 
the higher the number of components and the longer the layers are, the longer the 
recognition and training time will be. 
The characteristic of this network lies in the recognition of features in time varying patterns 
at different positions and of different lengths. Their architecture permits to recognise the 
components of time varying patterns, in spite of time shift. 

5.3 Stochastic automats 
One of the most important family of classifiers nowadays in modern radar applications 
consists of finite stochastic automats. They are most the time derived from extended 
Bayesian networks. One of the most successfully integrated stochastical automats in 
technical radar systems applications are Markov-based learnable models and networks. In 
this section a brief introduction will made exemplary by taking the Hidden Markov Model 
(HMM) (Kouemou, 2000; Kouemou & Opitz, 2007a; Kouemou & Opitz, 2007b; Kouemou & 
Opitz, 2008a; Kouemou & Opitz, 2008b, Rabiner, 1989).  Some experimental results of 
classification problems using HMMs will be shown in the experimental section. 
A HMM consists mainly of five parts: 

1. The N states { }1,...,
N

S S S= ; 

2. M  observation symbols per state { }1,...,
M

V v v= ; 

3. State transition probability distribution { }ijA a= , where 
ij
a  is the probability that the 

state at time t+1 is Sj, given the state at time t was Si; 

4. Observation symbol probability distribution in each state ( ){ }j
B b k= , where ( )j

b k  is 

the probability that symbol 
k
v  is emitted in state 

jS ; 

5. Initial state distribution { }iπ π= , where iπ  is the probability that the model is in state 

iS at time 0t = . 

Mainly three different types of HMM exist in literature: the HMM with discrete outputs 
(DHMM), HMM with continuous output probability densities (CHMM) and the trade-off 
between both, the semi-continuous HMM (SCHMM).  
 

 

Fig. 10. Example of an HMM 

Further methods for automatic target classification applied in modern radar systems are 
based on alternative methods such as classical learning Bayesian networks (Bayes, 1763; 
Kouemou, 2000; Pearl, 1986; Pearl & Russell, 2003)  as well as polynomial classifiers 
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(Schürmann, 1977), learning support vector machines (Ferris & Munson, 2002; Burges, 1998; 
Drucker, 1997) or evolutionary algorithm (Bäck, 1996; Bäck et al., 1997; Goldberg, 1989). 

6. Classifier fusion technologies 

Different techniques and strategies can be used in order to fuse information from different 
sensor systems. For example beside the Doppler information can also information of a radar 
tracking system be used for classification. From the information of a tracking system 
physical parameters such as velocity, acceleration, etc. of the target can be estimated 
(Kalman, 1960; Bar-Shalom, 1989; Blackman & Popoli, 1999). The introduced data fusion 
techniques can also be integrated in a stand-alone sensor system in order to produce a 
robust classification and recognition result. For this purpose three technologies will be 
presented in order to solve the given problems: 
Bayesian networks based method, Dempster-Shafer rules based fusion methods and finally 
classical rule based methods.  

6.1 Bayesian rules 
For the application of Bayes' Theorem (Bayes, 1763) we assume that the considered physical 
parameters are stochastically independent. This requirement has to be verified. This can be 
done by considering the correlation between the physical values. If the correlation is nearby 
zero, the assumption can be held up. 

The probabilities P(j|I), i.e. the probabilities of the classes j ∈ J under the condition of certain 

measured physical values, are searched. 
From the classification one gets a matrix P whose items can be interpreted as conditional 
probabilities P(i|j). The individual probabilities Pij shall be combined for all j to one 
probability pj of the class j. 
The stochastically independence of the physical values is assumed, as mentioned before. If 
the classes are additionally independent, the following equation holds: 

 ( ) ( ) ( ) ( )1 2| | | |MP I j P i j P i j P i j= ⋅ ⋅ ⋅…  (12) 

To simplify the calculation this assumption is also done. 
Furthermore let all classes have the same a priori probability: 

 ( ) 1
     P j j J

N
= ∀ ∈  (13) 

The j ∈ J generate a complete event system, i.e. J=j1∪j2∪…∪jN with jk∩jl=∅ for k≠l. This 

yields: 

 
1 1

1 2 1

1 2

11 1

( | ) ( ) ( | ) ( ) ( | )
( | )

( )
( | ) ( ) ( | )

( | )
( | ) ( | ) ( | )

( | ) ( | ) ( | ) ( | )

N N

k k

M

M
N N M

M l

lk k

P I j P j P I j P j P I j
P j I

P I
P I k P k P I k

P i j
P i j P i j P i j

P i k P i k P i k P i k

ν
ν

= =

=

== =

⋅ ⋅
= = =

⋅ ⋅ ⋅
≈ =

⋅ ⋅ ⋅

∑ ∑

∏

∑ ∑∏
…

…

 (14) 
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This proceeding can be done inside a trackbased classification considering two or more 

physical parameters. But it can be also used to fuse different classifiers to get a combined 

classification (Kouemou et al., 2008; Kouemou & Opitz, 2008a).   

6.2 Dempster-Shafer method 
The Dempster-Shafer theory of evidence is a generalization of Bayes' theorem. It is based on 
the universal set )J(P  of the set of all considered target classes J. 

 

{

}

( ) ,{ },{ },{ },...,

{ , },{ , },...

{ , , , ,

, }

J O person tracked vehicle helicopter

person tracked vehicle helicopter propeller aircraft

person wheeled vehicle tracked vehicle helicopter

propeller aircraft no match

P /=

 (15) 

For this approach 'No match' denotes the set of all considered target classes and all objects 

which can not be allocated to one of the defined classes. In the Bayesian approach 'No 

match' denotes only all objects not allocated to one of the classes is therefore strictly 

separated from the other classes. 

Compared to the Bayesian approach the target class ‘no match’ is not strictly separated from 

the other classes when using Dempster-Shafer. Evidences are used instead of probabilities. 

So there is an opportunity to deal with uncertain information and illustrate ignorance 

explicitly (Dempster, 1968; Shafer, 1976; Shafer, 1990; Shafer & Pearl, 1990). 

The task is to combine the results coming from Doppler sound classification and from 

trackbased classification. The elements of the vectors are considered to be evidences E.  

The evidences are combined using Dempster’s rule of combination: 

 1 1
1

( ) ( ) ( ) ( )
1

l l l l
l Y Z j

E j E j E Y E Z
k

+ +
∩ =

⊕ = ⋅ ⋅
− ∑  (16) 

 1( ) ( )    with ,l l l

Y Z O

k E Y E Z Y Z J+
/∩ =

= ⋅ ∈∑  (17) 

The factor k expresses the conflict between the propositions, k=1 stands for totally 

contradictory propositions. The result of this combination is the combined vector p, whose 

elements are also evidences. Using these evidences, degrees of belief and plausibility can be 

calculated: 

 

:

( ) ( )

B B A

bel A E B

⊆

= ∑  (18) 

 

:

( ) ( )

B B A O

pl A E B

/∩ ≠

= ∑  (19) 

In doing so, the degree of belief shows how well the evidences support the proposition. On 

the other side, the degree of plausibility shows how well the negation of one proposition is 

supported. With bel(A) being a lower bound for the probability of proposition A and pl(A) 

being an upper bound, one gets a limited interval for the probability of A. 
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Fig. 11. Possible combinations of classifiers 

As several HMMs are available for classification purposes as well as different methods to 
apply the track based classifier, a comparison of possible combinations is necessary. In Fig. 11 
possible combinations are shown. In the track based classification, the evaluation of the target 
dynamics can either be performed in a classical knowledge-based way or by applying fuzzy 
logic, while the combination of the single membership values can be either done by applying 
Bayesian or Dempster-Shafer rules. These methods can be combined resulting in four different 
ways to use the track based classifier (Kouemou et al., 2008; Kouemou et. al, 2009). 

6.3 Classical rule based approach 
For this approach first two vectors p1 and p2, each containing probabilities for the several 
target classes, are considered. These vectors can be derived from each of the methods 
mentioned in the previous section. So the vectors are: 

 1 1,1 1,2 1,    Np p p p⎡ ⎤= ⎣ ⎦A  (20) 

 2 2,2 2,2 2,    Np p p p⎡ ⎤= ⎣ ⎦A  (21) 

Both vectors shall be fused to one result vector using a rule based approach. This can be 
exemplary done with the following rule: 

 
( )

[ ]

1

1 2,

2,

arg max

,   0
:

  00  0  0  1 ,

i

i

i p

p if p
p

if p

=

≠⎧⎪= ⎨ =⎪⎩ A

 (22) 

The second case is also called rejection, i.e. the classifier makes no decision due to lack of 
information or contradictory results of the stand-alone classifiers. 

7. Object recognition 

In modern radar systems, recorded data as well as recorded intelligence information can be 
used together with the classifier output or data fusion output information in order to exactly 
recognize, identify or type an object. This process is depicted in Fig. 12. 
The recognition can be done for example with an identity data base, with a typing data base 
or with knowledge based intelligence (Kouemou & Opitz, 2005; Schürmann, 1996). 
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Fig. 12. Simplified illustration of an object recognition process 

8. Some experimental results 

In this section some classification results, where the introduced technologies were 
successfully tested, are presented. Due to company restrictions only results based on 
simulated data are presented. 

8.1 Exemplary training algorithm 
The following Fig. 13 illustrates a typical functional flow-chart of a supervised training 
procedure. This can be used for example to train a rapid backpropagation algorithm for an 
artificial network classification process. Similar structures can be used for the training of 
stochastical automats or support vector machines (Ferris & Munson, 2002; Burges, 1998; 
Drucker et al, 1997). 
 

 
Fig. 13. Simplified illustration of an exemplary training proceeding 
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8.2 Exemplary identification results based on Hidden Markov Model and neural 
network technology 
The following results were obtained by simulating a naval based radar target identification 

scenario using special neural network algorithms. It was presented at the International 

Radar Symposium in Berlin, Germany, 2005. Fig. 14 shows the two helicopters to be 

identified. A typical feature extraction process necessary as pre-classification step for the 

neural network is shown in Fig. 15. An exemplary confusion matrix of the classifier result is 

shown in Fig. 16. 

 

                           

Fig. 14. Typical helicopter identification example, on the left side a Bell Jet Ranger 206 B and 
on the right side a Bell UH1D 

 

Fig. 15. Typical feature extraction process necessary as pre-classification step for the neural 
network of a simulated Bell jet helicopter. 
 

      

Fig. 16. Two exemplary identification confusion matrix results using neural network on the 
left side and a Hidden Markov Model on the right side 

8.3 Exemplary classifier results based on a hybrid system with a stochastical automat 
and Dempster-Shafer method 
An Exemplary structure of the simplified hybrid classifier operating with a knowledge 

based fusion technique. It was presented at the IEEE Radar 2008 in Adelaide, Australia. 
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Fig. 17. Simplified structure of fusion process using Dempster-Shafer and knowledge based 
rules. 
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Fig. 18. Typical confusion matrix of a classifier fusion obtained after simulating a testing 
process as described in the scheme above (Fig. 17) 

 

Fig. 19. Typical improvement obtained after fusing a stand-alone trained Doppler classifier 
with two Dempster-Shafer techniques. 
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9. Some application examples with modern radar systems 

9.1 Example of an airport surveillance radar system (ASR-E) 
ASR-E is the latest generation of a modern approach control radar for civil, military and 
dual use airports. ASR-E provides most advanced technologies. It uses a fully solid state S-
band Primary Radar with outstanding, reliable detection performance and a monopulse 
Secondary Radar covering civil, military and Mode S interrogation modes. It is used for 
example by the German Air Force.  
 

 

Fig. 20. Airport Surveillance System (Photo courtesy of EADS) 

9.2 Example of a naval surveillance radar system (TRS-3D) 
The TRS-3D is a multimode surface and air surveillance and target acquisition radar, 
designed for complex littoral environment with excellent clutter performance to detect small 
fast flying threats. 
The TRS-3D is used for the automated detection, track initiation and tracking of all types of 
air and sea targets.  

• Automatic detection and track initiation for air and sea targets  
• Very low antenna weight  
• Proven AAW weapon engagement support  
• Gunfire control for sea targets (no FCR required)  
• Helicopter automatic detection & classification  
• Helicopter approach control  

• Data correlation with integrated IFF interrogator  

• Low risk integration with many CMS systems 
The TRS-3D is used by various navies worldwide and has proven its operational 
performance from arctic to subtropical regions. 

9.3 Example of a tactical radar ground surveillance system (TRGS) 
The TRGS is a high performance ground surveillance radar system for the automatic detection, 
identification and classification of ground targets, sea targets and low flying air targets. 
It is a vehicle integrated system with multi-sensor configuration. The electronically scanning 
antenna is one of the advanced technologies used in this system. One of the key features is 
the particularly high target location accuracy. 
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Fig. 21. TRS-3D on the Finnish guided missile boat "Hamina" (Photo courtesy of EADS) 

 
Fig. 22. TRGS on the armoured vehicle "DINGO2" (Photo courtesy of EADS) 

9.4 Example of an airborne radar integrated in a modern combat helicopter (Tiger)  
The Tiger HAP is an air-to-air combat and fire support medium-weight (6 tonnes) helicopter 
fitted with 2 MTR 390 engines. It is daytime and night combat capable and is operable in 
NBC environments. Three basic parameters were taken into account right from the start of 
the development phase: low (visual, radar and infrared) detectability, which provides 
excellent survivability on the battlefield, maximum efficiency of the weapons and the 
associated fire control systems without heavier workload for the crew, and an optimized 
logistic concept offering minimum possession costs. The integrated airborne high-PRF radar 
fulfils all requirements needed in a critical combat environment. 

9.5 Example of a spaceborne radar integrated in a satellite system (TerraSAR-X, 
TanDEM-X) 
TanDEM-X ('TerraSAR-X add-on for Digital Elevation Measurement') is a radar observation 
satellite, which, together with the almost identical TerraSAR-X radar satellite, will form a 
high-precision radar interferometer system. 
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Fig. 23. Tiger HAP (Photo courtesy of EADS Eurocopter)  

With this TerraSAR-X/TanDEM-X tandem formation, generating images similar to 
stereoscopic pictures, it will be possible to measure all the Earth’s land surface (150 million 
square kilometres) within a period of less than three years. For a 12m grid (street width), 
surface height information can then be determined with an accuracy of under two meters. 
One goal is the production of a global Digital Elevation Model of unprecedented accuracy. 
As for TerraSAR-X, the TanDEM-X project will be carried out under a Public–Private 
Partnership between Astrium and the German Space Agency DLR. TanDEM-X is due for 
launch in 2009, and is designed to operate for five years. 
Use of the data for scientific applications will be the responsibility of the DLR's Microwaves 
and Radar Institute. Commercial marketing of the data will be managed by Infoterra GmbH, 
a wholly-owned subsidiary of Astrium. 
 

    

Fig. 24. TanDEM-X in space (left illustration) and an Ariane 5 at launch (right photo) (Photo 
courtesy of EADS Astrium) 
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10. Conclusion 

In this chapter basics of radar target classification technologies were introduced. A 
classification technology was presented, that decomposes a pattern recognition module of 
any modern radar system in the following components: 
Data acquisition part, signal preprocessing and feature extraction part, classification and 
subclassification part, data and information fusion part and finally object recognition or 
identification or typing part.  
For the data acquisition part an active or passive radar frontend can be used, that uses self- 
or friendly generated waveforms to reconstruct information from the environment with 
different objects or targets. The data acquisition part usually provides such backscattered 
radar echo signal in I- and Q-form in the baseband. 
For the signal preprocessing part some basic techniques were described in order to filter and 
normalise the sampled signal. It was mentioned that some measures must be taken into 
consideration in order to respect the basics of information theory.  
For the feature extraction part several basic techniques can be used. It was also mentioned 
that one of the most successful philosophies in designing modern radar systems for 
classification purpose is the best handling of the feature extraction. This philosophy consists 
of best understanding of the physical behaviour of a radar system in its environment. Based 
on this understanding characteristical feature must then been mathematically described 
depending on the given requirements. For this purpose the following basic methods were 
presented as central components of the feature extraction process: Short-Time-Fourier 
transform, cepstral analysis, wavelet transform and Fuzzy-logic. 
For the classification and subclassification part two main philosophies were presented. The 
first philosophy consists of learning processes. The second philosophy consists of 
knowledge based evidence. The different kind of classification and subclassification 
methods in the most modern radar systems can be divided into deterministical methods, 
stochastical methods and neural methods. The deterministical methods introduced in this 
section were essentially based on the handling of logical operators and knowledge based 
intelligence. The stochastical methods described in this section were based on finite 
stochastical automats. The finite stochastical automats presented in this section were based 
on different variants of learning Hidden Markov Models. Furthermore the neural methods 
presented in this section illustrate the capability of solving pattern recognition problems in 
modern radar systems by using different kinds of artificial neural networks. It was also 
shown that for specific classification or subclassification challenges in modern radar 
applications hybrid classifiers can also be recommended. This classifier uses depending on 
the situation learnable or non-learnable algorithms. The learnable algorithms can be 
designed using supervised or unsupervised learn concepts. 
For the data and information fusion part it was pointed out that different techniques and 
strategies can be used in order to fuse information from different sensor systems. It was also 
shown that the introduced data fusion techniques can also be integrated in a stand-alone 
sensor system in order to produce a robust classification and recognition result. For this 
purpose three technologies were presented in order to solve the given problems: 
Bayesian networks based method, Dempster-Shafer rules based fusion methods and finally 
classical rule based methods.  
For the object recognition, identification or typing part it was mentioned that in modern 
radar systems, recorded data as well as recorded intelligence information can additionally 
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be used together with the classifier output or data fusion output information in order to 
exactly recognize, identify or type an object.  
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