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Tracking of Flying Objects on the Basis of 
Multiple Information Sources 

Jacek Karwatka 
Telecommunications Research Institute 

Poland 

1. Introduction 

In the paper, a new approach to the estimation of the localization of flying objects on the 

basis of multiple radiolocation sources has been proposed. The basic purpose of the 

radiolocation is the detection and tracking of objects. The main task of a tracking system is 

the estimation and prediction of localization and motion of tracked objects. In the classical 

tracking systems, the estimation of localization and motion of tracked objects is based on the 

series of measurements performed by a single radar. Measurements obtained from other 

sources are not taken directly into account. It is possible to assess the estimate of a tracking 

object on the basis of the different sources of information, applying, for example, least 

squares method (LSM). However, such solution is seldom applied in practice, because 

necessary formulas are rather complicated. In this paper, a new approach is proposed. The 

key idea of the proposed approach is so called matrix of precision. This approach makes 

possible tracking not only on the basis of radar signals, but also on the basis of bearings. It 

makes also possible the tracking of objects on the basis of multiple information sources. 

Simplicity is the main attribute of proposed estimators. Their iterative form corresponds 

well with the prediction-correction tracking model, commonly applied in radiolocation. In 

the paper numerical examples presenting advantages of the proposed approach are shown. 

The paper consists of seven parts. Introduction is the first one. 
In the second part the idea of the matrix of precision is presented and it is demonstrated 
how it can be used to uniformly describe the dispersion of measurement. Traditionally, the 
measurement dispersion is described by a matrix of covariance. Formally, the matrix of 
precision is an inverse of the matrix of covariance. However, these two ways of description 
are not interchangeable. If an error distribution is described by the singular matrix of 
precision then the corresponding matrix of covariance does not exist, more precisely, it 
contains infinite values. It means in practice that some components of a measured vector are 
not measurable, in other words, an error of measurement can be arbitrarily large. The 
application of the matrix of precision makes possible an uniform description of 
measurements taken from various sources of information, even if measurements come from 
different devices and measure different components. Zero precision corresponds to 
components which are not measured. 
In the third part, the problem of estimation of stationary parameters is formulated. Using 
the matrix of precision, the simple solution of the problem is presented. It appears that the 
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best estimate is a weighted mean of measurements, where the weights are the matrices of 
the precision of measurements. It has been proved that the proposed solution is equivalent 
to the least squares method (LSM). Additionally it is simple and scalable. 
In the fourth part of this paper the problem of the estimation of states of dynamic systems, 
such as a flying aircraft, is formulated. Traditionally, for such an estimation the Kalman 
filter is applied. In this case the uncertainty of measurement is described by the error matrix 
of covariance. If the matrix of precision is singular, it is impossible to determine the 
corresponding matrix of covariance and utilize the classical equation of Kalman filter. In the 
presented approach this situation is typical. It appears that there is such a transformation of 
Kalman filter equations, that the estimation based on the measurements with error 
described by the singular matrix of precision, can be performed. Such a transformation is 
presented and its correctness is proved. 
In the fifth part, numerical examples are presented. They show the usability of the concept 
of matrix of precision. 
In the sixth part, the summary and conclusions are shown, as well as the practical 
application of presented idea is discussed. The practical problems which are not considered 
in the paper are also pointed out. 
 

2. The concept of precision matrix 

Traditionally in order to describe the degree of the dispersion distribution the covariant 
matrix is used. There exist another statistics which can be used to characterize dispersion of 
the distribution. However, the covariance matrix is the most popular one and in principle 
the precision matrix is not used. Formally the precision matrix is the inverse of covariance 
matrix. 

 1

x x

−=W C  (1) 

The consideration may take much simpler form if the precision matrix is used. Note that 
precision matrix is frequently used indirectly, as inverse of covariance matrix. For example, 
in the well-known equation for the density of multi-dimensional Gauss distribution: 

 
( )

1( ) ( )1

2

2

T

k
e

π

−⎛ ⎞− −− ⎜ ⎟−⎜ ⎟
⎝ ⎠

x xx m C x m
C

 (2) 

The equation (1) can not be used if the covariance matrix is singular. As long as the 
covariance (precision) matrix is not singular, the discussion which statistics is better to 
describe degree of the dispersion distribution is as meagre as discussion about superiority of 
Christmas above Easter. Our interest is in analysis of extreme cases (e.g. singular matrix). 
At first, the singular covariance matrix will be considered. Its singularity means that some of 
the member variables (or their linear combinations) are measured with error equal to zero. 
Further measurement of this member variable makes no sense. The result can be either the 
same, or we shall obtain contradiction if the result would be different. The proper action in 
such a case is modifying the problem in such a manner that there is less degrees of freedom 
and the components of the vector are linearly independent. The missing components 
computation is based on the linear dependence of the variables. In practice, the presence of 
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the singular covariance matrix means that the linear constraints are imposed on the 
components of the measured vectors and that the problem should be modified. The second 
possibility (infinitely accurate measurements) is impossible in the real world. 
In distinction from the case of the singular covariance matrix, when the measurements are 
described by the singular precision matrix, measurements can be continued. The singularity of 
the precision matrix means that either the measurement does not provide any information of 
one of components (infinitive variation) or there exist linear combinations of member variables 
which are not measured. This can results from the wrong formulation of the problem. In such 
a case, the system of coordinates should be changed in such a manner that the variables which 
are not measured should be separated from these which are measured. The separation can be 
obtained by choosing the coordination system based on the eigenvectors of precision matrix. 
The variables corresponding to non-zero eigenvalues will then be observable.  
There is also the other option. The singular precision matrix can be used to describe the 
precision of measurement in the system, in which the number of freedom degrees is bigger 
then the real number of components, which are measured. Then all measurements may be 
treated in a coherent way and the measurements from various devices may be taken into 
account. Thus all measurements from the devices which do not measure all state parameters 
can be included (i.e. direction finder). In this paper we are focusing on second option. 
Each measuring device uses its own dedicated coordinate system. To be able to use the 
results of measurements performed by different devices, it is necessary to present all 
measured results in the common coordinate system. By changing coordinate system the 
measured values are changed as well. The change involves not only the digital values of 
measured results, but also the precision matrix describing the accuracy of particular 
measurement. We consider the simplest case namely the linear transformation of variables. 
Let y   denote the vector of measurements in common coordinate system and x  denote the 

vector of measurements in the measuring device dedicated coordinate system. Let x  and y  

be related as follows: 

 = +y Ax b  (3) 

In this case the covariance of measurement changes according to formula: 

 T

y = xC AC A  (4) 

The precision matrix as inverse of covariance matrix changes according to formula: 

 1 1 1T

x

− − −= =y yW C A W A  (5) 

Consider the case when the transformation A  is singular. In this case, we can act in two 

ways. If the precision matrix xW  is not singular it can be inverted and the covariance matrix 

xC  can be find. Using the formula (4) and the obtained result 
y
C  it is possible to invert 

back, to obtain the precision matrix
y

W . The second method consists in increasing 

transformation A  in such way to be invertible. It is done by writing additional virtual lines 

to the transformation matrix A . The new transformation matrix is now as follows:  

 '
⎡ ⎤

= ⎢ ⎥
⎣ ⎦v

A
A

A
 (6) 
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Additional rows of this matrix should be chosen in such way that the obtained precision 
matrix has block-diagonal form:  

 '
v

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A

y

W 0
W

0 W
 (7) 

it means  that additional virtual lines of transformation 'A  should be chosen to fulfill the 
following relationship: 

 1 1T

v x v

− − =A W A 0  (8) 

In such a way, the additional virtual lines do not have any influence on the computation 
result of precision matrix in the new coordinate system.  

 Consider the specific case. Let the measuring device measures target OX and OY positions 

independently, but with different precision. Measurement in the direction of the axis OX is 

done with accuracy 20.25OXw =  and in the direction of axis OY measured precision is 
20.2OYw = . Then  the precision matrix has a form: 

 
2

2

0.25 0

0 0.2

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x
W  (9) 

We are interested in accuracy of the new variable which is a linear combination of these 

variables. Let y = Ax  where: 

[ ]1 2= −A  

Matrix A  is not invertible. We add an additional row so that the matrix 'A  is invertible and 
formula (8) is fulfilled. General form of the matrix fulfilling this condition is of the form: 

 
1 2

'
50 16n n

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A  (10) 

We chose 1n = . In that case: 

 1
16 21

'
50 1116

− −⎡ ⎤
= ⎢ ⎥

⎣ ⎦
A  (11) 

The precision matrix in the new coordinate system has the following form: 

 1 1
1 01

' '
0 0.0025116

T− − ⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
y xW A W A  (12) 

We ignore additional variables which have been added to make 'A  invertible. Finally the 

accuracy of the measurement of variable y   is 1/116.  
The same result can be obtained using the first method. Then the covariance matrix is of the 
form: 

 
2

2

4 0

0 5

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x
C  (13) 
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The value of the covariance of variable y  according to formula (4) is: 

 [ ] 16 0 1
1 2 116

0 25 2

−⎡ ⎤ ⎡ ⎤
= − =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
y
C  (14) 

While the second method is  more complicated it is nevertheless more general, and permits  
to find the precision matrix in the new coordinate  system even if the precision matrix is 
singular. 
In a case when it is necessary to make nonlinear transformation of variables ( )=y f x , the 

linearization of transformation is proposed. Instead of matrix A  the Jacobian matrix of 
transformation f  is used: 

 
∂⎡ ⎤= ⎢ ⎥∂⎣ ⎦

f
J

x
 (15) 

In order to find the value of partial derivative, it is necessary to know point 0x  around 

which linearization is done. 

3. Estimation of stationary parameters 

In engineering it is often necessary to estimate certain unknown value basing  on several 
measurements.  The simplest case is, when all measurements are independent and have the 
same accuracy. Then, the intuitive approach i.e. using the representation of results as 
arithmetic average of measurements is correct (it leads to minimal variation unbiased 
estimator). The problem is more complicated if the measured value is a vector and 
individual measurements have been performed with different accuracy. Usually, to 
characterize measurements accuracy the covariance matrix of measurement error 
distribution is used. Application of precision matrix leads to the formulas which are more 
general and simple. Further the precision matrix describes the precision of measurements 
when the number of degrees of freedom is smaller than the dimension of the space in which 
the measurement has been done. For example, direction finder measures the direction in the 
three dimensional space. The direction finder can be used as a radar with an unlimited error 
of measured distance. In this case, the covariance matrix of the measurement does not exist 
(includes infinite values). But there exists the precision matrix (singular). Information 
included in the precision matrix permits to build up optimal (minimal variation unbiased) 
linear estimator. 

3.1 Formulation of the problem 

Consider the following situation. The series of n measurements ix  of a vector x  value is 

done under the following assumptions: 
1. There is no  preliminary information concerning the value of the measured quantity x . 
2. The measured quantity is constant. 
3. All measurements are independent. 
4. All measurements are unbiased (expected value of the measured error is zero). 
5. All measurements can be presented in common coordinate system and the precision 

matrix Pi which characterizes the measurement error distribution in these coordinates, 
can be computed.  
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The problem is to find the optimal linear estimator of unknown quantity x  and to find its 
accuracy. By optimal estimator, we understand the unbiased estimator having minimal 
covariance. By estimation of precision we understand presenting its covariance (or 
precision) matrix.  

3.2 The solution 

The first step consists in presenting all measurement results in the common coordinate 
system. The precision matrices must be recalculated to characterize the measurement error 
distribution in the common coordinate system. The method of the recalculation the precision 
(covariance) matrixes in the new coordinated system have been presented before. If all 
measurements have been done in the same coordinate system, the first step is omitted. 

The unbiased minimal variation estimator of unknown quantity x  is a weighed average of 

all measurements ix , where the weights are the precision matrices iW  of the individual 

measurements. The precision matrix xW&  of such estimator is equal to the sum of the 

precision matrixes iW  of all measurements. 

 ˆ i i

i

=∑
∑
Wx

x
W

 (16) 

 ˆ i=∑xW W  (17) 

In formula (16) the results of the individual measurements are represented as column 
vectors. Formulas (16-17) also can be presented in the iterative form (18-21) : 

 1 1=x x
&

 (18) 

 
1ˆ 1=
x

W W  (19) 

 
ˆ 1 1

1

ˆ 1

ˆ
ˆ i

i

i i i

i

i

+ +
+

+

+
=

+
x

x

W x W x
x

W W
 (20) 

 
1ˆ ˆ 1i i i+ += +

x x
W W W  (21) 

Proof: 

The presented formula represents the particular case of the general estimator of state x  of 

the linear system, in which information about x  is accessible via = +y Ax e , where y  is the 

vector of the measured results, A  is observation which is the projection of the system state 

on the measured vector, e  is random noise having average value and covariance TE =ee C , 

which represents the measurement errors. In such case, the best linear unbiased estimator 

has the following form: 

 ( ) 1
1 1ˆ T

−− −=x C A A C A y  (22) 

In our case, the formula is radically simplified. All measurement results are presented in the 
same coordination system, therefore the observation Matrix has the following form: 
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1 0 ... 0

0 1 ... 0

... ... ... ...

0 0 ... 1

.......

1 0 ... 0

0 1 ... 0

... ... ... ...

0 0 ... 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎣ ⎦

A  (23) 

Since all measurements are independent, the covariance matrix has the block-diagonal form: 

 

1

2

...

...

... ... ... ...

... n

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

C 0 0

0 C 0
C

0 0 C

 (24) 

 

1
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1
21 2

1
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... ... ... ...... ... ... ...

...... nn

−

−
−

−
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⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

W 0 0C 0 0

0 W 00 C 0
C

0 0 W0 0 C

 (25) 

After simplification and changing of the multiplication order (symmetrical matrix) we 
obtain: 

 ( ) ( ) ( )1 1 1
1 1ˆ T

i j i i i j

− − −− −= = =∑ ∑ ∑ ∑x C A A C A y W W y Wy W  (26) 

As we can see, it is another form of formula (16). Its interpretation is easy to read and easy to 
remember. The optimal linear estimator represents the weighed average of all 
measurements, when weighs are the precision matrices of individual measurements. 

4. Modified Kalman filter 

In many cases it is necessary to estimate the changing state vector of the system. The value 
of the vector changes between successive measurements. Such situation exists in 
radiolocation when the position of moving target is tracked. Restricting ourselves to linear 
systems, the solution of this problem is known as the Kalman filter. In the Kalman filter 
theory, the model of system is presented as the pair of equations: 

 1 1i i i+ += +x Fx q  (27) 

 1 1 1i i i+ + += +z Hx r  (28) 

The first equation describes dynamics of system in the discrete time domain. Vector q  

models the influence of internal noise. It is assumed that expected value q  is zero and it is 
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independent from the vector of state value x , as well as of the values of vector q  at the 

previous iterations: 

 iΕ =q 0  (29) 

 
i j
Ε i j
≠

=q q 0  (30) 

 T

i iΕ =q q Q  (31) 

The covariance of internal noise q  is described by matrix Q . The second equation describes 

output z  of the system which depends on actual state of the vector x . The vector r  models 

the influence of noise on the measuring process. Further it is assumed that the expected 

value r  is equal to zero and it is independent from the value of the state vector x , internal 

noise vector q , as well as of the vector r  from the previous iterations: 

 iΕ =r 0  (32) 

 
i j
Ε i j
≠

=rr 0  (33) 

 T

i iΕ =rr R  (34) 

It is assumed that we have estimate of the value ˆ
ix , accuracy of which is described by 

covariance matrix iP  and as well as the new measurement 1i+z  which is accurately 

described by the covariance matrix 1i+R . How taking into consideration the last 

measurement can we obtain the estimated value of the state vector at the time 1i + ? The 

solution of this problem leads to the classic Kalman filter equation. Kalman filter can be 

presented in the iteration form: 
 

new estimate =state prediction + correction 
correction = gain*(new measurement – measurement prediction) 

 

The equation of the state prediction has the following form: 

 1|
ˆ ˆ
i i i+ =x Fx  (35) 

The covariance matrix of the state prediction has the following form: 

 1| 1

T

i i i i+ += +P FPF Q  (36) 

The equation of the measurement prediction has the form: 

 1| 1|
ˆ ˆ
i i i i+ +=z Hx  (37) 

The Kalman gain is defined as: 

 
1

1 1| 1| 1

T T

i i i i i i

−

+ + + +⎡ ⎤= +⎣ ⎦K P H HP H R  (38) 
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The new estimate of the state has the following form: 

 ( )1 1| 1 1 1|
ˆ ˆ ˆ
i i i i i i i+ + + + += + −x x K z z  (39) 

The covariance matrix of new estimate of the state has the following form: 

 [ ]1 1 1|i i i i+ + += −P 1 K H P  (40) 

Equations (27-40) constitutes the description of the classic Kalman filter. The Kalman filter 

can be considered as the system in which the input consists of string of measurements iz  

together with the covariance matrix iR  which characterizes the accuracy of the i-th 

measurement and with the output being new estimate of the state vector ˆ
ix  together with 

the covariance matrix iP  which describes accuracy of this estimate. In the case when the 

precision of measurements is described by the singular precision matrix iW , it is impossible 

to obtain corresponding covariance matrix iR  and  the classic Kalman filter equation can 

not be used (covariance matrix is required).  Such situation happens for instance when the 

movement of the object based on the bearings is tracked. The bearing can be treated as a 

degenerated plot in which precision of distance measurement is equal zero. Thus bearing is 

the plot described by the singular precision matrix. Determination of the covariance matrix 

is impossible. However, it is not necessary. The only equation in which the covariance 

matrix R  is used is equation  (38). The covariance matrix in this equation is inverted by 

indirect way. A part of the equation (38) in which matrix R  exists has form: 

 
1

T
−

⎡ ⎤+⎣ ⎦HPH R  (41) 

It is easy to prove that: 

 [ ]1 1− −⎡ ⎤+ = +⎣ ⎦A R A R A R  (42) 

We invert both sides: 

 [ ]1 11 1 1 1
− −− − − −⎡ ⎤+ = +⎣ ⎦R R A A A R  (43) 

Hence: 

 
1

1 1 1
1 1T T T

−− − −− −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
HPH R R R HPH HPH  (44) 

It can be written as: 

 
1

1 1 1
T T T

−− − −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
HPH R W W HPH HPH  (45) 

Finally, the equation (38) has form: 

 
1

1 1

1 1| 1 1 1| 1|

T T T

i i i i i i i i i

−− −

+ + + + + +
⎡ ⎤⎡ ⎤ ⎡ ⎤= + ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

K P H W W HP H HP H  (46) 
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The only problem which can appear here is the possible singularity of the matrix 1|

T

i i+HP H . 

This is the covariance matrix of the measurement prediction. If this matrix is singular, it 
means that we have certainty about measurement result of some parts and act of filtration 
have no sense as it has been discussed before. During normal filtration process such 
situation never happens. In such transformed form of Kalman filter the measurements 
which accuracy is described by the precision matrix can be used as the input, even if this 
matrix is singular. The price which is to pay is the necessity to twice invert the matrix which 
dimension corresponds to the dimension of the observation vector. 

5. Examples 

5.1 Estimation of the static system. 

In order to demonstrate the proposed technique, the following example is used.  The 
position of tracking target is determined using three measurements. The first measurement 
comes from the radar. The second one comes from the onboard GPS device. The third one 
comes from the direction finder. The radar is a device which measures three coordinates: 

slant range ( R [m]), azimuth ( β [rad]), and elevation angle (φ [rad]). For our simulation we 

assume that standard deviation of particular errors are: [ ]1500 0.001 0.001  ([m rad rad]) 

i.e. the radar works as an altimeter precisely measuring elevation and azimuth while the 
slant range is not precisely measured. As far as GPS device is concerned we know that this 
device measures position with accuracy of up to 100 m and this measurement can be 
presented in any Cartesian coordinate system. The altitude is not measured by GPS. The 
standard deviation of bearing error for direction finder is [0.001] ([rad]). We know also very 
precisely the location of the direction finder. For this example the simulation has been done. 
We have chosen Cartesian coordinate system located at the radar as the global coordinate 
system. Furthermore, we have assumed that the tracking target is at the point 

[ ]30000 40000 12000=x . The radar position is then at [ ]0 0 0=R . Bearing finder is in 

the point [ ]70000 10000 0=N . We obtain following measurements results:  

 [ ]50771 0,64363 0,23388Rad =z  (47) 

 [ ]30029 39885GPS =z  (48) 

 [ ]-0,92733Nam =z  (49) 

Basing on these results we want to obtain the estimator of x . The first step is to present the 

results of measurements in the common coordinate system. In our case it is XYZ  coordinate 

system connected to the radar. Now, some values should be attached to missing variables. If 

the transformation is linear, we can assign them any values. If the transformation of 

variables is nonlinear, we linearize around an unknown point. The values of the missing 

variables are estimated based on results of other measurements. After assigning the missing 

variables we obtain:  

 [ ]50771 0.64336 0.23388Rad =z  (50) 
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 [ ]30029 39885GPS 11766=z  (51) 

 [ ]-0.92733Nam 51363 0.23113=z  (52) 

Transforming  to new coordinate system, we obtain following results: 

 [ ]29638 39507 11766XYZ

Rad =z  (53) 

 [ ]30029 39885 11766XYZ

GPS =z  (54) 

 [ ]30001 39997 11766XYZ

Nam =z  (55) 

In order to determine the precision matrix we invert the corresponding covariance matrices: 

 1

x x

−=W C  (56) 

The accuracy of the GPS device is 100 m. Therefore we consider 100 as the standard 
deviation of error distribution.  

 

1
2

1

2

0.0001 0100 0

0 0.00010 100
GPS GPS

−

− ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
W C  (57) 

The standard deviation of the direction finder is 0.001 rad. The variance and precision are 
accordingly: 

 
1

1 2 60.001 10Nam Nam

−− ⎡ ⎤= = =⎣ ⎦W C  (58) 

After inserting zeros to the rows and columns corresponding to missing variables we obtain 
the following precision matrices: 

 6

6

0.(4) 6 0 0

0 10 0

0 0 10

Rad

e −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

W  (59) 

 

0.0001 0 0

0 0.0001 0

0 0 0

GPS

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

W  (60) 

 
6

0 0 0

0 0 0

0 0 10

Nam

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

W  (61) 

When applying the linear transformation of variables: = +y Tx a  the covariance matrix  

changes according to the formula: T=y xC TC T . In the case of the nonlinear transformation: 

( )=y Y x , we replace the matrix T  by the Jacobian matrix J , which is the linearization of 

this transformation.  
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1 1

1

1

...

... ... ...

...

n

n n

n

y y

x x

y y

x x
=

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥=
⎢ ⎥
∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦x x

J

&

 (62) 

T=y xC JC J . Similarly we obtain: 1 1T− −=
y x

W J W J . In our case, the radar and the direction 

finder (after inserting the missing variables) operate in the spherical coordinates which are 

related to global system by the set of formulas: 

 0 cos( )sin( )X X R ϕ β= +  (63) 

 0 cos( )cos( )Y Y R ϕ β= +  (64) 

 0 sin( )Z Z R ϕ= +  (65) 

The Jacobian matrix of such transformation has the following form: 

 

cos( )sin( ) cos( )cos( ) sin( )sin( )

cos( )cos( ) cos( )sin( ) sin( )cos( )

sin( ) 0 cos( )

R R

R R

R

ϕ β φ β ϕ β
ϕ β ϕ β ϕ β

ϕ ϕ

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

J  (66) 

Transforming variables from the local coordinate system of the measuring device to global 
system, we obtain as follows: 
For the radar: 

 1 1

26.998 -18.659 -5,2424

-18.659 16.124 -6,9881 5

-5,2424 -6.9881 36.713
Rad Rad

XYZ T

Rad Rad e− −

⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥⎣ ⎦

z zW J W J  (67) 

In case of the GPS device we do not have any change of variables. We are only adding the 
zero values corresponding to additional variable to the precision matrix: 

 

0.0001 0 0

0 0.0001 0

0 0 0

XYZ

GPS

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

W  (68) 

For the direction finder: 

 1 1

14.4 19.201 1e-15

19.201 25.604 1e-16 5

1e-15 e-16 1e-32
Nam Nam

XYZ T

Nam Nam e− −

<⎡ ⎤
⎢ ⎥= = < −⎢ ⎥
⎢ ⎥< < <⎣ ⎦

z z
W J W J  (69) 

Finally, we obtain the position estimator: 

 *
XYZ XYZ XYZ XYZ XYZ XYZ

Rad Rad GPS GPS Nam Nam

XYZ XYZ XYZ

Rad GPS Nam

+ +
=

+ +
z W z W z W

x
W W W

 (70) 
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resulting in: 

 [ ]* 30008 39973 11908=x  (71) 

Note that utilization of the measurements from GPS device and direction finder, which do 
not measure the height, actually results in some improvement of  altitude  estimation. This is 
due to the fact that the variables which provide the radar measurements in XYZ coordinates 
are not independent, but they are strongly correlated.  The linear combination of them is 
measured with high accuracy. Thus, by improving the estimation of XY variables we also 
improve the estimation of the variable in Z direction. 

5.2 Estimation in the dynamic system 
The next example presents the application of the proposed technique to the estimation of the 
parameters of a dynamic system. It is the most typical situation when the racking target is 
moving. Our purpose is the actualization of motion parameters of tracking target based on 
three measurements. We assume that the tracking is two dimensional. The following 
parameters are tracked: x  - the position on axis OX; vx  - the motion speed on axis OX; y  - 

the position on axis OY; vy  - the motion speed on axis OY. We consider the flight altitude z  

as fixed and equal 2000. Finally, we have the following data: 
At time: 

 0 100T =  (72) 

Based on previous measurements, we obtain estimation of the initial parameters of tracked 
target motion: 

 0

259.5

126.7

60075

114.3

x

vx

y

vy

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

−⎣ ⎦ ⎣ ⎦

x  (73) 

The covariance matrix of this estimation has the form: 

 

2

2

2

2

600 0 0 0

0 20 0 0

0 0 600 0

0 0 0 20

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0x
C  (74) 

At time: 

 1 108T =  (75) 

The tracked target has been detected by the radar R1 which is located at the beginning of 
our coordinate system 

 

0

0

0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R1  (76) 
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The parameters of the detection are: 

 1

59025

0.1169

0.2122

R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z  (77) 

We assume that the radar measurement is unbiased. The covariance matrix of the 
measurement error has the following form: 

 

2

2

1

2

55 0 0

0 0.08 0

0 0 0.15

R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

C  (78) 

The next position measurements of the tracking target took place at the time: 

 2 113.8T =  (79) 

We obtain the bearing of tracked target. The direction finder was located at the point: 

 

10000

40000

100

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

N2   (80) 

The bearings value is: 

 [ ]2 0.3853N = −z  (81) 

The covariance measurement error is: 

 2

2 0.05N
⎡ ⎤= ⎣ ⎦C  (82) 

At  the  near time: 

 3 114T =   (83) 

We obtain bearing from another direction finder which was located an point: 

 

30000

3 50000

120

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

N  (84) 

The bearing value is: 

 [ ]3 1.2433N = −z   (85) 

The covariance measurement error is: 

 2

3 0.05N
⎡ ⎤= ⎣ ⎦C  (86) 
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Traditionally, to solve such a problem, the theory of Kalman filter is used. In this theory two 

assumptions are usually accepted. First that all measurements are carried out by the same 

device. Second, that the measurements are done in regular time intervals. None of the above 

assumptions is satisfied in our example. To address the issue of different measuring  device, 

we assume that the measurements are always presented in the common global coordinate 

system, and their dispersion is  described by the precision matrix which can be singular. 

Using the modified formulas of Kalman filters (46), the estimation can be done, even if the 

precision matrix is singular. In order to address the issue of the irregular time intervals of 

the measurements, the Kalman filter has been modified to consider the changes of time 

interval between individual measurements. It means that the matrix F  describing dynamics 

of the tracked process and matrix Q  described covariance of the internal noise of tracked 

process depend on time tΔ  which elapses from the last measurement. We assume the linear 

model of the tracked target movement in which velocity does not have systematic changes. 

Therefore the equation of motion has the following form:  

 

0 0

0

0 0

0

( ) *

( )

( ) *

( )

x t x vx t

vx t vx

y t y vy t

vy t vy

= +⎧
⎪ =⎪
⎨ = +⎪
⎪ =⎩

 (87) 

We introduce the following state vector of  Kalman filter: 

 

x

vx

y

vy

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

x   (88) 

Therefore, the dynamic matrix ( )tΔF  has the following form: 

 ( )

1 0 0

0 1 0 0

0 0 1

0 0 0 1

t

t
t

Δ⎡ ⎤
⎢ ⎥
⎢ ⎥Δ =
⎢ ⎥Δ
⎢ ⎥
⎣ ⎦

F  (89) 

We also assume that the internal noise of the process has additive character and it is the 

source of change of motion velocity. In such a case, the velocity variation is increasing 

linearly with time: 

 
0

0

t
Q

t

Δ⎡ ⎤
= ⎢ ⎥Δ⎣ ⎦

v
Q  (90) 

The internal noise related to velocity affects the position through the dynamic process 

described by matrix  ( )tΔF . It can be proved that in this case the covariance matrix ( )tΔQ  

of the process internal noise has the following form: 
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 ( )

3 2

2

3 2

2

0 0
3 2

0 0
2

0 0
3 2

0 0
2

t t

t
t

Q
t t

t
t

⎡ ⎤Δ Δ
⎢ ⎥
⎢ ⎥
⎢ ⎥Δ

Δ⎢ ⎥
⎢ ⎥Δ =
⎢ ⎥Δ Δ
⎢ ⎥
⎢ ⎥
⎢ ⎥Δ

Δ⎢ ⎥⎣ ⎦

Q t  (91) 

The parameter Q  provides the information on how much the velocity of the motion changes 

during one second in the medium square sense. In the simulations we assume that 1Q = . 
Additionally we assume that the observation vector has the following form: 

 
x

y

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

z  (92) 

Therefore, the observation matrix H  has a form: 

 
1 0 0 0

0 0 1 0

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

H  (93) 

The direction finder, as well as the radar, make measurements at spherical coordinate 

system. To present measurements results at the global reference system we use formulas 

(63-65) described in the first example. The necessary elements have been already discussed. 

The algorithm of the estimation of the motion parameters can be described on the basis of 

measurements coming from different sources. Utilizing previous measurements we know 

the estimation 0x̂  of the tracked target motion parameters in time 0t  and the covariance 

matrix 0p , describing the precision of this estimate. When at the time 1 0t t>  the next 

measurement occur, the following steps are taken: 

• Calculate the matrices ( )tΔF  and ( )tΔQ  according to formulas (89, 91) 

• Calculate the prediction of the state vector 1| 0
ˆ
t tx  using formula (35) 

• Calculate the covariance matrix 1|t toP  of the prediction of the state using formula (36) 

• Calculate the prediction of detection 1| 0

XYZ

t tz
&

 at the global coordinate system 

• Calculate the prediction of detection 1| 0

Rad

t tz
&

 at the local radar (direction finder) coordinate 

system 

•  Expand the measurements vector 1

Rad

tz# . The values which has not been measured are 

replaced by predicted values from the previous measurements. 

• Create the precision matrix 1

Rad

tW  of the measurements at the local radar (direction 

finder) coordinate system. The values which have not been measured have zero 
precision. 

• Transform the expanded vector of measurements 1

Rad

tz#  and corresponding precision 

matrix  1

Rad

tW  to global coordinate system 1

XYX

tz#  and 1

XYZ

tW . 
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• Using formula (39-40, 46) calculate the new estimate of the motion parameters 1
ˆ
tx  and 

their corresponding precision matrix 1tP . 

Note that tracking is done in two dimensional space. The altitude Z is not tracked and is 
fixed as Z=2000. If the altitude is required in computation like for example in formula (97) 
we take Z=2000m. 
For the first measurements we have accordingly: 

 108 100 8tΔ = − =  (94) 

 108|100 100

754

127
ˆ ˆ(8)

59161

114

⎡ ⎤
⎢ ⎥
⎢ ⎥= ≈
⎢ ⎥
⎢ ⎥
−⎣ ⎦

x F x  (95) 

The covariance matrix of the prediction: 

 ( ) ( ) ( )108|100 1008 8 8
T= +P F P F Q  (96) 

The prediction of the detection at the global coordinate system XYZ: 

 108|100

754

59161XYZ

2000

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z
&

  (97) 

In the last formula we use information on tracking target altitude 2000m. Now, we consider 
the system of the radar R1. The prediction of the detection at the radar local coordinate 
system: 

 108|100

59200

0.013

0.034

Rad

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z
&

 (98) 

The radar measures all coordinates. It is not necessary to increase measuring vector and to 
use the prediction.  

 108

59025

0.117

0.212

Rad

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z#  (99) 

The dispersion of the radar measurements is described by the precision matrix of the form: 

 

2

2

108

2

1 / 55 0 0

0 1 / 0.8 0

0 0 1 / 0.15

Rad

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

W  (100) 

After transformation to the global coordinate system XYZ we obtain: 

www.intechopen.com



 Radar Technology 

 

222 

 108

6732.7

57306XYZ

2000

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z#  (101) 

The precision matrix is transformed according to formula: 

 1 1

ˆ ˆ108 108

XYZ T Rad

z z

− −=W J W J  (102) 

where ẑJ  is Jacobian matrix of transformation (66) calculated at the point 108
ˆ Radz . 

Because we are tracking only the components XY, we ignore the last row in the 

measurement vector 108

XYZ
z# , as well as the last row and the last column in the precision matrix 

108

XYZ
W . 

Now, we can determine Kalman gain K  and the state estimate 108x̂ , as well as the 

corresponding covariance matrix 108P : 

 
1

1 1

108 108|100 108 108 108|100 108|100

T T T
−− −⎡ ⎤⎡ ⎤ ⎡ ⎤= + ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

K P H W W HP H HP H  (103) 

 ( )108 108|100 108 108 108|100
ˆ ˆ ˆXYZ= + −x x K z z#  (103) 

 [ ]108 108 108|100= −P 1 K H P  (105) 

It is the end of the first step of the determination of the estimate of tracking target motion 
parameters.  
The next step is more interesting because it demonstrates how one can use the 
measurements which were done by the direction finder. Accordingly: 
For the first measurement we have: 

 113.8 108 5.8tΔ = − =   (106) 

 113.8|108 108
ˆ ˆ(5.8)=x F x  (107) 

The covariance matrix of prediction is: 

 ( ) ( ) ( )113.8|108 1085.8 5.8 5.8
T= +P F P F Q  (108) 

The prediction of the detection at the global coordinate system XYZ 

 113.8|108

1571.7

56647XYZ

2000

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z
&

  (109) 

We are taking into consideration the direction finder N2. The prediction of the detection at 
the direction finder local coordinate system: 

 2

113.8|108

18775

0.4687

0.1015

N

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z
&

 (110) 
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The direction finder measures only azimuth [ ]2 0.3853N = −z . We treat the direction finder as 

a radar which measures all coordinates. The missing coordinates are obtained utilizing the 

prediction 2

113.8|108

N
z
&

. We obtain: 

 2

113.8 0.3853N

18775

0.1015

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z#  (111) 

The precision matrix variables  calculated using the prediction have zero precision: 

 2 2

113.8

0 0 0

0 1 / 0.05 0

0 0 0

N

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

W  (112) 

After the transformation to global XYZ coordinate system we obtain: 

 113.8

2987.1

57291XYZ

2000

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z#  (113) 

As before, we determine the precision matrix 113.8

XYZ
W  at the global XYZ coordinate system 

and the Kalman gain 113.8K  as well as new estimate 113.8x̂  together with the corresponding 

covariance matrix 113.8P : 

 1 2 1

ˆ ˆ113.8 113.8

XYZ T N

z z

− −=W J W J  (114) 

 
1

1 1

113.8 113.8|108 113.8 113.8 1138|108 113.8|108

T T T
−− −⎡ ⎤⎡ ⎤ ⎡ ⎤= + ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

K P H W W HP H HP H  (115) 

 ( )113.8 113.8|108 113.8 113.8 113.8|108
ˆ ˆ ˆXYZ= + −x x K z z#  (116) 

 [ ]113.8 113.8 113.8|108= −P 1 K H P  (117) 

It is obvious that in the case of the second bearing we act similarly: 

 114 113.8 0.2tΔ = − =   (118) 

 114|113.8 108
ˆ ˆ(0.2)=x F x  (119) 

The covariance matrix of prediction: 

 ( ) ( ) ( )114|113.8 113.80.2 0.2 0.2
T= +P F P F Q   (120) 

The prediction of the detection in global XYZ coordinate system:  

 114|113.8

2087

56625XYZ

2000

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z
&

 (121) 
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Now, we consider the local coordinate system of the direction finder N3. The prediction of 
the detection at the direction finder local coordinate system: 

 3

114|113.8

28750

1.338

0.065

N

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z
&

  (122) 

The direction finder measures only azimuth [ ]3 1.2433N = −z .  

 3

114 1.2433N

28750

0.065

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z#  (123) 

The precision matrix variables defined using the prediction have zero precision: 

 3 2

114

0 0 0

0 1 / 0.05 0

0 0 0

N

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

W  (124) 

After transformation to global XYZ coordinate system we obtain: 

 114

2560.1

59332XYZ

2000

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

z#  (125) 

As before, we determine the precision matrix 114

XYZ
W  at the global XYZ coordinate system 

and the Kalman gain 114K  as well as a new estimate 114x̂  together with the corresponding 

covariance matrix 114P : 

 1 3 1

ˆ ˆ114 114

XYZ T N

z z

− −=W J W J  (126) 

 
1

1 1

114 114|113.8 114 114 114|113.8 114|113.8

T T T
−− −⎡ ⎤⎡ ⎤ ⎡ ⎤= + ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

K P H W W HP H HP H  (127) 

 ( )114 114|113.8 114 114 114|113.8
ˆ ˆ ˆXYZ= + −x x K z z#  (128) 

 [ ]114 114 114|113.8= −P 1 K H P  (129) 

The presented example demonstrates the power of the described technique. Even a single 
bearing can improve the estimation of motion parameters of the tracking target. If several 
bearings are utilized, they need not to be simultaneous.  

6. Summary 

In the proposed technique the measurements carried out by different devices are treated in a 
simple and uniform manner. The key idea comprises in expansion the vector of the 
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measured values and insertion of missing variables based on the prediction. The precision 
matrix is used to describe their dispersion. In order to obtain the estimate of the tracked 
target state we have to present all measurements and corresponding precision matrixes in a 
common coordinate system. The formulas (16-17, 18-21)  should be used for static systems or 
the modified Kalman filters equations (27-40, 46)  should be used for dynamic systems. 
For linear objects, the Kalman filters are the optimal estimators. In the presented example 
dynamics of the tracked target has been described by linear differential equation The 
presented methodology can be applied also in the case when the dynamics of tracked target 
is nonlinear. In this case, instead of formula (27) we use linearization. Let the dynamics of 
the tracked process be described by a nonlinear function: 

 ( ) ( )( ),t t t t+ Δ = Δx F x  (130) 

In order to determine the covariance of the state prognosis we use linearization ( )( ),t tΔF x#  

of the function ( )( ),t tΔF x  

 ( ) ( )( ) ( ) ( )( ) ( ), ,
T

t t t t t t t t+ Δ = Δ Δ + ΔP F x P F x Q# #  (131) 

where: 

 ( ), i

j

f
t t

x

⎡ ⎤∂
Δ = ⎢ ⎥

∂⎢ ⎥⎣ ⎦
F#  (132) 

In order to increase accuracy, we can decrease time interval. Calculations (131) could be 
done several times. Let: 

 
t

t
n

δ Δ
=  (133) 

 ( ) ( )( ),t t t tδ δ+ =x F x  (134) 

 ( ) ( )( )( )( )( )( )... , ... , , ,t t t t t t tδ δ δ δ+ Δ =x F F F F F x  (135) 

Analogically: 

 ( ) ( )( ) ( ) ( )( ) ( ), ,
T

t t t t t t t tδ δ δ δ+ = +P F x P F x Q# #  (136) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ), , ... , , ... , ,
T T T

t t t t t t t t t t tδ δ δ δ δ δ δ δ δ+ Δ = + + +P F x P F x P F x P x F x Q F x Q F x Q# # # # # # (137) 

In the past, this approach was rejected due to computer high power requirements. Presently 
it creates no problem at all.  
An interesting case of proposed methodology application is the use of measurements from 

Doppler radar. The Doppler radar measures frequency shifting of received signal permitting 

to detect approaching speed of tracking targets. More precisely, it permits to determine 

speed radial component Rv  of the tracking target. The methodology is analogical to the 
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example presented before. The velocity vector is expanded in order to include all 

components: 

 
R

β

v

v

vφ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

v#   (138) 

The missing values are calculated utilizing the prediction. The corresponding precision 

matrix has the following form: 

 

0 0

0 0 0

0 0 0

vRδ⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

W  (139) 

After transformation to the global coordinate system XYZ we can use measurements from 

the Doppler radar to improve estimation of the tracking target motion parameters. 

In all so-far considered examples, we assumed that time error does not exist. In practice, the 

time is always measured with certain error. If for example the measuring time is presented 

in seconds, then during one second the tracked target can move several hundreds meters. 

Fortunately, in our case the error of time measuring can be easily taken into consideration. 

Time error tδ  is transformed into the position measurements error xδ  according to 

formula: 

 *x vx tδ δ=  (140) 

Assuming that the time measuring error is independent from the position measurement 
error, the variances of both errors are added: 

 2 2 2 2 2 2'x x x x tC C C vxδ δ= + = +  (141) 

The error of the time measurement can be easily taken into consideration by the proper 

increase of the error covariance value 2

xC  of the measurement component X. Of course, the 

same apply to the remaining components Y and Z. 
When tracking the state of dynamic system by means of the modified Kalman filter the 

assumption that the measurements are done in regular time intervals has been abandoned. 

Nevertheless, it has been assumed that the received measurements are sequential: 

1 2 3 1.... n nt t t t t−≤ ≤ ≤ ≤ ≤ . Sometimes even this assumption is unfulfilled. It may happen that 

due to a transition delay the measurements carried out at earlier time are received later then 

the ones obtained in later time. In order to consider the measurements delay the very simple 

but useful trick can be used. We store in memory the series of last measurements together 

with their estimated parameters values and the corresponding covariance matrices which 

describe accuracy of estimate. When the delayed measurement reaches the system we 

retrieve from the memory an estimation of time 0t  which occurred earlier then the time dt  

(attributed to the delayed measurement). All measurements later then  0t  and delayed 

measurements are rearranged to be sequential in time. Then, the prediction and estimation 
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procedures are performed consecutively for each measurement. This way, the delayed 

measurement is taken into consideration. It must be noted that storing only the values of 

estimated parameters is not enough. In order to make the correct estimation, it is necessary 

to know also the covariance matrix of these parameter estimates.  

The presented method is in 100% correspondence with the well-known least squares 

method (LSM). The careful analysis of the presented examples with taking into 

consideration the different weights of particular errors, existing correlations between them 

as well as the flow of time will provide the same results for the estimated values as the LSM 

method. Therefore the proposed methodology do note give better estimators then the 

classical theory. However the presented methodology avoids the very complicated and 

arduous computations and presents all measurements in a uniform way. Such approach is 

very useful for the automatic data processing by an automatic tracking system.  

Since the presented technique is in 100% correspondence with the LSM, it also it discloses 

the weak points of LSM. In particular, it is not robust methodology. It is not robust for the 

values drastically odd (different) and for large errors. Even the single erroneous 

measurement not fitting the assumed model of errors distribution results in the drastic 

increase of the final error of the estimator. Because of this, it is recommended that the 

preliminary preselection of tracking measurements should be done. Drastically different 

values should be rejected.  

The Kalman filter represents an optimal estimator for linear system only if the real model of 

the process corresponds to the one accepted during Kalman filter (27-34) design. It is 

particularly important when considering the error values. Consider for example the ladar 

(laser radar) which measures the position of an object from the distance of a few tens of 

kilometers with accuracy up to 5 m. Naturally, the error 5Rδ =  should be taken into 

consideration. However, usually other sources of errors exist. For example, the position of 

ladar is known only with the limited precision, the time of measurement is provided with a 

limited accuracy. The Earth curvature can also be a source of errors during calculations. 

Based on the author’s experience some various processes which normally are not taken into 

consideration may be the source of casual and systematic errors. For this reason, asserting 

the error value 5Rδ =  is a wrong idea. According to author it is better to use larger values of 

errors then the small ones. If erroneous values are assumed in the filter design and are larger 

then in reality the resulting filter is not optimal, but it is more flexible and robust with 

respect to drastically different values. For this reason, moderation and caution should be 

used in choosing the parameters of the model utilized to design a filter. 
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