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Chapter

Nanofluid: New Fluids by
Nanotechnology
Mahmoud Salem Ahmed

Abstract

Recently, nanotechnology has played a major part in multifields of heat transfer
processes and developed a remarkable progress in the energy applications. One of
the most plausible applications of nanotechnology is to produce nanoparticles of
high thermal conductivity and mixing with the base fluids that transfer energy
forming what is called nanofluids. Adding of nanoparticles to the base fluid shows a
remarkable enhancement of the thermal properties of the base properties. Nano-
technology has greatly improved the science of heat transfer by improving the
properties of the energy-transmitting fluids. A high heat transfer could be obtained
through the creation of innovative fluid (nanofluids). This also reduces the size of
heat transfer equipment and saves energy.

Keywords: nanofluids, nanoparticles, thermal conductivity, base fluids

1. Introduction

Nowadays, the energy demand worldwide is steadily increasing due to the fast
progress in technology in all fields of life. On the other hand, the fossil fuel had been
taken to decrease, and the alternatives of energy sources are still under research to
raise their efficiency. Besides, the fossil fuel has led to the environment degradation
and global warming [1].

Revolution of nanotechnology and its unique features compared with the large
scale of its originality has been given a major focus. This dramatic growth stemmed
from the multiapplications in various fields of life: medicine, agriculture, engineer-
ing, and industry. Nanotechnology, as a scientific major, studies the properties of
nanoscale materials. Nanotechnology-based techniques could be produced by small
particles in the size of nano of some solid materials such as alumina and titanium
oxide that have relatively high thermal conductivity. The word “nano” is described
as 1 billionth of meter or 10�9 m. Figure 1 shows a comparative sample of different
sizes of materials from large scales to nanoscales. These nanosized particles are
mixed in the base fluid of heat transfer forming a colloidal solution in the stable
case, while its addition to the base fluids of low thermal conductivity probably
increases the heat transfer characteristics of the base fluids. This creative fluid is
known as nanofluid, which has a new heat transfer characteristic as one of the
recent outcomes of nanotechnology. This makes, of course, saving energy exactly
similar to reducing the volume of heat transfer equipment.

Nanotechnology has been widely used in various engineering applications as a
promising alternative in saving energy and reducing the cost of producing
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engineering facilities. This important application is represented by the reduction of
nanoparticles to the size of the nanoparticles and their mixing with fluids of low
thermal properties to give a good type of fluid known as nanofluid.

2. Nanofluids

With the advancement of nanotechnology and its ability to increase the perfor-
mance of solar devices by exploiting it, a new fluid known as nanofluid has been
originated. This is assembled by mixing the base fluid of low thermal conductivity
with solid nanoparticles of high thermal conductivity, and hence the new fluid
(nanofluids) has high transfer characteristic compared with the base fluids [1, 2]. A
nanofluid is a fluid in which nanometer-sized particles, suspended in the base fluid,
form a colloidal solution of nanoparticles in a base fluid. The nanoparticles used in
nanofluids are typically made of metals, oxides, carbides, or carbon nanotubes,
while the base fluids include water, ethylene glycol, and oil. Nanofluids have novel
properties that make them potentially useful in many applications in heat transfer,
including microelectronics, fuel cells, pharmaceutical processes, and hybrid-powe
red engines, engine cooling/vehicle thermal management, domestic refrigerator,
chiller, and heat exchanger and in grinding, machining, and in boiler flue gas
temperature reduction.

2.1 Methods of preparing nanofluids

Nanofluids are produced by several techniques: first step, second step, and other
techniques. To avoid the sedimentation of nanoparticles during its operation, sur-
factant may be added to them. Nanofluid preparation is the first step ahead of any
implementations. Therefore, it entails more focus from researchers to obtain a good
stage of stability. Colloidal theory states that sedimentation in suspensions ceases
when the particle size is below a critical radius due to counterbalancing gravity
forces by the Brownian forces. Nanoparticles of a smaller size may be a better size in
the different applications. However, it has a high surface which leads to the forma-
tion of agglomerates among them [3, 4]. Therefore, to obtain a stable nanofluid
with optimum particle diameter and concentration, it is considered a big challenge

Figure 1.
A comparative of things from large scale to nanoscale.
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for researchers. Two common methods are used to produce nanofluids, the
two-step method and the one step method, and others have worked up some
innovations.

2.1.1 The two-step method

The two-step method is the common method to produce nanofluids.
Nanoparticles of different materials including nanofibers, nanotubes, or other
nanomaterials are first produced as nanosized from 10 to 100 nm by chemical or
physical methods. Then, the nanosized powder will be dispersed in base fluids with
the help of intensive magnetic force agitation, ultrasonic agitation, high-shear
mixing, homogenizing, and ball milling. As resulting from high surface area and
surface activity, nanoparticles tend to aggregate reflecting adversely on the stability
of nanofluid [4–8]. To avoid that effect, the surfactant is added to the nanofluids.

The two-method preparation has been done by many researchers [9–14].
Figure 2 shows a block diagram of preparation of two-step method [15].

2.1.2 One-step method

The one-step process is simultaneously making and dispersing the particles in
the base fluids which could be reduced to the agglomeration of nanoparticles. This
method makes the nanofluid more stable with a limitation of the high cost of the
process [16–25].

2.1.3 Other created methods

Some researchers create other methods to obtain new prepared methods for
nanofluid with relatively high characteristics and more stability. Wei et al. [26]
developed a method to synthesize copper nanofluids. This method can be synthe-
sized through a novel precursor transformation with the help of ultrasonic and
microwave irradiation [27]. Chen et al. [28] obtain monodisperse noble-metal col-
loids through using a phase-transfer method. Feng et al. [29] have used the
aqueous-organic phase-transfer method for preparing gold, silver, and platinum
nanoparticles with the solubility in water. Phase-transfer method is also used to
prepare stable kerosene-based F3O4 nanofluids [30]. As stated above, the research
proved that nanofluids synthesized by chemical solution method could be enhanced
in conductivity with more stability [31].

Figure 2.
Two-step method of preparation of nanofluids [15].
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2.2 Thermophysical properties of nanofluids

Nanofluids have novel properties different from base fluids that included
thermophysical properties such as specific heat, density, viscosity, and thermal
conductivity.

Mixing the nanoparticles into the base fluid changes the thermophysical prop-
erties of the base fluid. The most important thermophysical properties of nanofluids
are nanofluid viscosity, nanofluid convective heat transfer, nanofluid thermal con-
ductivity, and nanofluid specific heat.

The value of specific heat and density of the nanofluids can be determined by
correlations, whereas the viscosity and thermal conductivity have different correlations.

2.2.1 Nanofluid thermal conductivity

Conventional heat transfer fluids, such as oil, water, and ethylene glycol (EG)
mixture, are poor heat transfer fluids. Hence, many trials by researchers to enhance
the heat transfer convection of these fluids through increasing their thermal con-
ductivity. High thermal conductivity is obtained for the nanofluids by adding
nanoparticle of solid materials of high thermal conductivity.

Nanofluids are basically advanced heat transfer fluids as an alternative to the pure
base fluids to improve the heat transfer process through the addition of nanoparticle
materials that have the properties of higher thermal conductivity. This attracted the
attention of researchers to test many nanoparticles that have different thermal con-
ductivity to obtain a high rate of heat transfer and use them in different applications.

The literature reported multiequations describing the thermal conductivity of
nanofluids. The prominent results reported that there are improvements of 5–10%
of the thermal conductivity of nanofluids using the base fluid (water, PAO). As is
reported, there is no critical improvement in the thermal conductivity in compari-
son to the conventional base fluid dependent on particle size and base fluid thermal
conductivity [32–37].

Conventional models of effective thermal conductivity of suspensions are
reported for some researchers [32].

keff
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¼ 1þ
3 α� 1ð Þ v

αþ 2ð Þ � α� 1ð Þv
(1)
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αþ n� 1ð Þ � n� 1ð Þ 1� αð Þ v

αþ 2ð Þ � α� 1ð Þv
(2)
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3β2

4
þ

9β2 αþ 2ð Þ

16 2αþ 3ð Þ
þ…

� �

v2 (3)

keff
km

¼ 1þ
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vþ f αð Þv2 þ 0 α3
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(4)

where keff is the effective thermal conductivity of the suspension, n is a shape
factor of nanoparticle, ν is nanoparticle volume fraction, and km and kc are the thermal
conductivity of the suspending medium and solid particle, respectively. Also α and β

are empirical fitting parameters which are defined as (kc/km) and (α �1)/(α +1).

2.2.2 Nanofluid convective heat transfer

Nanofluids have been proven a great potential for heat transfer enhance-
ment [44–47]. Nanofluids have been presented as a promising tool and a good
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alternative to base fluids to save energy, compact devices of low cost and design of
multiequipment used in a different applications with nanofluids as working fluids.

Experimental investigation [38] on Cu- or water-based nanofluids has demon-
strated great enhancement of heat transfer and also reported that friction factor has
a very meager part in the application process. Other scholars [39] have concluded
that a systematic and definite deterioration of the natural convective heat transfer
occurs for the forced convection reliant on the solution concentration, the particle
density, and the aspect ratio of the cylinder. Experimental investigation on Al2O3

nanofluids using water as base fluid has been studied by various research groups,
and they concluded that the heat transfer coefficient in laminar flow [40–42]
increases up to 12–15% and in the case of turbulent flow, it ranges up to 8% [43, 44].
CNT, CuO, SiO, and TiO2 nanofluids using water have been investigated [45–47].
Among these, CNT nanofluid produced similar results to that of Al2O3 nanofluid.
Ding et al. [48] have concluded that the enhancement of heat transfer could be
obtained by varying the flow condition and the fluid concentration. Alternatively,
CuO has been investigated for several wall boundary conditions, and it has reached
good results [3]. The increase in the concentration of the nanofluid on contrary
gives very weak results on the heat transfer coefficient for volume fraction greater
than 0.3% [49]. It is noted from the experiments that the heat transfer coefficient
enhancement can be achieved in the range of 2–5%.

2.2.3 Nanofluid viscosity

Viscosity is one of the parameters that influences the behavior of nanofluids.
Researchers have conducted experiments to test the viscosity through adding the
nanoparticles to the different base fluids, and hence they found out that the viscos-
ity is significantly affected by both variations of temperature and volume fraction of
nanoparticles [50–56]. They have reported correlated equations to quantify the
viscosity based on their experiments using different nanofluids. The following
correlated equations are examples that have been reported by some researchers.

μeff ¼ 1þ 2:5∅p þ 7:349∅2
p þ…

� 	

μb (5)

Model for spherical nanoparticles [57]:

μnf ¼ μf
1

1�∅ð Þ2:5
(6)

Model for simple hard sphere systems, the relative viscosity increases with
particle volume fraction ø [57]:

μeff ¼
9

8

∅p=∅pmax

� �1
3

1� ∅p=∅pmax

� �1
3

μb (7)

The model is valid for spherical nanoparticles and for 0.5236 ≤ Φ ≤ 0.7405 [55].
Meaning of Φ = volume fraction and μ = dynamic viscosity.

The SiO2 nanofluid has been investigated [48] and concluded that nanofluid viscos-
ity is dependent on the volume fraction. Other researchers [58] have analyzed commer-
cial engine coolants dispersed with alumina particles. They found out that the nanofluid
produced with calculated amount of oleic acid (surfactant) has been tested for stability.
While the pure base fluid demonstrates Newtonian behavior over themeasured tem-
perature, it turns to a non-Newtonian fluidwith addition of a few alumina nanoparticles.
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2.2.4 Nanofluid specific heat

The specific heat of material is quite an important property to define the thermal
performance of any material [36]. Specific heats of nanofluids may differ according
to the type of base fluids, nanomaterials, and concentration of nanoparticles found in
base fluids. Pak and Cho [59] have investigated the impact of volume fraction of
Al2O3 on specific heat. The investigation showed that 1.10–2.27% decrease in specific
heat occurred for 1.34–2.78% volume fraction of nanoparticle size of 13 nm. Zhao
et al. [68] also noticed a fall in the specific heat capacity of CuO nanofluid by 1.16–5%
compared to base fluid EG for volume fraction of 0.1–0.6% and particle size which
ranges from 25 to 500 nm. Some nanofluids show inconsistent behavior with volume
convergence. Shahrul et al. [60] have conducted a comparative revision on the
specific heat of nanofluids used in energy applications. They have concluded that for
most nanomaterials in base fluids, specific heat decreases with the increase in volume
fraction. Sonawane et al. [61] have investigated specific heat of Al2O3/ATF and
reported the anomalous conduct of specific heat with volume convergence. Increase
in specific heat capacity has also been reported in experimental observations
[36, 62–68]. Fakoor Pakdaman et al. [69] have found out that there is 21–42%
decrease in specific heat capacity of MWCNT/water nanofluid for 0.1–0.4% vol. a
fraction in the range of 5–20 nm size. However, Kumaresan et al. [64] have observed
2.31–9.35% gain. In specific heat capacity of MWCNT/(EG/DW, 30/70) nanofluid for
0.15–0.45% concentration, particle size was kept at 30–50 nm. Nowadays, the result
of experimental data does not signal a discreet and clear-cut indication that there is
the only reduction in the heat capacity with an increment of volume concentration, as
has been reported by several academic figures. Experimental observations on various
nanofluids show increase of specific heat capacity [62–70], whereas experimental
observations exhibit decrease in specific heat capacity performed by many
researchers [59, 61, 71–81].

The specific heat of nanofluid can be determined as function of the particle
volume concentration using the following equation [80]:

ρCp

� �

eff
¼ 1� φð Þ ρCp

� �

bf
þ φ ρCp

� �

p
(8)

And

ρeff ¼ 1� φð Þρbf þ φρp (9)

3. Applications of nanofluids for heat transfer process

Nowadays, nanofluids play a vital role in heat transfer equipment as a good
alternative in developing the efficiency of the heat transfer equipment and in turn
of reducing the size of the equipment and saving energy.

Since water is a good medium for heat transfer and it is also a good medium
for receiving and storing solar energy during sunrise time, therefore, water is a
good medium for the heating processes and one important source for the
application of solar energy [2, 82, 83]. It is granted that the thermal efficiency of the
FPSWH is relatively low, and therefore researchers have exerted many efforts to
increase its performance. The thermal efficiency of the FPSWH has improved by
using specific techniques [84]. Researchers to enhance the performance of FPSWH
and the thermal efficiency using different methods [85–89] have conducted many
studies.
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The recent researches have revealed that nanofluids have a large effect on
increasing heat transfer. This is done through mixing the nanoparticles materials
that have high thermal conductivity into the working fluid (or called the base fluid).

Now, nanofluids are promising mediums as alternatives to the base fluids, and
hence the researches are still under investigation to improve and develop the heat
transfer equipment systems.

Many works have been conducted to improve the performance of flat plate solar
water heater using different nanoparticles to the base fluid [63–73].

To improve the performance of flat plate solar collector, scholars had conducted
experimental and theoretical studies on flat plate solar collector using nanofluids
with different binary materials (nanoparticles + base fluids) as a working fluid.

Salem Ahmed et al. [90] have conducted an experimental work on the perfor-
mance of chilled water air conditioning unit with and without alumina nanofluids.

They have used the first method to prepare Al2O3 water nanofluids with differ-
ent concentrations by weight, which vary from 0.1, 0.2, 0.3, and 1% wt. Under
operation conditions, experiments have been investigated including a variation of
flow rate of chilled water/alumina nanofluids and the air through the cooling coil.
The results have shown that less time is scored to get the desired chilled fluid
temperature for all the different concentrations of nanofluids (Al2O3-water) com-
pared with pure water.

Again, the findings have shown a reduction of the power consumption and
increase in the cooling capacity, which is in turn an increase in the COP by about 5
and 17% for alumina nanoparticles, concentration of 0.1 and 1% by weight, respec-
tively. A schematic diagram of the experimental work shown in Figures 3 and 4
shows the TEM image of the alumina nanoparticles (Al2O3) used in the experiments.

Xu et al. [91] have conducted experimental and theoretical studies comparing a
novel of parabolic trough concentrator with traditional solar water heater using
nanofluid, CuO/oil. Figure 5 shows a configuration of the novel parabolic trough
concentrator and the traditional solar heater.

Figure 3.
A schematic diagram of the chilled-water air conditioning unit [90].

7

Nanofluid: New Fluids by Nanotechnology
DOI: http://dx.doi.org/10.5772/intechopen.86784



As is shown in Figure 5b, a kind of oil added with certain nanoparticles (CuO)
acts as a working fluid. The nanoparticles dispersed in the oil inside the inner tube
directly capture the solar radiation instead of the tube wall coating. The solar
collection efficiency curves for the two collectors suggested that the NDASC was
superior to a conventional IASC within a preferred working temperature range, but
inferior when the tf exceeded a specific critical temperature (tcr) as shown in
Figure 6.

Said et al. [92] have used TiO2-water nanofluid as a working fluid for enhancing
the performance of a flat plate solar collector for the volume fraction of the
nanoparticles 0.1 and 0.3%, respectively, and mass flow rates of the nanofluid vary
from 0.5 to 1.5 kg/min, respectively. Thermophysical properties and reduced sedi-
mentation for TiO2 nanofluid have been obtained using PEG 400 dispersant.
Energy efficiency has increased by 76.6% for 0.1% volume fraction and 0.5 kg/min

Figure 4.
TEM image of Al2O3 nanoparticles used in the experiments [90].

Figure 5.
Schematics of solar collection principles. (a) A conventional indirect absorption solar collector (IASC); (b) the
proposed novel nanofluid-based direct absorption solar collector (NDASC); and (c) the heat transfer around
nanoparticles inside the tube of NDASC [91].
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flow rate, whereas the highest energy efficiency obtained has been 16.9% for 0.1%
volume fraction and 0.5 kg/min flow rate.

The thermal efficiency of the FPSC (μ) and the energy efficiency are given,
respectively, as [92].

The schematic of the solar collector and the experiment is presented in Figure 7.
They also showed that the pressure drop and pumping power of TiO2 nanofluid
were very close to the base fluid for the studied volume fractions [92].

Polvongsri et al. [93] have performed an experimental work to study the per-
formance of a flat plate solar collector (Figure 8) using a silver nanofluid as the

Figure 6.
Variations of solar collection efficiencies with tf,i for both the NDASC and the IASC [91].

Figure 7.
The presentation of the experimental setup in schematic diagram [92].
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working fluid, while water was mixed with 20 nm silver nano with concentrations
of 1000 and 10,000 ppm. The operating conditions of experiments to be done at a
flow rate of working fluid between 0.8 and 1.2 l/min-m2 and the inlet temperature
were controlled in a range of 35–65°C.

It is remarkable that using silver nanofluid as a working fluid could improve the
thermal performance of flat plate collector compared with water, especially at high
inlet temperature as shown in Figure 9.

4. Conclusions

This chapter reviews the recent applications of nanotechnology for nanofluids.
These applications revealed that nanofluids have a promising alternative to enhance
the performance of heat transfer equipment considering the cost, safety, potential
of size reduction, and environmental protection. The present chapter provides a

Figure 8.
Diagram of the experimental setup [93].

Figure 9.
The performance curves of silver nanofluid at 10,000 and 1000 ppm and water [93].
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comprehensive overview of nanofluid as one of the important applications of
nanotechnology and how to obtain it and its thermal properties. There are chal-
lenges hindering the preparation of nanomaterials, including the stability of
nanofluids to take into consideration and worthy of attention on the part of
researchers.
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