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Chapter

Enteropathogenic Escherichia coli
Isabel Cristina Affonso Scaletsky

Abstract

The term enteropathogenic Escherichia coli (EPEC) was first used in 1955 to 
describe a number of serogroup-defined E. coli strains associated with infantile 
diarrhea. EPEC are now defined as those that produce a characteristic intestinal 
histopathology known as attaching and effacing (A/E) and do not produce Shiga 
toxins. EPEC carry the locus for enterocyte effacement (LEE) pathogenicity island, 
which contains the eae gene that encodes an outer membrane protein called intimin. 
Typical EPEC (tEPEC) carry a virulence plasmid known as the pEAF (EPEC adhe-
sion factor plasmid) which encodes the bundle-forming pilus (BFP) that mediate 
localized adherence to epithelial cells, whereas atypical EPEC (aEPEC) do not pos-
sess this plasmid. Typical EPEC strains have been associated with severe outbreaks 
of infant diarrhea in developing countries. Atypical EPEC strains have been linked 
to diarrhea outbreaks at all ages worldwide. Diarrhea due to aEPEC in children is 
not as severe as that caused by tEPEC.
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1. History and definition of EPEC

Escherichia coli were first recognized as diarrheal pathogens in 1898, when Lesage 
demonstrated that serum from diarrhea patients agglutinated strains of E. coli iso-
lated from other patients in the same outbreak but not those of control [1]. In 1945, 
Bray discovered that E. coli strains of certain serogroups were the predominant 
cause of summer diarrhea in infants in the United Kingdom [2]. In 1947, Kauffman 
published a serotyping scheme based on somatic (O), flagellar (H), and capsular 
(K) antigens, providing a reliable method of typing diarrheagenic E. coli [3].

The term enteropathogenic Escherichia coli (EPEC) was introduced in 1955 to 
describe strains of E. coli implicated epidemiologically with infant diarrhea in the 
1940s and 1950s [4]. This definition changed as additional serotypes were associ-
ated with infantile diarrhea. EPEC were recognized as important causes of infant 
diarrhea in the 1950s and 1960s in the developed world and subsequently have been 
shown to be common agents of gastroenteritis in the developing world. The con-
firmation that EPEC strains were pathogenic came from human volunteer studies 
carried out by Levine et al. [5].

The definition of EPEC has changed as various mechanisms of pathogenesis have 
been discovered. During the late 1960s and early 1970s, two other diarrheagenic E. 
coli strains were discovered, strains producing the heat-stable enterotoxin (ST) and 
the heat-labile enterotoxin (LT) were designated enterotoxigenic E. coli (ETEC), 
and strains demonstrating Shigella-like invasiveness were designated enteroinva-
sive E. coli (EIEC). At this time, the original definition of EPEC by Neter [4] has 
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undergone modification considerably. EPEC were then defined as “diarrheagenic E. 
coli belonging to serogroups epidemiologically incriminated as pathogens but whose 
pathogenic mechanisms have not been proven to be related either heat-labile (LT) or 
heat-stable enterotoxins (ST) or to Shigella-like invasiveness” [6].

In 1979, the first phenotype characteristic other than serotyping associated 
with EPEC was the observation of Cravioto et al. [7] that 80% of EPEC strains as 
defined by serotype could adhere to HEp-2 cells in cell culture, while most non-
EPEC strains could not. Later, the adherence pattern of EPEC was described as 
“localized adherence” (LA), based on the presence of clusters or microcolonies on 
the surface of HEp-2 cells [8]. Baldini et al. [9] subsequently showed that the ability 
of EPEC E2348/69 strain (O127:H6) to adhere in a localized adherence pattern was 
associated with the presence of a 60-MDa plasmid. EPEC strains representing a 
variety of serotypes were found to possess highly conserved high molecular weight 
plasmids associated with localized adherence, the so-called EPEC adherence factor 
(EAF) plasmids [10, 11]. Subsequently, differences in adherence patterns were 
discerned by Scaletsky et al. [8] and Nataro et al. [12], giving rise to two other 
categories of diarrheagenic E. coli and diffusely adherent E. coli and enteroaggrega-
tive E. coli. Also in the 1980s, a newly recognized clinical syndrome caused by E. 
coli led to the discovery that some diarrheagenic E. coli produce a potent cytotoxin 
known as Shiga toxin (Stx).

In 1983, Moon et al. [13] published electron micrographs of pigs and rabbits 
infected with EPEC and coined the term “attaching and effacing” (A/E) to describe 
the loss of microvilli, intimate attachment of the bacteria to the host, and formation 
of pedestals at the sits of bacteria attachment. In 1987, a number of studies clarified 
the relationship between LA phenotype and A/E lesion, which confirmed earlier 
reports that LA is associated with the EAF plasmid, and demonstrated for the first 
time that A/E is encoded on the chromosome [14].

Originally defined by serotype, EPEC are now defined as those having the 
ability to cause diarrhea, the ability to produce A/E histopathology on the intestinal 
epithelium, and the inability to produce Shiga toxins based on pathogenic charac-
teristics [15]. Improvements in techniques allowing a better understanding of the 
genome and virulence mechanisms among EPEC strains over the years have led to 
the classification into “typical” and “atypical” subtypes based on the presence or 
absence of the pEAF plasmid [15].

2. Atypical versus typical EPEC

Most of the typical EPEC strains belong to the traditional EPEC serogroups O55, 
O86, O111, O114, O119, O127, and O142, and the most common flagellar antigens 
are H6 and H2 [16, 17]. A less common EPEC type is H34, and a number of typical 
EPEC strains are nonmotile in conventional testes and classified as H-. Typical 
EPEC strains belonging to nonclassic serotypes have also been reported [18, 19]. 
Currently, more than 180 different O serogroups and more than 60 H antigens are 
recognized. Atypical EPEC belong to a large diversity of classical and nonclassical 
serotypes [18, 20]. Based on multilocus enzyme electrophoresis analysis of allelic 
differences among housekeeping genes, typical EPEC strains have been subtyped 
into two major lineages, previously designated EPEC1 and EPEC2 [16, 17]. EPEC1 
includes serotypes O55:H6 and O119:H6, whereas EPEC2 consists of serotypes 
O111:H2 and O114:H2. Recently, EPEC strains have been demonstrated to cluster in 
three main lineages, designated EPEC1, EPEC2, and EPEC4, which probably acquired 
the locus of enterocyte effacement region (LEE) and pEAF independently [21].  
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Interestingly, it has been found that 35% of the atypical EPEC strains also belong 
to the typical EPEC lineages [21]. Thus, it has been hypothesized that at least some 
atypical EPEC may have originated from typical EPEC strains that lost pEAF in the 
host or in the environment [21].

3. Epidemiology of EPEC

3.1 Incidence

The prevalence of EPEC infection varies between epidemiological studies based 
on differences in study populations, age, distributions, and methods used for 
detection and diagnosis [22]. Also, geographic region and socioeconomic class may 
contribute to the epidemiology of EPEC-induced diarrheal disease [23]. Adults and 
older children with typical EPEC infections are rarely reported; this has been attrib-
uted to the loss of specific receptors with age or development of immunity [24].

For the two last decades, studies conducted worldwide have shown the association 
of typical EPEC serotypes with diarrhea in children <1 year of age, mainly in poor 
children of urban centers [24]. This association was particularly strong in infants less 
than 6 months of age. Between 1977 and 1982, epidemiologic studies in Brazil, Chile, 
Mexico, and South Africa have shown that 30–40% of infantile diarrhea was caused 
by typical EPEC serotypes [22]. However, recent studies in these countries have not 
identified a significant association between typical EPEC and infantile diarrhea. At 
this time, a change in the epidemiology of EPEC occurred in both developing and 
developed countries. The proportion of atypical EPEC strains has increased and out-
numbered typical EPEC strains, and atypical EPEC strains have also been associated 
with childhood diarrhea in both developing and developed countries [19, 22, 25].  
In Brazil, 92% of EPEC isolates collected from children between 2001 and 2002 were 
atypical [26], compared to 38% in a 1998–1999 study [27–29]. However, other studies 
still report typical being more prevalent than atypical EPEC as a cause of diarrhea 
[30]. Recently, a prospective, population-based case-control study involving seven 
sites in Africa and Asia showed that typical EPEC was significantly associated with 
moderate to severe diarrhea in children under 2 years of age in Kenya, whereas atypi-
cal EPEC was not associated with this type of diarrhea [31].

3.2 Transmission and reservoirs

Typical EPEC transmission follows a fecal-oral process through contaminated 
surfaces, weaning fluids, and human carriers [32]. EPEC outbreaks among adults, 
although rare, seem to occur through ingestion of contaminated food and water; 
however, no specific environmental reservoir has been identified [24]. EPEC 
outbreaks have been reported to show a seasonal distribution with peaks during the 
warm months [33]. Humans are the only known reservoir for typical EPEC, with 
symptomatic and asymptomatic children and asymptomatic adults being the most 
likely source [24].

In contrast to the tEPEC, many aEPEC strains have been found in diarrheic as 
well as in healthy animals and from the environment. Interestingly, animal aEPEC 
serogroups associated with human diarrhea have been identified (e.g., O26, O103, 
O119, O128, O142, and O157); however, so far a direct transmission from animals to 
humans has not been confirmed. In addition, foods including raw meats, pasteur-
ized milk, meat samples, vegetables, and water have been also implicated as vehicles 
of aEPEC to human infections (reviewed in [34, 35]).
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4. EPEC virulence factors and genetics

4.1 Localized adherence

Typical EPEC strains adhere to HeLa, HEp-2, and other cell lines and to organ 
cultures in vitro in a distinctive pattern of three-dimensional microcolonies so-called 
localized adherence (LA) pattern within 3 h of infection (Figure 1A) [8, 24].  
A similar adherence pattern has been seen in tissue biopsies of EPEC-infected 
humans [37]. The LA phenotype is mediated by a type IV fimbriae bundle-forming 
pilus (BFP) associated with the EAF plasmid, which mediates bacterium-to-bacte-
rium adherence, resulting in formation of compact microcolonies [38].

Atypical EPEC strains may display a variant LA pattern designated LA-like 
(LAL) pattern, which is characterized by the presence of loose compact microcolo-
nies or clusters of bacteria in few cells observed in tests using prolonged incubation 
periods (6 h) (Figure 1B) [39, 40]. Interestingly, the LAL pattern is determined in 
prolonged assays (6 h) of bacteria-cell interaction [39]. LAL is the most common 
pattern seen among EPEC strains; however, some strains display alternate adherence 
phenotypes such as diffuse adherence (DA) and aggregative adherence (AA) [19].

4.2 Attaching and effacing (A/E) lesion

The hallmark of EPEC infection is the ability of the organism to attach inti-
mately to epithelial cells and efface microvilli (Figure 1C). This effect was first 
described by Staley et al. [41], although the term attaching and effacing (A/E) 

Figure 1. 
EPEC adhesion to epithelial cells: (A) localized adherence pattern (LA) of typical EPEC on HeLa cells; (B) 
localized adherence-like (LAL) pattern of atypical EPEC on HeLa cells; (C) attaching and effacing (A/E) of 
enterocytes by EPEC; and (D) small bowel biopsy of infant infected with typical EPEC O111ab:H2 [36].
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was coined by Moon et al. [13]. The A/E characteristic can be observed by electron 
microscopic examination of cultured epithelial cells exposed to EPEC or of intesti-
nal biopsies from infants or animals infected with EPEC [24].

4.3 Invasiveness

Intracellular typical EPEC have been observed both in tissue culture and in small 
intestinal biopsies from an EPEC-infected infant (Figure 1D) [36]. Fletcher et al. [42] 
and Scaletsky et al. [43] have reported that EPEC O111:NM strains contain plasmid 
sequences that confer invasiveness upon E. coli K12 strains. However, despite their 
invasive potential in vitro, most EPEC are considered as noninvasive pathogens [44].

4.4 Biofilm formation

Typical EPEC have the ability to form biofilms on abiotic surfaces under static 
conditions, or on a flow through continuous culture system, and a model of EPEC 
biofilm formation has been proposed [45]. Biofilm formation requires adhesive struc-
tures as type 1 pili, antigen 43, BFP, and the EspA filament (see below) as participants 
in bacterial aggregation during biofilm formation on abiotic surfaces [45]. Atypical 
EPEC strains have also been shown to adhere to abiotic surfaces (polystyrene and 
glass) [46, 47]. The non-fimbrial adhesin curli and the T1P were shown to mediate 
binding to these surfaces in some atypical EPEC at different temperatures [48, 49].

4.5 The EAF plasmid

Typical EPEC strains possess a large virulence plasmid called the EPEC adherence 
factor (EAF) plasmid [9], which varies in sequence among different EPEC strains 
but is somewhat conserved [12]. The EAF plasmid pMAR2 is found among strains of the 
EPEC1 lineage, whereas pB171 is more common among EPEC2 strains [50, 51]. Two sets 
of genes located on the EAF plasmid are important for pathogenicity: the bfp gene 
cluster encoding BFP [38] and the per locus encoding a transcriptional activator called 
plasmid-encoded regulator (Per) [51]. Both BFP and PerA have been shown to contrib-
ute to virulence in human volunteers [52]. Between pMAR2 and pB171, the bfp and per 
loci share 99% sequence similarity [50]. Studies of comparison genomics of the EAF 
plasmids from varied EPEC phylogenomic lineages demonstrated significant plasmid 
diversity among isolates within the same phylogenomic lineage [53].

4.6 Bundle-forming pilus (BFP)

Typical EPEC strains produce a type IV pilus, the bundle-forming pili (BFP), 
which interconnects bacteria within microcolonies, promoting their stabilization and 
producing the LA phenotype [38]. The BFP is encoded by an operon of 14 genes con-
tained on the EAF plasmid, with bfpA encoding the major structural subunit (bund-
lin) [54]. These 14 bfp genes are highly conserved among EPEC1 and EPEC2 strains. 
Some O128:H2 and O119:H2 EPEC strains that contain part of the bfpA gene have the 
rest of the bfp gene cluster deleted and replaced with an IS66 element [55, 56].

4.7 The locus of enterocyte effacement (LEE) and the type III secretion  
system (TTSS)

The locus of enterocyte effacement (LEE) is a 35.6-kb pathogenicity island of 
EPEC containing genes necessary for the formation of the A/E lesion [57]. The EPEC 
LEE contains at least 41 open reading frames that are organized into five operons 
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(LEE1 to LEE5) [58–60]. LEE1, LEE2, and LEE3 encode a type III protein secretion 
system (T3SS) and Ler (LEE-encoded regulator) regulators, such as GrlA (global 
regulator of LEE activator, formerly called Orf11) and GrlR (Grl repressor, formerly 
called Orf10) [61]. LEE4 encodes the EPEC-secreted proteins EspA, EspB, and EspD 
via the type III system. LEE5 encodes intimin and its translocated receptor, Tir [62]. 
Besides Tir, the EPEC genome contains other six LEE-encoded effector proteins 
translocated into the cell (Map, EspF, EspG, EspZ, EspH, and EspB), which interfere 
with different aspects of the cell physiology ([58, 59]; reviewed in [44]) [63].

In addition to the LEE effectors, various non-LEE (Nle)-encoded effector genes (cif, 
espI/nleA, nleB, nleC, nleD, nleE, and nleH) [59, 63] were described, which are located 
outside the LEE region of EPEC, in at least six chromosomal PAIs, or in prophage 
elements (reviewed in [64] and [65]). Although they are not required for AE lesion 
formation, it is understood that they contribute to increased bacterial virulence [66].

The LEE region of some atypical EPEC strains display a genetic organization 
similar to that found in the typical EPEC prototype E2348/69 strain [66]. Although 
the T3SS-encoding genes are considerably conserved [66, 67], the effector protein-
encoding genes display important differences, and remarkable differences can be 
detected at the 5′ and 3′ flanking regions of atypical EPEC, suggesting the occur-
rence of different evolution events [68].

The expression of LEE genes is controlled by Per, which is encoded on the EAF 
plasmid present in typical EPEC strains. Per activates Ler, which in turn activates 
the LEE2, LEE3, LEE4, and LEE5 operons, and the genes espF, espG, and map [58, 59].  
The Ler protein is a histone-like nucleoid-structuring protein (H-NS) that responds 
to an environmental stimulus (temperature). Ler also controls genes located outside 
the LEE, such as espC and nleA [60]. Additional regulatory system has been shown 
to control expression of the LEE [69]. The AI-2 (autoinducer-2) quorum-sensing 
system regulates LEE1 operon, which increases expression of the LEE3 and LEE4 
operons via the ler gene product. Two novel LEE-encoded regulators that have roles 
in ler expression were reported, GrlA (global regulator of LEE activator) and GrlR 
(Grl repressor) [61]. GrlR and GrlA are positive and negative regulators, respec-
tively, required for the expression of several LEE-encoded genes [61]. Other LEE 
regulators include the integration host factor (IHF); Bip, a tyrosine-phosphorylated 
GTPase; Fis (factor for inversion stimulation); and GadX, which is a member of the 
AraC transcription factor family [58].

4.8 Intimin and Tir

Intimin is a 94-KDa outer membrane adhesin encoded by the eae gene and 
required for intimate adherence of EPEC to epithelial cells at the sites of A/E lesions 
[24]. N-Terminal portions are highly conserved, whereas C-terminus portions are 
highly variable [70]. C-Terminal intimin differences have been used as a basis for clas-
sification into several distinct subtypes (represented by the Greek letters to α (alpha) 
through ζ (zeta) [71, 72]); human EPEC1 strains express subtype α, while EPEC2 
strains express subtype β. The N-terminus portion binds intimin in the bacterial 
outer membrane, whereas the C-terminus portion binds intimin to Tir. The binding 
of intimin to Tir leads to intimate adherence of the bacterium to the epithelium and 
pedestal formation beneath adherent bacteria. In addition, Tir inhibits NF-қB activity 
by targeting tumor necrosis factor alpha (TNF-α) receptor-associated factors [73].

4.9 Other potential adhesins

In addition to BFP, two other EPEC surface structures, rodlike fimbriae and 
fibrillae, have been characterized and have been suggested to be involved in the 
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interaction of EPEC with host cells [74, 75]. Additionally, EPEC strains encode 
a large surface protein, lymphocyte inhibitory factor (LifA), that contributes to 
epithelial cell adherence in vitro [76, 77] and is required for intestinal coloniza-
tion of mice by the related A/E pathogen C. rodentium [78]. The lifA gene is more 
commonly found among typical rather than atypical EPEC strains [79]; however, 
atypical EPEC strains harboring lifA have a significant association with diarrhea 
in children under 5 years of age [80]. A novel gene cluster, designated the locus for 
diffuse adherence (lda), was found in an atypical EPEC O26 strain that is respon-
sible for mediating DA adherence; its expression is induced by bile salts [81]. The 
E. coli common pilus (ECP) has also been shown to act as an accessory adherence 
factor in EPEC, playing a role during cell adherence and/or in bacterium-bacterium 
interactions [82].

4.10 Flagella

Flagella has been suggested to be involved in EPEC adherence to epithelial cells 
[83]. EPEC mutants with transposon insertion in the flagellar gene fliC were defi-
cient in localized adherence, and anti-flagellum antibodies were effective in block-
ing the adherence of several EPEC serotypes [83]. However, a subsequent study has 
not confirmed a role of flagella in EPEC adherence [84].

5. EspC

EspC is a high-molecular-weight secreted protein of EPEC that induces cyto-
pathic effects on epithelial cells, including cytoskeletal damage [24, 85]. EspC is a 
member of the serine protease autotransporters of the Enterobacteriaceae (SPATE) 
family of autotransporter proteins that encodes its own transport mechanism. 
Moreover, espC has been shown to interact with and degrade hemoglobin [86] and 
to hydrolyze other proteins such as pepsin, factor V, and spectrin [87]. In addition, 
EspC confers enhanced lysozyme resistance to EPEC [87] and serves as a substra-
tum for adherence and biofilm formation as well as to protect bacteria from antimi-
crobial compounds [88]. EspC is encoded in a 15-kb chromosomal island specific to 
EPEC1 strains [24].

6. Other toxins

Scott and Kaper [89] reported a cytolethal distending toxin (CDT) in an EPEC 
strain that induces chromatin disruption, which leads to G2/M-phase growth 
arrest of the target cell and ultimately cell death [90]. A study has suggested that 
most EPEC strains from diarrhea harbor the CDT gene [91]. Another toxin is the 
enteroaggregative E. coli heat-stable enterotoxin 1 (EAST1) also present in EPEC 
strains [92]. The use of an EAST1 DNA probe suggests that this toxin is expressed 
by a number of clinical EPEC isolates [18, 93]. The role of CDT and EAST1 in EPEC 
pathogenesis remains to be elucidated.

7. Model of EPEC pathogenesis

A three-stage model of EPEC pathogenesis was first described in the early 1990s 
[94], Clarke et al. [95], including localized adherence to the host cell, signal trans-
duction, and intimate attachment with pedestal formation (Figure 2).  
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In the first stage, an attachment of typical EPEC to the surface of the host intestinal 
epithelium is mediated by the bundle-forming pili (BFP). The filament EspA also 
promotes attachment, albeit in a less efficient manner, and could mediate adherence 
of atypical EPEC strains. In the second stage, Tir and effector proteins (EspB, EspD, 
EspF, EspG, and Map), translocated into the host cells via type III system apparatus, 
activate cell-signaling pathways, causing alterations in the host cell cytoskeleton 
and resulting in actin accumulation and loss of microvilli [58]. In the third stage, 
bacteria intimately adhered to host cell by intimin-Tir interactions amplifies the 
accumulation of filaments of actin and other cytoskeletal proteins that result in 
pedestal-like structures [62, 96, 97]. Finally, the translocated effectors disrupt host 
cell processes, causing loss of tight-junction integrity and mitochondrial function 
and leading to both electrolyte loss and eventual cell death.

8. Diagnosis

Traditionally, the identification of EPEC was based on the O:H serotyping, but 
serotype designation is no longer precise. The identification of EPEC was based on 
the characteristic of EPEC’s attachment to epithelial cells and may include pheno-
typic or genotypic tests. The HeLa adherence assay distinguishes EPEC from other 
E. coli by their ability to adhere in a localized pattern (LA) on the surface of cells 
[8]. The fluorescent actin-staining (FAS) assay, originally described by Knutton 
et al. [98], leads to the identification of the A/E lesion, by detecting actin con-
densation under EPEC adhesion pedestals. DNA probes and PCR targeting genes 
responsible for these characteristics were developed. A 1-kb EAF fragment probe 
was initially developed as a diagnostic DNA probe (the EAF probe) and subse-
quently refined as an oligonucleotide probe as well as PCR primers [10, 11, 99].  
The identification of bfpA, the structural gene encoding BFP, led to the develop-
ment of more specific and sensitive probe or PCR tests to detect typical EPEC 
strains [74, 75, 100]. However, some PCR primers may fail to identify all typical 
EPEC strains since multiple alleles of bfpA have been identified [101]. The eae 
sequences by DNA probes and PCR primers have been used to detect the presence 
of LEE encoding A/E lesion [24].

Figure 2. 
Four-stage model of EPEC pathogenesis. Reprinted from Clarke et al. [95].
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9. Clinical features of EPEC infection

9.1 Symptoms

The most common symptoms reported in EPEC infection are watery diarrhea, 
dehydration, vomiting, food intolerance, and low-grade fever [24, 97]. In addition, 
EPEC infection may lead to severe malabsorption of nutrients resulting in nutri-
tional aggravation and persistence of diarrhea [102]. Edema, neutrophil infiltrate, 
and reduced enzymatic activity in the intestinal mucosa have been also found in 
EPEC infection [103]. EPEC diarrhea often lasts 1–2 weeks but can become persis-
tent, lasting more than 2 weeks, and may result in severe infection [24, 25, 32, 102]. 
In a recent case-control study, EPEC infection was associated with a 2.8-fold elevated 
risk of death among infants in Kenya [24, 31, 97].

9.2 Treatment

Treatment of EPEC diarrhea includes oral rehydration therapy to prevent 
dehydration by correcting fluid and electrolyte losses. Oral rehydration may be suf-
ficient for cases of self-limited acute diarrhea, but persistent cases of diarrhea may 
include parenteral rehydration, and more severe cases may require total parental 
nutrition and use of antimicrobials [102]. Multidrug resistance has been reported 
in EPEC strains from diverse parts of the world [27–29, 44, 104, 105]. Alternative 
therapies, employing the use of bismuth subsalicylate, specific bovine anti-EPEC 
milk immunoglobulins, and also zinc, have been proven useful for treatment and 
prevention of EPEC diarrhea [106].

9.3 Vaccines

There are no currently available vaccines to prevent EPEC infection. However, a 
recent study has used bacterial ghosts devoid of cytoplasmic contents but express-
ing all EPEC surface components in vaccination challenge experiments with mice, 
and the results showed 84–90% protection in control mice [107]. Interestingly, 
protective effect of breast-feeding was shown to provide excellent protection 
against EPEC infection. Several investigators have shown that breast milk provides 
protection against EPEC O antigens and outer membrane proteins [108, 109]. 
Furthermore, IgA antibodies against BFP, intimin, EspA, and EspB proteins were 
identified in maternal colostrum and serum samples [110–118].

10. Conclusion

Much progress has been made in the last 20 years toward understanding the 
pathogenesis of EPEC. It has been shown that typical EPEC are still important 
pathogens associated with severe outbreaks of infant diarrhea, and atypical EPEC 
are emerging pathogens associated with sporadic outbreaks at all ages worldwide.



The Universe of Escherichia coli

10

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Author details

Isabel Cristina Affonso Scaletsky
Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal 
de São Paulo, Brazil

*Address all correspondence to: scaletsky@unifesp.br



11

Enteropathogenic Escherichia coli
DOI: http://dx.doi.org/10.5772/intechopen.82861

References

[1] Lesage AA. Contribution á l´étude 
des enteritis infantiles-serodiagnostic 
des races de Bacterium coli. Comptes 
Rendues des Societe Biologique (Paris). 
1897;49:900-901

[2] Bray J. Isolation of antigenically 
homogeneous strains of Bacterium coli 
neopolitanum from summer diarrhoea 
of infants. The Journal of Pathology and 
Bacteriology. 1945;57:239-247

[3] Kauffmann F, Dupon A. Escherichia 
coli strains from infantile epidemic 
gastroenteritis diarrhea. Acta 
Neuropathologica. 1950;27:221-226

[4] Neter E, Westphal O, Luderitz O, 
et al. Demonstration of antibodies 
against enteropathogenic Escherichia 
coli in sera of children of various ages. 
Pediatrics. 1955;16:801-807

[5] Levine MM, Bergquist EJ, Nalin 
DR, et al. Escherichia coli strains that 
cause diarrhea but do not produce 
heat-labile or heat-stable enterotoxins 
and are non-invasive. Lancet. 
1978;1(8074):1119-1122

[6] Edelman R, Levine MM. From 
the National institute of allergy and 
infectious diseases. Summary of 
a workshop on enteropathogenic 
Escherichia coli. The Journal of Infectious 
Diseases. 1983;147:1108-1118

[7] Cravioto A, Gross RJ, Scotland SM, 
Rowe B. An adhesive factor found in 
strains of Escherichia coli belonging to 
traditional infantile enteropathogenic 
serotypes. Current Microbiology. 
1979;3:95-99

[8] Scaletsky IC, Silva ML, Trabulsi 
LR. Distinctive patterns of adherence 
of enteropathogenic Escherichia coli to 
HeLa cells. Infection and Immunity. 
1984;45:534-536

[9] Baldini MM, Kaper JB, Levine MM, 
et al. Plasmid mediated adhesion of 

enteropathogenic Escherichia coli. 
Journal of Pediatric Gastroenterology 
and Nutrition. 1983;2:534-538

[10] Nataro JP, Baldini MM, 
Kaper JB, Black RE, Bravo N, Levine 
MM. Detection of an adherence 
factor of enteropathogenic 
Escherichia coli with a DNA probe. 
The Journal of Infectious Diseases. 
1985a;152:560-565

[11] Nataro JP, Scaletsky ICA, Kaper 
JB, Levine MM, Trabulsi LR. Plasmid-
mediated factors conferring diffuse and 
localized adherence of enteropathogenic 
Escherichia coli. Infection and Immunity. 
1985b;48:378-383

[12] Nataro JP, Maher KO, Mackie 
P, Kaper JB. Characterization of 
plasmids encoding the adherence 
factor of enteropathogenic Escherichia 
coli. Infection and Immunity. 
1987;55:2370-2377

[13] Moon HW, Whipp SC, Argenzio 
RA, et al. Attaching and effacing 
activities of rabbit and human 
enteropathogenic Escherichia coli in pig 
and rabbit intestines. Infection and 
Immunity. 1983;41:1340-1351

[14] Knutton S, Baldini, MM, Kaper 
JB, McNeish AS. Role of plasmid-
encoded adherence factors in adhesion 
of enteropathogenic Escherichia coli to 
HEp-2 cells. Infection and Immunity. 
1987;55:78-85

[15] Kaper JB. Defining EPEC. Revista 
de Microbiologia, Sao Paulo. 
1996;27:130-133

[16] Ørskov F, Whittam TS, Cravioto A, 
Ørskov I. Clonal relationships among 
classic enteropathogenic Escherichia coli 
(EPEC) belong to different O groups. 
The Journal of Infectious Diseases. 
1990;162:76-81



12

The Universe of Escherichia coli

[17] Whittam TS, McGraw EA. Clonal 
analysis of EPEC serogroups. Revista de 
Microbiologia. 1996;27:7-16

[18] Dulguer MV, Fabricotti SH, Bando 
SY, et al. Atypical enteropathogenic 
Escherichia coli strains: Phenotypic 
and genetic profiling reveals a strong 
association between enteroaggregative 
E. coli heat-stable enterotoxin and 
diarrhea. The Journal of Infectious 
Diseases. 2003;188:1685-1694

[19] Trabulsi LR, Keller R, 
Gomes TAT. Typical and atypical 
enteropathogenic Escherichia coli. 
Emerging Infectious Diseases. 
2002;8:508-513

[20] Vieira MA, Andrade JR, Trabulsi 
LR. Phenotypic and genotypic 
characteristics of Escherichia coli strains 
of non-enteropathogenic E. coli (EPEC) 
serogroups that carry EAE and lack the 
EPEC adherence factor and Shiga toxin 
DNA probe sequences. The Journal of 
Infectious Diseases. 2001;183:762-772

[21] Hazen TH, Sahl JW, Fraser CM, 
et al. Refining the pathovar paradigm 
via phylogenomics of the attaching 
and effacing Escherichia coli. PNAS. 
2013;110:12810

[22] Ochoa TJ, Barletta F, Contreras C, 
et al. New insights into the epidemiology 
of enteropathogenic Escherichia coli 
infection. Transactions of the Royal 
Society of Tropical Medicine and 
Hygiene. 2008;102:852-856

[23] Maranhão HS, Medeiros 
MCC, Scaletsky ICA, et al. The 
epidemiological and clinical 
characteristics and nutritional 
development of infants with acute 
diarrhea, in northeastern Brazil. Annals 
of Tropical Medicine and Parasitology. 
2008;102:357-365

[24] Nataro JP, Kaper JB. Diarrheagenic 
Escherichia coli. Clinical Microbiology 
Reviews. 1998;11:142-201

[25] Hu J, Torres AG. Enteropathogenic 
Escherichia coli: Foe or innocent 
bystander? Clinical Microbiology and 
Infection. 2015:1-6

[26] Franzolin MR, Alves RCB, Keller 
R, Gomes TAT, Beutin L, Barreto ML, 
et al. Prevalence of diarrheagenic 
Escherichia coli in children with 
diarrhea in Salvador, Bahia, Brazil. 
Memórias do Instituto Oswaldo Cruz. 
2005;100:359-363

[27] Scaletsky ICA, Souza TB, Aranda 
KRS, Okeke IN. Genetic elements 
associated with antimicrobial resistance 
in enteropathogenic Escherichia coli 
(EPEC) from Brazil. BMC Microbiology. 
2010;10:25

[28] Scaletsky ICA, Aranda KR, Souza 
TB, Silva NP, Morais MB. Evidence of 
pathogenic subgroups among atypical 
enteropathogenic Escherichia coli strains. 
Journal of Clinical Microbiology. 
2010;47:3756-3759

[29] Scaletsky ICA, Aranda KRS, Souza 
TB, Silva NP. Adherence factors in 
atypical enteropathogenic Escherichia 
coli strains expressing the localized 
adherence-like pattern in HEp-2 cells. 
Journal of Clinical Microbiology. 
2010;48:302-306

[30] Alikhani MY, Mirsalehian A, 
Aslani MM. Detection of typical and 
atypical enteropathogenic Escherichia 
coli (EPEC) in Iranian children with and 
without diarrhea. Journal of Medical 
Microbiology. 2006;55:1159-1163

[31] Kotloff KL, Nataro JP, Blackwelder 
W, et al. Burden and aetiology of 
diarrhoeal disease in infants and young 
children in developing countries (The 
Global Enteric Multicentre Study, 
GEMS): A prospective, case-control 
study. Lancet. 2013;382(9888):209-222

[32] Levine MM, Edelman R. 
Enteropathogenic Escherichia coli 
of classic serotypes associated with 
infant diarrhea: epidemiology and 



13

Enteropathogenic Escherichia coli
DOI: http://dx.doi.org/10.5772/intechopen.82861

pathogenesis. Epidemiology Review. 
1984;6:31-51

[33] Behiry IK, Abada EA, Ahmed 
EA, Labeed RS. Enteropathogenic 
Escherichia coli associated with diarrhea 
in children in Cairo, Egypt. Scientific 
World Journal. 2011;11:2613-2619

[34] Hernandes RT, Elias WP, Vieira AM, 
Gomes TAT. An overview of atypical 
enteropathogenic Escherichia coli. FEMS 
Microbiology Letters. 2009;297:137-149

[35] Kolenda R, Burdukiewicz M, 
Schierck P. A systematic review and 
meta-analysis of the epidemiology of 
pathogenic Escherichia coli of calves 
and the role of calves as reservoirs for 
human pathogenic E. coli. Frontiers in 
Cellular and Infection Microbiology. 
2015;5:23

[36] Fagundes-Neto U, Freymuller E, 
Gatti MSV, et al. Enteropathogenic 
Escherichia coli O111ab:H2 penetrates 
the small bowel epithelium in an infant 
with acute diarrhea. Acta Paediatrica. 
1995;84:453-455

[37] Rothbaum R, McAdams 
AJ, Giannella R, Partin JC. A 
clinicopathological study of enterocyte-
adherent Escherichia coli: A cause 
of protracted diarrhea in infants. 
Gastroenterologia. 1982;83:441-454

[38] Girón JA, Ho AS, Schoolnik GK. An 
inducible bundle-forming pilus of 
enteropathogenic Escherichia coli. 
Science. 1991;254:710-713

[39] ICA S, Pelayo JS, Giraldi R, et al. 
EPEC adherence to HEp-2 cells. 
Proceedings of the International 
Symposium on Enteropathogenic 
Escherichia coli (EPEC). Revista de 
Microbiologia. 1996;27:58-62

[40] Scaletsky ICA, Pedroso MZ, Oliva 
CAG, et al. A localized adherence-like 
pattern as a second pattern of adherence 
of classic enteropathogenic Escherichia 
coli to HEp-2 cells that is associated 

with infantile diarrhea. Infection and 
Immunity. 1999;67:3410-3415

[41] Staley TE, Jones EW, Corley 
LD. Attachment and penetration of 
Escherichia coli into intestinal epithelium 
of the ileum in newborn pigs. The 
American Journal of Pathology. 
1969;56:371-392

[42] Fletcher JN, Embaye HE, Getty 
B, et al. Novel invasion determinant 
of enteropathogenic Escherichia coli 
plasmid pLV501 encodes the ability to 
invade intestinal epithelial cells and 
HEp-2 cells. Infection and Immunity. 
1992;60:2229-2236

[43] Scaletsky ICA, Gatti MSV, Da 
Silveira, et al. Plasmid encoding 
for drug resistance and invasion of 
epithelial cells in enteropathogenic 
Escherichia coli O111:H. Microbial 
Pathogenesis. 1995;18:387-399

[44] Croxen MA, Law RJ, Scholz R, 
et al. Recent advances in understanding 
enteric pathogenic Escherichia coli. 
Clinical Microbiology Reviews. 
2013;26:822-880

[45] Moreira CG, Palmer K, Whiteley 
M, et al. Bundle-forming pili 
and EspA are involved in biofilm 
formation by enteropathogenic 
Escherichia coli. Journal of Bacteriology. 
2006;188:3952-3961

[46] Culler HF, Mota CM, Abe CM, 
et al. Atypical enteropathogenic 
Escherichia coli strains form biofilm 
on abiotic surfaces regardless of their 
adherence pattern on cultured epithelail 
cells. BioMed Research International. 
2014;26:822-880

[47] Nascimento HH, Silva LEP, Souza 
RT, et al. Phenotypic and genotypic 
characteristics associated with biofilm 
formation in clinical isolates of atypical 
enteropathogenic Escherichia coli 
(aEPEC) strains. BMC Microbiology. 
2014;14:184



The Universe of Escherichia coli

14

[48] Hernandes RT, Dela Cruz MA, 
Yamamoto D, et al. Dissection of 
the role of pili and type 2 and 3 
secretion systems in adherence and 
biofilm formation of an atypical 
enteropathogenic Escherichia coli 
strain. Infection and Immunity. 
2013;81:3793-3802

[49] Weiss-Muzkat M, Shakh D, 
Zhou Y, et al. Biofilm formation and 
multicellular behavior in Escherichia coli 
O55:H7, an atypical enteropathogenic 
strain. Applied and Environmental 
Microbiology. 2010;76:1545-1554

[50] Brinkley C, Burland V, Keller R, 
et al. Nucleotide sequence analysis 
of the enteropathogenic Escherichia 
coli adherence factor plasmid 
pMAR7. Infection and Immunity. 
2006;74:5408-5413

[51] Tobe T, Hayashi T, Han C, et al. 
Complete DNA sequence and structural 
analysis of the enteropathogenic 
Escherichia coli adherence factor 
plasmid. Infection and Immunity. 
1999;67:5455-5462

[52] Bieber D, Ramer SW, Wu 
CY, et al. Type IV pili, transient 
bacterial aggregates, and virulence 
of enteropathogenic Escherichia coli. 
Science. 1998;280:2114-2118

[53] Hazen TH, Kaper JB, Nataro JP, 
Rasko DA. Comparative genomics 
provides insight into the diversity of 
the attaching and effacing Escherichia 
coli virulence plasmids. Infection and 
Immunity. 2015;83:4103-4117

[54] Stone KD, Zhang H, Carlson LK, 
Donnenberg MS. A cluster of fourteen 
genes from enteropathogenic Escherichia 
coli is sufficient for the biogenesis of a 
type IV pilus. Molecular Microbiology. 
1996;20:325-337

[55] Bortoloni M, Trabulsi L, Keller R, 
et al. Lack of expression of bundle-
forming pili in some clinical isolates 

of enteropathogenic Escherichia coli 
(EPEC) is due to a conserved large 
deletion in the bfp operon. FEMS 
Microbiology Letters. 1999;179:169-174

[56] Teixeira NB, Rojas TCG, Silveira 
WD, et al. Genetic analysis of 
enteropathogenic Escherichia coli 
(EPEC) adherence factor (EAF) plasmid 
reveals a new deletion within the EAF 
probe sequence among O119 typical 
EPEC strains. BMC Microbiology. 
2015;15:200

[57] McDaniel TK, Jarvis KG, 
Donnenberg MS, Kaper JB. A 
genetic locus of enterocyte 
effacement conserved among diverse 
enterobacterial pathogens. Proceedings 
of the National Academy of Sciences 
of the United States of America. 
1995;92:1664-1668

[58] Dean P, Kenny B. The effector 
repertoire of enteropathogenic E. 
coli ganging up on the host cell. 
Current Opinion in Microbiology. 
2009;12:101-109

[59] Deng W, Puente JL, Grunheid 
S, et al. Dissecting virulence: 
Systematic and functional analyses of 
a pathogenicity island. Proceedings 
of the National Academy of Sciences 
of the United States of America. 
2004;101:3597-3602

[60] Elliott SJ, Sperandio V, Giron 
JA, et al. The locus of enterocyte 
effacement (LEE)-encoded regulator 
controls expression of both LEE- and 
non-LEE-encoded virulence factors 
in enteropathogenic Escherichia 
coli. Infection and Immunity. 
2000;68:6115-6126

[61] Barba J, Bustamante VH, Flores-
Valdez MA, et al. A positive regulatory 
loop controls expression of the locus 
of enterocyte effacement-encoded 
regulators Ler and GrlA. Journal of 
Bacteriology. 2005;187:7918-7730



15

Enteropathogenic Escherichia coli
DOI: http://dx.doi.org/10.5772/intechopen.82861

[62] Kenny B, DeVinney R, Stein M, 
et al. Enteropathogenic Escherichia 
coli (EPEC) transfers its receptor for 
intimate adherence into mammalian 
cells. Cell. 1997;91:511-520

[63] Santos A, Finlay BB. Bringing 
down the host: Enteropathogenic and 
enterohaemorrhagic Escherichia coli 
effector-mediated subversion of host 
innate immune pathways. Cellular 
Microbiology. 2015;17:318-332

[64] Wong ARC, Pearson JS, Bright 
MD, et al. Enteropathogenic and 
enterohaemorrhagic Escherichia 
coli: Even more subservive 
elements. Molecular Microbiology. 
2011;80:1420-1438

[65] Vossenkämper A, MacDonald TT, 
Marches O, et al. Always one step ahead: 
How pathogenic bacteria use the type 
III secretion system to manipulate the 
intestinal mucosal immune system. 
Journal of Inflammation. 2011;8:11

[66] Gärtner JF, Schmidt MA, Ga JF, 
et al. Comparative analysis of locus of 
enterocyte effacement pathogenicity 
islands of atypical enteropathogenic E. 
coli. Society. 2004;72:6722-6728

[67] Ingle DJ, Tauschek M, Edwards 
DJ, et al. Evolution of atypical 
enteropathogenic E. coli by repeated 
acquisition of LEE pathogenicity 
island variants. Nature Microbiology. 
2016;1:15010

[68] Müller D, Benz I, Liebchen A, et al. 
Comparative analysis of the locus of 
enterocyte effacement and its flanking 
regions. Infection and Immunity. 
2009;77:3501-3513

[69] Sperandio V, Li CC, Kaper 
JB. Quorum-sensing Escherichia 
coli regulator A: A regulator of 
the LysR family involved in the 
regulation of the locus of enterocyte 
effacement pathogenicity island in 

enterohemorrhagic E. coli. Infection and 
Immunity. 2002;70:3085-3093

[70] Frankel G, Candy DCA, Everest 
P, Dougan G. Characterization of 
the C-terminal domains of intimin-
like proteins of enteropathogenic 
and enterohemorrhagic Escherichia 
coli, Citrobacter freundii, and Hafnia 
alvei. Infection and Immunity. 
1994;62:1835-1842

[71] Lacher DW, Steinsland H, Whittam 
TS. Allellic subtyping of the intimin 
locus (eae) of pathogenic Escherichia 
coli by fluorescent RFLP. FEMS 
Microbiology Letters. 2006;261:80-87

[72] Lacher DW, Steinsland H, Blank 
TE, et al. Molecular evolution of 
typical enteropathogenic Escherichia 
coli: Clonal analysis by multilocus 
sequence typing and virulence gene 
allelic profiling. Journal of Bacteriology. 
2007;189:342-350

[73] Ruchaud-Sparagano M-H, 
Muhlen S, Dean P, Kenny B. The 
enteropathogenic Escherichia coli 
(EPEC) Tir effector inhibits NF-κB 
activity by targeting TNFα-receptor-
associated factors. PLoS Pathogens. 
2011;7:e1002414

[74] Girón JA, Ho ASY, Schoolnik 
GK. Characterization of fimbriae 
produced by enteropathogenic 
Escherichia coli. Journal of Bacteriology. 
1993a;175:7391-7403

[75] Girón JA, Donnenberg MS, Martin 
WC, Jarvis KG, Kaper JB. Distribution 
of the bundle-forming pilus structural 
genes (bfpA) among enteropathogenic 
Escherichia coli. The Journal of Infectious 
Diseases. 1993b;168:1037-1041

[76] Badea L, Doughty S, Nicholls L, 
et al. Contribution of Efa/LifA to 
the adherence of enteropathogenic 
Escherichia coli to epithelial 
cells. Microbial Pathogenesis. 
2003;34:205-215



The Universe of Escherichia coli

16

[77] Klapproth JM, Scaletsky ICA, 
McNamara BP, et al. A large toxin 
from pathogenic Escherichia coli 
strains that inhibits lymphocyte 
activation. Infection and Immunity. 
2000;68:2148-2155

[78] Klapproth JM, Sasaki M, Sherman 
M, et al. Citrobacter rodentium lifA/efa1 
is essential for colonic colonization and 
crypt cell hyperplasia in vivo. Infection 
and Immunity. 2005;73:1441-1451

[79] Vieira MAM, Salvador FA, Silva 
RM, et al. Prevalence and characteristics 
of the O122 pathogenicity island in 
typical and atypical enteropathogenic 
Escherichia coli strains. Journal 
of Clinical Microbiology. 
2010;48:1452-1455

[80] Afset JE, Bruant G, Brousseau 
R, et al. Identification of virulence 
genes linked with diarrhea due to 
atypical enteropathogenic Escherichia 
coli by DNA microarray analysis and 
PCR. Journal of Clinical Microbiology. 
2006;44:3703-3711

[81] Torres AG, Tutt CB, Durval L, 
et al. Bile salts induce expression 
of the afimbrial LDA adhesion 
of atypical enteropathogenic 
Escherichia coli. Cellular Microbiology. 
2007;9:1039-1049

[82] Saldaña Z, Erdem AL, Schuller 
S, et al. The Escherichia coli common 
pilus and the bundle-forming 
pilus act in concern during the 
formation of localized adherence by 
enteropathogenic E. coli. Journal of 
Bacteriology. 2009;191:3451-3461

[83] Girón JA, Torres AG, Freer E, 
et al. The flagella of enteropathogenic 
Escherichia coli mediate adherence to 
epithelial cells. Molecular Microbiology. 
2002;44:361-479

[84] Clearly J, Lai LC, Shaw RK, et al. 
Enteropathogenic Escherichia coli 
(EPEC) adhesion to intestinal epithelial 

cells: Role of bundle-forming pili 
(BFP), EspA filaments and intimin. 
Microbiology. 2004;150:527-538

[85] Vidal JE, Navarro-Garcia F. EspC 
translocation into epithelial cells by 
enteropathogenic Escherichia coli 
requires a concerted participation 
of type V and III systems. Cellular 
Microbiology. 2008;10:1976-1986

[86] Drago-Serrano ME, Parra SG, 
Manjarrez-Hernández HA. EspC, 
an autotransporter protein secreted 
by enteropathogenic Escherichia coli 
(EPEC), displays protease activity 
on human hemoglobin. FEMS 
Microbiology Letters. 2006;265:35-40

[87] Salinger N, Kokona B, Fairman R, 
Okeke I. The plasmid encoded regulator 
activates factors conferring lysozyme 
resistance on enteropathogenic 
Escherichia coli strains. Applied 
and Environmental Microbiology. 
2009;75:275-280

[88] Xicohtencatl-Cortes J, Saldaña Z, 
Deng W, et al. Bacterial macroscopic 
ropelike fibers with cytopathic 
and adhesive properties. The 
Journal of Biological Chemistry. 
2010;285:32336-32342

[89] Scott DA, KaperJB. Cloning and 
sequencing of the genes encoding 
Escherichia coli cytolethal distending 
toxin. Infection and Immunity. 
1994;62:244-251

[90] Lara-Tejero M, Galan JE. A bacterial 
toxin that controls cell cycle progression 
as a deoxyribonuclease I-like protein. 
Science. 2000;290:354-357

[91] Albert MJ, Faruque SM, Faruque 
ASG, et al. Controlled study of 
cytolethal distending toxin-producing 
Escherichia coli infections in 
Bangladeshi children. Journal of Clinical 
Microbiology. 1996;34:717-719

[92] Yamamoto T, Wakisaka N, Sato F, 
Kato A. Comparison of the nucleotide 



17

Enteropathogenic Escherichia coli
DOI: http://dx.doi.org/10.5772/intechopen.82861

sequence of enteroaggregative 
Escherichia coli heat-stable enterotoxin 
1 genes among diarrhea-associated 
Escherichia coli. FEMS Microbiology 
Letters. 1997;147:89-96

[93] Silva LEP, Souza TB, Silva NP, 
Scaletsky ICA. Detection and genetic 
analysis of the enteroaggregative 
Escherichia coli heat-stable enterotoxin 
(EAST1) gene in clinical isolates of 
enteropathogenic Escherichia coli 
(EPEC) strains. BMC Microbiology. 
2014;14:135

[94] Donnenberg MS, Kaper 
JB. Enteropathogenic Escherichia 
coli. Infection and Immunity. 
1992;60:3953-3961

[95] Clarke SC et al. Virulence of 
enteropathogenic Escherichia coli, a 
global pathogen. Clinical Microbiology 
Reviews. 2003;6:365-378

[96] Campellone KG, Giese A, 
Tipper DJ, Leong JM. A tyrosine-
phosphorylated 12-aminoacid sequence 
of enteropathogenic Escherichia coli Tir 
binds the host adaptor protein Nck and 
is required for Nck localization to actin 
pedestals. Molecular Microbiology. 
2002;43:1227-1241

[97] Goosney DL, DeVinney R, Finlay 
BB. Recruitment of cytoskeletal and 
signaling proteins to enteropathogenic 
and enterohemorrhagic Escherichia coli 
pedestals. Infection and Immunity. 
2001;69:3315-3322

[98] Knutton S, Baldwin T, Williams 
PH, McNeish AS. Actin accumulation 
at sites of bacterial adhesion to 
tissue culture cells: Basis of a new 
diagnostic test for enteropathogenic 
and enterohemorrhagic Escherichia 
coli. Infection and Immunity. 
1989;57:1290-1298

[99] Franke J, Franke S, Schmidt H, 
et al. Nucleotide sequence analysis 
of enteropathogenic Escherichia coli 
(EPEC) adherence factor probe and 

development of PCR for rapid detection 
of EPEC harboring virulence plasmids. 
Journal of Clinical Microbiology. 
1994;32:2460-2463

[100] Gunzburg ST, Tornieporth 
NG, Riley LW. Identification of 
enteropathogenic Escherichia coli by 
PCR-based detection of the bundle-
forming pilus gene. Journal of Clinical 
Microbiology. 1995;33:1375-1377

[101] Blank TE, Zhong H, Bell AL, 
et al. Molecular variation among type 
IV pilin (bfpA) genes from diverse 
enteropathogenic Escherichia coli 
strains. Infection and Immunity. 
2000;68:7028-7038

[102] Fagundes-Neto U, Scaletsky 
ICA. The gut at war: The consequences 
of enteropathogenic Escherichia coli 
infection as a factor of diarrhea and 
malnutrition. São Paulo Medical 
Journal/Revista Paulista de Medicina. 
2000;118:21-29

[103] Arenas-Hernandez MM, 
Martinez-Laguna Y, Torres 
AG. Clinical implications of 
enteroadherent Escherichia coli. 
Current Gastroenterology Reports. 
2012;14:386-394

[104] Mitra M, Ahmad P, Mehdi R, 
Hosein A, Ahmad K. Multiple drug 
resistance of enteropathogenic 
Escherichia coli isolated from children 
with diarrhea in Kashan, Iran. African 
Journal of Microbiology Research. 
2011;5:3305-3309

[105] Subramanian K, Selvakkumar C, 
Vinaykumar KS, et al. Tackling multiple 
antibiotic resistance in enteropathogenic 
Escherichia coli (EPEC) clinical 
isolates: A diarylheptanoid 
from Alpinia officinarum shows 
promising antibacterial and 
imunomodulatory activity against 
EPEC and its lipopolysacharide-induced 
inflammation. International Journal of 
Antimicrobial Agents. 2009;33:244-250



The Universe of Escherichia coli

18

[106] Patel A, Mamtani M, Dibley 
MJ, et al. Therapeutic value of zinc 
supplementation in acute and persistent 
diarrhea: A systematic review. PLoS 
One. 2010;5:e10386

[107] Liu J, Wang WD, Liu YJ, et al. 
Mice vaccinated with enteropathogenic 
Escherichia coli ghosts show significant 
protection against lethal challenges. 
Letters in Applied Microbiology. 
2012;54:255-262

[108] Costa-Carvalho BT, Bertipaglia 
A, Solé D, et al. Detection of 
immunoglobulin (IgG and IgA) 
anti-outer membrane proteins of 
enteropathogenic Escherichia coli 
(EPEC) in saliva, colostrum, breast 
milk, serum, cord blood and amniotic 
fluid. Study of inhibition of localized 
adherence of EPEC to HeLa cells. Acta 
Paediatrica. 1994;83:870-873

[109] Cravioto A, Tello A, Villafan H, 
et al. Inhibition of localized adhesion 
of enteropathogenic Escherichia coli 
to HEp-2 cells by immunoglobulin 
and oligosaccharide fractions of 
humancolostrum and breast milk. 
The Journal of Infectious Diseases. 
1991;163:1247-1255

[110] Fernandes RCSC, Quintana Flores 
VM, Sousa de Macedo Z, Medina-
Acosta E. Coproantibodies to the 
enteropathogenic Escherichia coli vaccine 
candidates BfpA and EspB in breast fed 
and artificially fed children. Vaccine. 
2003;21:1725-1731

[111] Parissi-Crivelli A, Parissi-
Crivelli JM, Girón JA. Recognition 
of enteropathogenic Escherichia coli 
virulence determinants by human 
colostrum and serum antibodies. 
Journal of Clinical Microbiology. 
2000;38:2696-2700

[112] Quintana Flores VM, Fernandes 
RCCS, Sousa de Macedo Z, Medina-
Acosta E. Expression and purification 

of the recombinant enteropathogenic 
Escherichia coli vaccine candidates BfpA 
and EspB. Protein Expression and 
Purification. 2002;25:16-22

[113] Sanches MI, Keller R, Hartland 
EL, et al. Human colostrum and 
serum contain antibodies reactive 
to the intimin-binding region of the 
enteropathogenic Escherichia coli 
translocated intimin receptor. Journal 
of Pediatric Gastroenterology and 
Nutrition. 2000;30:73-77

[114] Stakenborg T, Vandekerchove D, 
Mariẽn J, et al. Protection of rabbits 
against enteropathogenic Escherichia coli 
(EPEC) using an intimin null mutant. 
BMC Veterinary Research. 2006;2:22

[115] Tacket CO, Sztein MB, Losonsky 
G, et al. Role of EspB in experimental 
human enteropathogenic Escherichia 
coli infection. Infection and Immunity. 
2000;68:3689-3695

[116] Carbonare SB, Silva ML, Palmeira 
P, Carneiro-Sampaio MM. Human 
colostrum IgA antibodies reacting to 
enteropathogenic Escherichia coli antigens 
and their persistence in the faeces of a 
breastfed infant. Journal of Diarrhoeal 
Diseases Research. 1997;15:53-58

[117] Donnenberg MS, Tacket CO, 
Losonsky G, et al. Effect of prior 
experimental human enteropathogenic 
Escherichia coli infection on illness 
following homologous and heterologous 
re-challenge. Infection and Immunity. 
1998;66:52-58

[118] Loureiro I, Frankel G, Adu-Bobie 
J, et al. Human colostrum contains IgA 
antibodies reactive to enteropathogenic 
Escherichia coli virulence-associated 
proteins: Intimin, BfpA, EspA, 
and EspB. Journal of Pediatric 
Gastroenterology and Nutrition. 
1998;27:166-171


