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Chapter

Therapeutic Development in 
Neurofibromatosis
Mina Lobbous and Bruce R. Korf

Abstract

Although neurofibromatosis (NF) was initially recognized in the nine-
teenth  century, only in the past two decades we have witnessed a paradigm shift 
in therapeutics. This progress is driven by the increasing understanding of the 
natural history of the NF-associated tumors and understanding of the molecular 
landscape of these disorders. Multiple clinical trials have been launched evalu-
ating non-surgical  treatment modalities and more studies are in the pipeline. 
Recently, the NF community has adopted standardized endpoints recommended 
by the Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) 
International Collaboration established in 2011. Such collaborations among 
academic, regulatory and supporting communities are crucial for providing 
the infrastructure needed for advancing the therapeutic development in the 
field of NF.

Keywords: neurofibromatosis type I, neurofibromatosis type II, chemotherapy, 
radiotherapy, therapeutics, clinical trials, targeted therapy

1. Introduction

The neurofibromatoses are a heterogenous group of familial tumor predis-
position syndromes that result from pathogenic variants in tumor suppressor 
genes leading to dysregulation in various cellular pathways. This dysregulation 
eventually leads to tumors of the central and peripheral nervous systems as 
well as multiorgan involvement. The incidence of Neurofibromatosis type 1 
(NF1) is approximately 1 in every 2500–3500 births [1], while the incidence 
of neurofibromatosis type 2 (NF2) is approximately 1 in every 25,000–33,000 
births [2]. Schwannomatosis (SWN) has been identified as a distinct entity with 
different genetic etiology and clinical phenotype from NF2, but it is difficult to 
assess the precise incidence of this condition. Although the tumors that develop 
most frequently in NF1, NF2 and SWN are histologically benign, they can 
cause significant neurologic disabilities and even mortality due to the involve-
ment of the central and peripheral nervous systems. These tumors represent a 
unique therapeutic challenge due to the heterogeneity in severity and rate of 
progression among patients and hence novel therapeutic approaches are needed. 
In this chapter, we will review the recent studies in the field of neurofibromatosis 
therapeutics along with the collaborative efforts for innovative clinical trial 
designs.
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2. The power of collaboration in neurofibromatosis research

The establishment of the NFCTC in 2006 by the Department of Defense was 
a landmark in the field of NF therapeutics development [3]. The consortium has 
been in continuous operation since inception. It provides infrastructure, and shared 
resources across multiple institutions to generate resource-efficient clinical trials. 
The REiNS working groups are another clear example of the influence of collabora-
tion among NF experts to advance the NF drug development efforts. The Children’s 
Tumor Foundation (CTF) has provided support to the NF community, including 
efforts to advance research as well as public education and patient support. In 
2007, the CTF invested $4 million to launch the Neurofibromatosis Preclinical 
Consortium (NFPC) to test candidate drug therapies in NF1 and NF2 models. The 
Neurofibromatosis Therapeutic Acceleration (NTAP) was established as a private 
philanthropy to accelerate the development of effective therapeutics for pNFs and 
cNFs. NTAP has partnered with CTF in the evaluation of potential therapeutic 
agents in animal models of pNFs.

The collaborative efforts among academic, federal regulatory, and private 
foundations have resulted in early successes in the NF therapeutic development. 
In February 2018, selumetinib, a MEK1/2 inhibitor co-developed by AstraZenca 
and Merck&Co, received breakthrough status from the FDA. Selumetinib was 
granted Orphan Drug Designation based on data from the phase II trial that tested 
selumetinib in pediatric patients with inoperable pNFs (NCT01362803) [4] and 
hence, selumetinib may become the first approved drug for NF. This success 
highlights the power of collaboration, which moved Selumetinib from a repurposed 
oncology drug to its current clinical success in NF patients. The funders involved 
for in this “MEK story” are the CTF, the National Institute of Health (NIH), the 
Congressionally Directed Medical Research Program (CDMRP) through NFCTC, 
and the NTAP at Johns Hopkins University [5].

3. Therapeutic development in neurofibromatosis type I

Understanding of the pathogenesis and molecular landscape of the NF1-
associated tumors has advanced dramatically in recent years. This advancement, 
along with the continued collaborative approaches across the research community, 
has fueled therapeutic development efforts against many of the NF1 manifestations. 
Therapeutic development in NF1 has been tumor-specific, due to the substantial 
heterogeneity of the development and behavior of NF1-associated tumors across 
and within patients. Plexiform neurofibromas (pNFs), the source of major morbid-
ity in NF1, has been an area of major focus for therapeutic development, followed 
by other NF1-associated tumors including cutaneous neurofibromas (cNF), optic 
pathway gliomas (OPG), and malignant peripheral nerve sheath tumors (MPNST).

3.1 NF1-associated plexiform neurofibroma

Plexiform neurofibromas (pNFs) affect up to 50% of NF1 patients and can 
involve any peripheral nerve [6, 7]. They occur most commonly in the trunk, fol-
lowed by the extremities [6]. pNFs tend to grow most rapidly in early childhood and 
may increase by ≥20% per volume per year in young children [8]. Though surgery 
remains the mainstay for treatment of pNF, complete resection is virtually impos-
sible due to the frequent involvement of adjacent normal tissue, and occasionally 
critical structures. Moreover, surgical resection is frequently challenging since 
pNF can cross tissue planes and involve multiple body regions. The most common 
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morbidities leading to surgery are neurologic, disfigurement, and airway involve-
ment [9]. A substantial risk of pNF regrowth after surgical resection has motivated 
the ongoing research to find non-invasive therapies for pNF.

There are multiple ongoing clinical trials (Table 1) targeting pNF which repre-
sent a rapid expansion in the pNF therapeutic landscape. Though some of the tested 
drugs have failed to achieve the primary endpoint, they helped establish the natural 
history of the growth rates of pNF [10, 11]. The therapeutic development efforts 
in pNFs had shifted from testing “empirically,” usually cytotoxic, agents to agents 
being supported by well-established transitional studies. The first agent that showed 
radiographic response was imatinib, with a response rate of 17% [12]. Ras-pathway 
targeted therapy has been of particular interest, as it provides an opportunity for 
treating multiple manifestations of NF1 with one drug. For example, Selumetinib, 
which is a MEK (mitogen-activated protein kinase) inhibitor, has shown activity in 
pNF and low-grade gliomas (including OPG) associated with NF1 [13].

3.2 NF1-associated gliomas

Optic pathway glioma (OPG) is the most common form of glioma seen in indi-
viduals with NF1. While 15–20% of children with NF1 will develop OPG [27, 28] only 
30–50% will be symptomatic and one-third will require therapeutic intervention [29]. 
In those with confirmed decline in visual acuity (VA) or involvement in the hypothal-
amus, chemotherapy is the mainstay of treatment. First-line chemotherapeutic agents 
include vincristine and carboplatin [30], while second-line agents include vinblastine 
[31], vinorelbine [32], and temozolomide [33]. There is a report of four cases of 
refractory OPG (two sporadic and two NF1-associated OPG) that showed marked 
improvement in VA following treatment with bevacizumab [34]. These agents rarely 
restore the premorbid visual acuity and the aim of treatment is usually to stabilize 
disease and prevent further worsening [35, 36]. Radiotherapy is usually avoided in 
NF1-associated OPG for concern of secondary tumors [37] and moya moya syndrome 
[38] Surgical excision of OPG is not feasible due to the tumor location and is usually 
reserved for instances of complete loss of vision, severe proptosis, or hydrocephalus.

Recently, small molecule inhibitors have been used for refractory OPG in clinical 
trials (Table 2). Among these agents, selumetinib has shown promising results in 
phase II studies and was proven to be active in recurrent, refractory or progressive 
NF1-associated pediatric low-grade glioma [39].

Unnecessary cytotoxic therapies for OPG should be avoided, as many OPGs 
remain asymptomatic and some even regress over time [28]. One of the efforts to 
standardize the VA assessment in clinical trials for NF1-associated OPG is through 
using optic coherence tomography (OCT) [40, 41]. OCT provides an objective 
assessment of the retinal nerve fiber layer thickness. OCT is a noninvasive tool to 
monitor children with OPG in whom, especially the youngest ones, traditional 
methods of VA assessment is challenging [42]. Another objective noninvasive tool 
to asses VA in NF1-associated OPG is automated tractography of the optic radiation 
that was validated in a recent study [43].

A retrospective study that analyzed the clinical and pathological features of 
gliomas in 100 individuals with NF1 emphasized the wide histologic spectrum of 
gliomas in those with NF1 [44]. Indeed, individuals with NF1 have an increased 
risk of malignant gliomas compared with the general population [45], but there 
are confounding reports on glioblastoma prognosis in those with NF1 vs. cases 
without NF1 [46, 47]. A recent study analyzed the molecular landscape of gliomas 
in NF1 and showed that 50% of low-grade gliomas displayed an immune signature, 
T-lymphocytic infiltrate, and increased neoantigen load [48], findings that may 
influence future clinical trials in NF1-associated gliomas.
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Drug Target Phase Age (y) Endpoints Results

Thalidomide [14] Angiogenesis I >5 ORR Completed/unclear benefit

Sirolimus [15]
NCT00634270

mTOR II >3 3D ORR, TTP Modest increase in TTP, no objective response

Sorafenib [16]
NCT00727233

Raf kinase, c-kit, PDGF, 
VEGFR2,3

I 3–18 3D ORR Intolerable, decrease in QOL due to pain, no 
objective response

Pirfenidone [17, 18]
NCT00076102

Fibroblast proliferation I, II 3–21 3D ORR Completed, no objective response

Cediranib
NCT00326872

VEGFR-1, -2, -3 II ≥18 3D ORR Terminated due to slow accrual

Tipifarnib [19]
NCT00021541

Farnesyl transferase I, II 3–25 TTP, 3D ORR Completed, No difference in TTP

PEG-Interferon alpha 2b [20, 21]
NCT00396019

Immune, angiogenesis I, II 18 months–21 years in 
phase II

TTP, 3D ORR Doubled TTP, 3D ORR less than 20%

Vinblastine/Methotrexate
NCT00030264

Cytotoxic II ≤25 TTP Completed, pending results

Celecoxib; PEG-Interferon alpha 
2b
NCT00846430

Immune, angiogenesis II 2–30 Symptoms improvement, 
ORR

Active, not recruiting

Nilotinib
NCT01275586

BCR-ABL, PDGFR, c-kit Pilot ≥18 RECIST,3D ORR Completed

Everolimus [22]
NCT01412892

mTOR II 18–60 3D ORR Completed, no objective response

Everolimus
NCT01365468

mTOR II >10 3D ORR, TTP Terminated due to slow accrual

Imatinib [23]
NCT01673009

c-kit, PDGFR II 3–65 RECIST, 3D ORR 17% 3D ORR
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Drug Target Phase Age (y) Endpoints Results

Sunitinib
NCT01402817

PDGFR, VEGFR, c-kit II 3–65 3D ORR Terminated (1 patient died)

Pexidartinib [24]
NCT02390752

c-kit, FLT3, CSF1R I, II 3–31 ORR Recruiting

Cabozantinib
NCT02101736

RET, c-MET, VEGFR II ≥3 3D ORR Recruiting

Trametinib
NCT02124772

MEK I 1 month–17 years PK, PD, toxicity Recruiting

PD-0325901 [25]
NCT02096471

MEK II ≥16 3D ORR Completed, 42% 3D ORR

Selumetinib [26]
NCT01362803

MEK I, II 2–18 3D ORR Active, not recruiting, 71% 3D ORR

Selumetinib
NCT02407405

MEK II ≥18 3D ORR Recruiting

Binimetinib
NCT03231306

MEK II ≥1 3D ORR Recruiting

Selumetinib (intermittent dosing)
NCT03326388

MEK I, II 3–18 Toxicity, 3D ORR Active, not recruiting

Trametinib
NCT03363217

MEK II 1 month–25 years 3D ORR, TTP RECIST Recruiting

Imatinib (in pNF with airway 
involvement)
NCT03688568

c-kit, PDGFR II 6 months–12 years Sleep study/PFT, 3D 
ORR

Recruiting

Abbreviations: 3D ORR, volumetric objective radiographic response; BCR-ABL, fusion gene of breakpoint cluster region and Abl1; c-kit, kit ligand or stem cell factor; c-MET, MET proton-oncogene; CSF1R, 
colony stimulating factor 1 receptor; FLT3, Fms-like tyrosine kinase 11; MEK, mitogen activated protein kinas; mTOR, mammalian target of rapamycin; PD, pharmacodynamic; PDGFR platelet-derived 
growth factor; PFT, pulmonary function test; PK, pharmacokinetics; RECIST, Response Evaluation Criteria In Solid Tumors; RET, rearranged during transfection proto-oncogene; TTP, time to progression; 
VEGFR vascular endothelial growth factor receptor; ORR, objective response rate.

Table 1. 
Clinical trials for neurofibromatosis type 1-associated plexiform neurofibromas.
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3.3 NF1-associated malignant peripheral nerve sheath tumors

Malignant peripheral nerve sheath tumors (MPNSTs) are rare high-grade 
sarcomas with poor prognosis [49]. MPNSTs occur more frequently in those with 
NF1 compared with the general population, with a lifetime risk of 8–13% [50]. 
Several studies have not shown a significant difference in the molecular landscape 
between sporadic and NF1-associated MPNSTs [51, 52]. FDG-PET remains the gold 
standard noninvasive diagnostic tool for MPNSTs, with 89–100% sensitivity and 
72–95 specificity [53, 54]. Surgical resection with negative margins is the mainstay 
of treatment [55], though that is not usually feasible. Use of adjuvant radiotherapy 
to induce local control in MPSNTs failed to show improvement in overall survival in 
NF1-associated MPNSTs [56].

There are limited chemotherapeutic options, including agents like doxorubicin, 
and ifosfamide [57, 58]. A phase II study of bevacizumab and everolimus that 
enrolled 25 individuals (17 had NF1-associated MPNST) did not show a clinical ben-
efit (defined as complete response, partial response or stable disease for ≥4 months) 
[59]. Although preclinical studies showed EGFR amplification in MPSNT [60], 
EGFR inhibitors did not show clinical activity against MPNST in clinical trials. A 
few studies have been conducted in sarcomas using targeted therapy, and these have 
not shown clinical activity; tested drugs included imatinib [61], dasatinib [62], 
sorafenib [63], and erlotinib [64]. These negative studies emphasize the importance 
of developing xenografts to explore new therapeutic targets and explore pathways 
of interest like the NF1/P53-mutant transgenic MPNST model [65–67].

Drug Target Phase Age Endpoints Status

Vinblastine +/− 
Bevacizumab
NCT02840409

Cytotoxic/VEGF II 6 months–18 years Response 
rate, OS, 
PFS, visual 
outcome 
measures, 
OCT

Recruiting

Pegylated 
interferon
NCT02343224

Tumor 
microenvironment

II 3–18 years Response rate Recruiting

Pomalidomide
NCT02415153

Angiogenesis/
immunomodulation

I 3–20 years Toxicity, 
MTD

Active, not 
recruiting

Lenalidomide
NCT01553149

Angiogenesis/
immunomodulation

II 0–21 years Response rate Active, not 
recruiting

Everolimus 
(RAD0001)
NCT01158651

mTOR II 1–21 years Response rate Active, not 
recruiting

Binimetinib 
(MEK162) 
NCT02285439

MEK I/II 1–18 years MTD, 
response rate

Recruiting

Binimetinib 
(MEK162)
NCT01885195

MEK II Older than 
18 years

Response rate Completed 
(pending 
results)

Selumetinib 
NCT01089101

MEK I/II 3–21 years Safety, MTD, 
Response rate

Recruiting

Abbreviations: MEK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; VEGF, vascular 
endothelial growth factor.

Table 2. 
Clinical trials for optic pathway gliomas (OPG) and other gliomas associated with neurofibromatosis type 1.
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Combined targeted therapy has been used to exploit cellular vulnerabilities 
of cancer cells, as in RAS-driven tumors which are refractory to conventional 
therapies. A preclinical study has shown dramatic tumor shrinkage in a transgenic 
MPNST mouse model in response to combined HSP90 and mTOR inhibition 
[68]. This promising preclinical work had led to a phase I/II study of gantespib, 
a novel injectable inhibitor of HSP90 and the mTOR inhibitor, sirolimus. The 
study enrolled 20 participants (NCT02008877) and results are pending [69]. 
Another novel approach undergoing phase I study utilizes the oncolytic potential 
of the genetically engineered injectable measles virus Edmonston vaccine strain 
(MVEdm) that encodes thyroid sodium iodide symporter [70] (Table 3).

3.4 NF1-associated cutaneous neurofibromas

Cutaneous neurofibromas (cNFs) are among the most common manifestations 
in NF1, affecting about 99% of patients with NF1 [71]. cNFs are unlikely to undergo 
malignant transformation or to cause fatal complications or severe neurologic dis-
ability. Nevertheless, cNFs are considered one of the greatest concerns in patients, 
especially adults, with NF1. These concerns are mainly due to disfigurement and 
dysesthesia, causing substantial psychological distress and negative body image 
perception [72]. There is immense variability in cNF among patients with NF1 with 
respect to size, location, age at first presentation, associated symptoms, and num-
ber. These factors affect the therapeutic approach to cNFs and emphasize the need 
for reproducible and reliable endpoints to ensure clinical success for tested agents.

Drug Target Phase Age 

(years)

Endpoints Status

EGFR806 CAR-T 
cell
NCT03618381

Immunotherapy I 1–26 Toxicity Recruiting

Selumetinib and 
Sirolimus
NCT03433183

MEK and 
mTOR

II ≥12 CBR, PFS, 
OS

Active, not 
recruiting

Injectable MVEdm 
vaccine strain
NCT02700230

Oncolytic 
virotherapy

I ≥18 Toxicity, 
MTD, ORR

Recruiting

Pazopanib vs. 
Sapanisertib
NCT02601209

PDGFR, 
VEGFR, c-kit 
(Pazopanib), 

TORC1&2 
(Sapanisertib)

I 
(Sapanisertib), 

II

≥18 MTD, PFS, 
ORR

Active, not 
recruiting

Lorvotuzumab 
mertansine
NCT02452554

CD-56 antibody II 1–30 RECIST Active, not 
recruiting

Pexidartinib and 
Sirolimus
NCT02584647

c-kit, FLT3, 
CSF1R, mTOR

II ≥18 PFS, OS Recruiting

Abbreviations: CBR, clinical benefit rate; c-kit, kit ligand or stem cell factor; c-MET, MET proton-oncogene; 
CSF1R, colony stimulating factor 1 receptor; FLT3, Fms-like tyrosine kinase 11; MEK, mitogen activated protein 
kinas; MTD, maximum tolerated dose; MVEdm; measles virus edmonston vaccine strain, OS, overall survival; 
PDGFR platelet-derived growth factor; PFS, progression free survival; RECIST, Response Evaluation Criteria 
In Solid Tumors; TORC, mammalian target of rapamycin complex; TTP, time to progression; VEGFR vascular 
endothelial growth factor receptor; ORR, objective response rate.

Table 3. 
Clinical trials for malignant peripheral nerve sheath tumors in neurofibromatosis type 1.
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Clinical management for cNF involves surveillance or procedure-based therapy. 
Conventional surgical resection promotes complete removal of the lesion, but 
there are obstacles, including limited number of lesions that can be treated in a 
single session and the scarring that may be induced by surgical resection. Other 
alternatives include electrodessication, which remove cNFs through dehydration 
and denaturation [73]. This allows for removal of large numbers (up to thousands) 
of cNFs in one session, but it requires general anesthesia and may cause scarring 
and pigmentation changes. A retrospective study of 106 individuals with multiple, 
small cNFs treated with CO2 laser ablation reported >90% patient satisfaction, yet 
a local infection rate was reported to be 15% [74]. Other procedure-based therapies 
reported in cNFs are laser photocoagulation [75] and radiofrequency ablation [76]. 
Another approach using local drug/device combinations is the photodynamic ther-
apy (PDT), which is being tested in different cancers [77]. PDT in cNFs studies use 
a photosensitizer, 5-amino-levulinic acid, plus illumination with red light. PDT was 
evaluated in phase I study (NCT01682811) and a phase II study (NCT02728388) is 
active in a single US institution.

One of the early efforts for treatment of cNFs and their associated symptoms 
used ketotifen [78]. Ketotifen is a histamine 1 receptor blocker which facilitates 
mast cell stabilization and; its use in NF1 is based on the finding of abundant mast 
cells in neurofibromas. Improvement in pain and pruritis has been reported, but 
objective tumor shrinkage has not been documented. Three drugs have been tested 
in cNFs using local therapeutic approaches; the first was ranibizumab, a vascular 
endothelial growth factor monoclonal antibody, which was injected intralesionally 
(NCT00657202). The overall effect of the treatment was minimal and the variabil-
ity in the tumor volume assessment (measured by a caliper) limited the interpreta-
tion of the data. The second agent was topical imiquimod, which showed minimal 
efficacy in tumor shrinkage compared to baseline volume (measured by a caliper) 
(NCT00865644). The third agent was topical rapamycin, an mTOR inhibitor, which 
was initially tested in Tuberous Sclerosis Complex (TSC)-associated angiofibromas 
(NCT01031901) [79]. The study enrolled 52 patients with TSC and NF1 and data are 
expected.

Due to the relatively benign histology of cNFs and the likely need for long term 
therapy, there are special considerations pertaining to cNF drug development 
[80]. The safety profile of tested drugs is a major concern to physicians, regulators, 
patients and their caregiver. Also, the route of administration and cost are impor-
tant considerations, as individuals with cNF are more likely to require treatment 
(either medication or intervention) for an extended period of time. The variant 
phenotype among affected persons, demographic differences, and the goal of treat-
ment are important factor determining the type and timing of treatment.

The above-mentioned considerations, especially the safety profile, make 
oral systemic therapies preferable for individuals with a heavy tumor burden. 
Everolimus, an oral mTOR inhibitor, was evaluated in a phase II study of disfigur-
ing cNF associated with NF1 (NCT02334902). The study enrolled 22 patients and 
used photographic measurement of selected lesion to assess surface volume. While 
5/22 patients withdrew due to adverse events, a very modest effect was reported 
in <20% of the participants [81]. Due to the promising results of using targeted 
therapied against MEK, selumetinib is being studied in NF1-associated cNFs 
(NCT02839720). The study is a phase II, multi-institutional, open label study with 
the primary outcome measure being the change in the size of cNFs assessed by 
digital photography and caliper measurements.

The Clinical Trial Design and Development REiNS subgroup, involving experts 
from different settings, has presented the priorities and challenges associated 
with conducting clinical trials targeting cNF in NF1 [82]. The subgroup members 
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reviewed key topics like natural history, assessment methods, functional endpoints, 
safety, and development strategies. One of the most important topics, which pose a 
major challenge in cNF clinical trials, is the measurement of outcomes. Methods of 
measurement that have been used include calipers, digital and volume photography, 
ultrasound, and MRI. The subgroup members support considering clinically mean-
ingful measures of effectiveness in interpreting changes in tumor size or number. 
Tumor size reduction that correlates with improved pain control or discomfort 
is more clinically meaningful than the crude number or size of the tumors. New 
approaches, such as high-frequency ultrasound or optical coherence tomography, 
may be able to address some of the limitations of the conventional methods like 
MRI, photography or caliper measurement. These new approaches need to be vali-
dated through additional studies. The subgroup members recommend several key 
factors when designing clinical trials on cNF, including timing to initiate interven-
tion, eligibility criteria to ensure diversity, mechanism of the intervention, route of 
administration, safety monitoring, and regulatory considerations.

4. Therapeutic development in neurofibromatosis type 2

NF2 is an autosomal dominant disorder that affects the central and peripheral 
nervous systems. NF2 has an estimated incidence of 1 in 25,000–33,000 births, 
making it far less common than NF1 [83]. Vestibular schwannomas (VS) are con-
sidered the hallmark of NF2, and bilateral VS fulfill the clinical diagnosis of definite 
NF2 [84]. The average age at diagnosis in NF2-associated VS is about 27 years [85]; 
diagnosis in childhood predicts a severe phenotype and unfavorable prognosis [86]. 
Though VS are slowly progressive tumors, they can cause significant neurologic 
disability, including hearing loss and eventually deafness, balance problems, and 
brain stem compression [87]. The other common tumor associated with NF2 is 
meningioma, which is the most common intracranial tumor worldwide. Up to half 
of individuals with NF2 develop meningiomas [88], and despite benign histology, 
they may lead to a shortened life expectancy [89].

The loss of the tumor suppressor protein merlin in NF2 leads to activation of 
prosurvival pathways via RAS modulation. Hence, NF2 shares many of the same 
targets identified in NF1. Merlin is absent not only in NF2-associated VS, but also in 
sporadic VS [90]. This observation is important as it may point to a shared thera-
peutic pathway between NF2-associated VS and sporadic VS [91].

Though surgery remains the mainstay of treatment in sporadic VS, or stereo-
tactic radiosurgery (SRS) for tumors <3 cm [92], these approaches have proved to 
be less efficacious in NF2-associated VS, with high rate of complications, includ-
ing facial nerve weakness, hearing loss, and headache [93, 94]. Moreover, there 
are growing concerns about utilizing radiation therapy in NF2 due to risk of late 
malignant transformation [95]. Some of the challenges that face NF2 clinical trials 
are the substantial variability in disease severity across individuals with NF2, the 
lack of clear association between the rate of VS growth and the rate of hearing loss, 
and the variable growth rates between the right and the left VS in same patient 
[96]. A prospective study that highlighted the lack of correlation between VS size 
or growth rate and rate of hearing loss was published in 2014 and included 120 
individuals with NF2-associated VS (total of 200 VS) [97]. The investigators used 
word recognition score (WRS) as an objective measurement for hearing decline 
and defined radiographic tumor growth as ≥20% increase in tumor volume com-
pared with baseline. The study showed that the mean rate of hearing decline from 
diagnosis was 5% at 1 year and 16% at 3 years, while the rate of VS tumor graphic 
progression was 31% at 1 year and 79% at 3 years. The median time to progression 
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(14 months) was significantly shorter than the median time to hearing decline 
(62 months) [93]. This study, along with prior reports, elucidated the natural his-
tory of individuals with NF2 to help to determine the most appropriate timing for 
intervention [81, 83, 98].

Clinical trials for NF2 have been focused on vestibular schwannomas, since loss 
of hearing is often the most pressing concern in individuals with NF2. A group of 
36 international researchers, physicians, representatives from the pharmaceutical 
industry, and patient advocates held a workshop to provide consensus recommen-
dations to accelerate clinical trials progress in NF2 [99]. The group provided recom-
mendations on participant selection, clinically meaningful and feasible endpoints, 
the clinical trials models most appropriate for NF2, and candidate therapeutic 
agents for NF2.

Different cellular pathways have been targeted in clinical trials for NF2-
associated tumors (Table 4), with mixed responses. One of the most promising 
agents used in NF2 is bevacizumab, which was initially given on a compassionate 
use basis for adults with NF2-associated VS with severe disability [100, 101]. In 
these reports, 6 of 10 participants had ≥20% reduction in tumor volume and 
significantly improved hearing. The promising results led to designing two phase 
II clinical trials using bevacizumab in persons with NF2 who suffered from pro-
gressive hearing loss. A preliminary report from one of these 2 trials that enrolled 
22 participants showed that the overall hearing and radiographic response rates 
were 41 and 23% respectively, though pediatric participants appeared to benefit 
less compared to adults (NCT01767792) [102]. Bevacizumab was used in a dose 
of 10 mg/kg every 2 weeks for 6 months, followed by 5 mg/kg every 3 weeks for 
18 months; this regimen was well tolerated.

Drug Target Phase Age 

(years)

Endpoints Status

Everolimus [104]
NCT01419639

mTOR II ≥3 VS: 15% volume 
reductions

No RR

Everolimus [105]
NCT01490476

mTOR II ≥15 VS: volume 
reduction

No RR

Everolimus
NCT01345136

mTOR II 16–65 VS: volume 
reduction

Active, not 
recruiting

Everolimus
NCT01880749

mTOR Early phase I ≥18 VS and MEN: 
tumor PK, 
molecular 
analysis

Active, not 
recruiting

Lapatinib [106]
NCT00973739

EGFR/ErBb2 II 4–80 VS: 15% volume 
reduction

23.5% RR

Lapatinib
NCT00863122

EGFR/ErBb2 Early phase I ≥18 VS: tumor 
PK, molecular 

analysis

Completed, 
pending 
results

Axitinib
NCT02129647

VEGF, c-kit, 
PDGFR

II ≥18 VS: 20% volume 
reduction

Active, not 
recruiting

Nilotinib
NCT01201538

PDGF, c-kit II ≥18 VS: 20% volume 
reduction

Terminated

PTC 299
NCT00911248

VEGF II ≥18 VS: Tumor 
volume or WRS

Terminated

Endostatin
NCT02104323

Anti-
angiogenic

II 16–30 Tumor volume Completed, 
pending 
results
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NF2 shares many of the same targets identified in NF1; hence, some of the 
therapeutic agents tested in NF1 are being tested in NF2, including everolimus 
(NCT01345136), sorafenib, and selumetinib (NCT03095248). The dual mTROC1 
and mTORC2 inhibitor, vistusertib (AZD2014), is used in a phase II study for NF2 
patients with progressive or symptomatic meningiomas (NCT02831257). While the 
primary outcome for this study is the radiographic response rate for meningioma using 
volumetric MRI scans, the secondary outcomes include response assessment for VS and 
non-target meningioma using volumetric MRI. The NFCTC has approved using crizo-
tinib, a MET and ALK inhibitor, in a phase II study for children and adults with NF2-
associated progressive VS. There are promising preclinical studies identifying crizotinib 
as a potent inhibitor of NF2-null Schwann cell proliferation in vitro and tumor growth 
in vivo [103]. The goal for these clinical trials is to assess the hearing response rate as a 
clinically meaningful endpoint and to assess tolerability and long term effects of the 
tested agents, as well as identify biomarkers that can predict outcomes.

5. Therapeutic development in Schwannomatosis

Schwannomatosis (SWN), as the name implies, is characterized by the develop-
ment of multiple peripheral nerve schwannomas, without concomitant involvement 

Drug Target Phase Age 

(years)

Endpoints Status

AR-42
NCT02104323

HDAC Early phase I ≥18 VS and MEN: 
tumor PK, 
molecular 
analysis

Active, not 
recruiting

Bevacizumab 
[107]
NCT01207687

VEGF II ≥12 VS: hearing 
response 

measured by 
WRS

Completed, 
hearing 

response 36%

Bevacizumab
[102] 
NCT01767792

VEGF II ≥12 VS: hearing 
response 

measured by 
WRS

Active, not 
recruiting, 

hearing 
response 41%, 

RR 23%

Acetylsalicylic 
acid
NCT03079999

Antiplatelet, 
anti-

inflammatory

II, 
randomized, 

placebo-
control

≥12 VS: PFS Active

Vistusertib 
(AZD2014)
NCT02831257

mTORC1, 
mTORC2

II ≥18 MEN: RR using 
volumetric MRI

Active, not 
recruiting

Selumetinib
NCT03095248

MEK II 3–45 VS, MEN, and 
ependymoma: 

hearing 
response 

measured by 
WRS, RR

Active

Abbreviations: c-kit, kit ligand or stem cell factor; EGFR/ErBb2, epidermal growth factor reception; HDAC, histone 
deacetylase; MEK, mitogen activated protein kinas; MEN, meningioma; mTOR, mammalian target of rapamycin; 
mTORC, mammalian target of rapamycin complex; PDGFR platelet-derived growth factor; PFS, progression-
free survival; PK, pharmacokinetics; VEGF, vascular endothelial growth factor; RR, radiographic response; VS. 
vestibular schwannoma; WRS, word recognition score.

Table 4. 
Clinical trials in Neurofibromatosis type 2-associated vestibular schwannomas and meningiomas.



Neurofibromatosis - Current Trends and Future Directions

12

of the vestibular nerve, and, less commonly, meningiomas [108–110]. Since the 
schwannoma is the most common tumor in NF2 and SWN, there can be overlap 
between the two syndromes. SWN is a distinct entity with different clinical pheno-
type and genetic etiology from NF2. Germline mutations in SMARCB1 and LZTR1, 
both tumor suppressor genes, have been identified in SWN [111–113]. Unlike NF1 
and NF2, pain is the most common symptom reported by individuals affected with 
SWN, with 68% reporting chronic pain in SWN in a retrospective study [114].

Surgical resection is considered the treatment of choice for symptomatic 
schwannomas for pain relief, though local recurrence is not uncommon. Patients 
usually require multiple surgical resections due to pain, focal neurologic deficits, 
or myelopathy [113]. Radiotherapy is reserved for those with life-threatening or 
enlarging tumors, and in rare occasions, malignant schwannomas. There are no 
available safety studies with respect to radiotherapy-induced malignant transforma-
tion in SWN, though theoretically it is possible given the available data from NF1, 
and NF2 studies.

Up to date, no clinical trials have been conducted in the setting of SWN and no 
known effective therapies exist. A case report was published using bevacizumab in 
one individual with SWN-associated refractory pain with a remarkable response in 
pain control [115].

6. Clinical trials endpoints in neurofibromatoses

Most early clinical trials for patients with neurofibromatoses used designs and 
endpoints similar to oncology trials. However, there are major differences in natural 
history, disease manifestations, and overall prognosis between patients with NF 
and those with cancers. Hence, there was an unmet need to establish standard-
ized endpoints in NF clinical trials that will allow precise data interpretation and 
the ability to assess efficacy across different studies. The Response Evaluation in 
Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration was 
established in 2011 at the Children’s Tumor Foundation (CTF) meeting to achieve 
consensus about the design for future clinical trials with major emphasis on end-
points. The collaboration included 7 working groups; disease biomarkers; whole-
body MRI; functional, visual, patient-reported, and neurocognitive outcome; and 
imaging for tumor response. Later, two more working groups were added; cutane-
ous neurofibromas, and patient representation [116].

The REiNS Collaboration published the initial recommendations for clinical 
trials endpoint in 2013 [117]. MRI with volumetric analysis was recommended as 
the standard imaging metric for pNF and VS in NF1 and NF2 clinical trials [118]. 
A 20% volume change was chosen to indicate an increase or decrease in the tumor 
size. MRI analysis requires central review to ensure consistent results. This is a 
time and resource intensive tool; thus, the development of methods that can be 
incorporated into routine clinical practice and can be performed more easily is 
warranted. Whole-body MRI imaging (WB-MRI) may serve as an endpoint in 
clinical trials that target multiple tumors. The working group concluded that while 
WB-MRI is feasible for identifying tumors using both 1.5 T and 3.0 T systems, 
choosing a standardized image acquisition and analysis methods is crucial for 
applying WB-MRIs as a tool for assessing tumors in NF [119]. For clinical trials 
targeting NF2-associated VS, the REiNS functional outcomes group endorsed the 
use of maximum word recognition score as the primary endpoint for hearing. The 
group recommended using the measurement of improvement in lip excursion 
(SMILE) system for studies of facial function [120]. For clinical trials targeting 
NF-associated OPG, the visual outcomes working group recommended the use 
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of visual acuity as the primary endpoint, as opposed to measurement of tumor 
size [121]. The group also recommended assessing the optic disc for pallor to 
allow accurate interpretation of the visual acuity. Regarding the neurocognitive 
outcomes, the working group concluded that The Digit Span (DS) subtest from the 
Wechsler scales is the most appropriate performance-based outcome measure, as it 
provides the best psychometrics, feasibility, and utility across a wide age range, and 
is extensively used in previous research [122]. For similar reasons, the Conners scale 
achieved the highest ratings of behavioral questionnaires and is considered the most 
appropriate observe-rated outcome measure.

It is uncommon for pNF to cause airway compromise or pulmonary dysfunction, 
yet airway pNFs are clinically important. The REiNS functional outcomes group 
developed consensus recommendations for sleep and pulmonary outcome end-
points in airway pNFs [123]. The group endorsed using the apnea hypopnea index 
(AHI) as the primary sleep endpoint, and pulmonary resistance at 10 Hz (R10) of 
forced expiratory volume in 1 or 0.75 seconds (FEV1 or FEV 0.75) as the primary 
pulmonary endpoint. The group also identified secondary sleep and pulmonary 
outcomes. Measures of sleep and pulmonary function may be more clinically mean-
ingful as endpoints than changes in tumor size in clinical trials targeting airway 
pNFs. Regarding patient-reported outcomes (PRO) of pain and physical function 
in NF clinical trials, the REiNS working group recommended the numeric rating 
scale-11 (NRS-11) to assess pain intensity for age 8 years and older [124]. To assess 
pain interference, the group recommended the Pain Interference Index in pediatric 
studies and the Patient-Reported Outcome Measurement Information System 
(PROMIS) Pain Interference Scale in adult studies. PROMIS Physical Function Scale 
was deemed the most appropriate for NF trials to assess the physical functioning 
domain. The REiNS disease biomarkers working group reported consensus recom-
mendations to provide clinicians and researches with a common set of guidelines to 
collect and store biospecimens and for establishment of biobanks for neurofibroma-
toses [125]. The group described the existing biomarkers in NF and report con-
sensus recommendations for standard operation procedures to standardize sample 
collection and methodology protocols to promote comparison between studies.

Drug discovery is a very costly and lengthy process, which may take up to 
10 years from first-in-human dosing to approval [126]. This process is usually 
preceded by years of extensive preclinical research to identify suitable targets for 
clinical development. The REiNS International Collaboration continues to work on 
developing consensus endpoints in NF clinical trials and to promote early engage-
ment with FDA and other industry partners to accelerate the drug development and 
approval for NF-associated tumors.

7. Conclusion

The field of NF therapeutics is at inflection point. Several clinical trials have been 
conducted targeting various manifestations of NF and more studies are ongoing. The 
alignment of endpoints along with utilizing validated clinical outcomes measures 
represents a priority for therapeutic development for NF. Fortunately, there is a 
growing interest in NF, which is drawing the attention of pharmaceutical and bio-
technology companies to grow the pipeline for NF targeted therapy. These efforts are 
combined with several ongoing laboratory and preclinical studies that provide unique 
opportunities to study the complex biology and natural history of NF-associated 
tumor. The US breakthrough therapy designation that was granted to Selumetinib 
in NF1 endorses the critical need for partnership among the major consortia and 
funders to accelerate the therapeutics development efforts in the NF field.
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