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Chapter

Modeling of Inertial Rate Sensor

Errors Using Autoregressive and
Moving Average (ARMA) Models

Mundla Narasimhappa

Abstract

In this chapter, a low-cost micro electro mechanical systems (MEMS) gyroscope
drift is modeled by time series model, namely, autoregressive-moving-average
(ARMA). The optimality of ARMA (2, 1) model is identified by using minimum
values of the Akaike information criteria (AIC). In addition, the ARMA model
based Sage-Husa adaptive fading Kalman filter algorithm (SHAFKF) is proposed for
minimizing the drift and random noise of MEMS gyroscope signal. The suggested
algorithm is explained in two stages: (i) an adaptive transitive factor (a1) is intro-
duced into a predicted state error covariance for adaption. (ii) The measurement
noise covariance matrix is updated by another transitive factor (a,). The proposed
algorithm is applied to MEMS gyroscope signals for reducing the drift and random
noise in a static condition at room temperature. The Allan variance (AV) analysis is
used to identify and quantify the random noise sources of MEMS gyro signal. The
performance of the suggested algorithm is analyzed using AV for static signal. The
experimental results demonstrate that the proposed algorithm performs better than
CKF and a single transitive factor based adaptive SHFKF algorithm for reducing the
drift and random noise in the static condition.

Keywords: strap down inertial navigation system (SINS), MEMS gyro (MEMS),
random drift, Sage-Husa adaptive Kalman filter (SHAKF), Allan variance

1. Introduction

During the last two decades, low cost, small size, accurate and reliable naviga-
tion system development is a hot research in the modern navigation technology. The
word navigation is a process of monitoring and controlling any moving object from one
place to other. Inertial navigation system (INS) is a dead reckoning positioning method
based on measurements and mathematical processing of the vehicle absolute acceleration
and angular speed in ovder to estimate its attitude, speed and position related to difference
[1-5]. INS technology is categorized into (i) gimbal INS and (ii) strap-down INS. In
the early 1940s, a gimbal INS system was developed based on the mechanical
inertial sensor (i.e., accelerometers and gyroscopes) for providing the navigation
information [5]. Its accuracy was limited by mechanical inertial sensor errors. The
main drawbacks of the gimbal INS system are its designed complexity and it
requires synchronous servo motors, slip rings, control electronics, etc., for acquiring
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the navigation information. Because of these factors, the gimbals INS systems are
used in low grade navigation applications [6]. In the early 1950, strap-down INS
(SINS) was developed based on solid state inertial sensor [5]. The SINS is a self-
contained navigation system that has been developed for providing the accurate
navigation information (i.e., position, velocity and rotation information. It has three
gyroscopes ad three accelerometers. In general, the operation principle of SINS
follows the physical laws of motion equations. It is an emerging technology as
compared to gimbal INS systems and it has significant features such as easy to
design, lower cost of ownership, moderate manufacturing cost and also high reli-
ability. SINS consist of an inertial measurement that includes 3-axis accelerometers
and 3-axis gyroscopes, and a processing computer. IMU is a key device to the INS
and has been widely used for measuring the rotation rate and acceleration of an
object. In practice, SINS accuracy degrades due to internal and external errors of the
inertial sensors. These errors are mainly caused due to fluctuation in temperature,
pressure and internal electronics components of the sensor. Due to these factors,
stochastic errors and drift errors are generated at the IMU output [7, 8].

With the recent development of modern navigation technology, inertial sensor
based SINS technology have been characterized into three categories, (i) low accu-
racy (tactical applications), (ii) medium accuracy (navigation applications) and
(iii) high accuracy (strategic navigation applications) sensor technology. The per-
formance improvements of inertial sensors are decided by the inertial sensor errors
[9]. Currently, the strap-down INS use (i) low-cost MEMS and (ii) precision fiber
optic gyroscope. MEMS sensor has more attractive to manufacturers of navigation
systems because of their small size, low cost, light weight, low power consumption
and ruggedness [10]. However, MEMS sensors give poor performance in the highly
dynamic environment. Hence, the reliability of MEMS-based INS navigation accu-
racy is limited. Because of these features MEMS have only been used for low-end
navigation applications (i.e., commercial domain) [11].

In the recent years, MEMS devices have been developed and tested successfully
for low-end accuracy applications [12, 13]. MEMS sensor operates for a long time
under poor condition and it generates the noise due to internal circuits and electronics
interferences of the MEMS sensor [14-16]. As a result, noise and drift are generated at
the MEMS output. In general, drift error is affected by ambient temperatures and
magnetic field effect [17-19]. Many studies have been reported for temperature error
model of MEMS sensor to capture the temperature variation affects [20]. According
to the IEEE standard specification, MEMS errors can be characterized into two cate-
gories, such as (i) deterministic errors and (ii) stochastic errors. Deterministic errors
are due to scale factor errors, bias and misalignment errors [18, 19]. Several calibra-
tion methods have been developed for eliminating the bias errors, scale factor errors
in the lab environments. Stochastic errors are due to quantization effect, temperature
effect (random bias), random drift, and additive noise of MEM sensor. In the case of
stochastic errors analysis, calibration techniques cannot be suitable because of ran-
domness [21-24]. This chapter concentrates on random errors modeling and random
noise elimination techniques. The developments of random noise suppressing
methods are helpful for improving the MEMS accuracy as well as SINS accuracy.

In general stochastic error includes quantitation noise (QN), bias instability (BS),
angle random walk (ARW), rate random walk (RRW) and rate ramp (RR) drift.
With the extension of research, random noise and bias drift are the non-negligible
errors in the MEMS sensor output. In this chapter, different signal processing
techniques are developed to minimize the bias drift and random noise [25].

In time domain, Allan Variance (AV) is a popular technique has been widely
used to identify and quantify different random noises present in the MEMS sensor
[16, 26, 27]. In literature, several noise compensation techniques such as discrete
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wavelet transform (DWT), empirical mode decomposition (EMD) method and
Forward linear prediction (FLP) methods have been developed and applied to
MEMS sensors for filtering the high-frequency noise [28, 29]. These methods are
not suitable when the sensor includes the correlated noise. Kalman filter (KF) is a
most popular state estimation technique that has been used for minimizing the
correlated noise of the MEMS sensor [30-34]. The priori knowledge of an initial
values of the process and measurement noise covariance matrix are known exactly,
when the KF become an optimal. However, in practice, these noise parameters may
vary with time so that the performance of the KF can be degraded and then the
filter become diverge.

To solve the divergence problems, Adaptive Kalman filter technique (AKF) is a
better solution. The adaptation can be based on either (i) innovation based adaptive
estimation AKF (IAE-AKF) or (ii) residual based estimation AKF (RAE-AKF) and
also multiple model based AKF [34, 35]. Among the other methods, adaptive KF is
developed using IAE. In general, an innovation sequence is defined as the difference
between true and estimated values. In the IAE-AKF method, the measurement and
process noise matrices are estimated based on innovation sequence and followed by
sliding average window method. In real time, the selection of window size is a
critical issue. Sage-Husa Adaptive KF is another version of adaptive KF that has
been developed to improve the AKF performance by introducing a time varying
estimator. In the SHAKF, using a time-varying noise estimator can be helpful in
estimating the statistical characteristics of the uncertainty in the measurements in
real time and mitigating the filter divergence. A further study on the SHAKF is
developed based on adaptive factors for improving the filter practicability and
optimality [23].

An adaptive fading Kalman filter (AFKF) was proposed for compensating the
effect of the uncertainty in the measurements by transitive factor to the state error
covariance (P). In AFKF, the state error covariance (P) is scaled with a single
transitive factor for improving the filter variance and gain correction. When it is
used for complex systems, the performance of AFKF degrades because of it may not
be sufficient to use a single transitive factor for estimating the covariance matrix of
the filter [24]. To overcome the difficulties of single transitive factor, multiple
fading factors are used in AFKF. Because of that reason, authors are developed
double transitive factor based SHAFKF that adapts both predicted state error
covariance (P) and measurement noise covariance matrix (R) based on the innova-
tion sequence. Although it has been successively applied to different domains, its
performance for MEMS gyroscope sensor signal is not explored. The stochastic
errors of MEMS gyroscope cannot be eliminated using calibration technique. It
needs to be modeled before filtering the signal. Therefore, adaptive filtering tech-
niques have been developed for minimizing the random noise from MEMS gyro-
scope system. In general, auto-regressive (AR), Moving Average (MA), and Auto-
Regressive and Moving Average (ARMA) and Gauss-Markov model (GM) have
been used for modeling stochastic signal [17]. Among these models, ARMA is a
better choice for modeling MEMS gyroscope drift errors. In general, the ARMA
modeling involved three steps as (i) randomness and stationary test (ii) selection of
suitable time series model and (iii) estimation of model parameters. The unit root
test and inverse sequence techniques have been used for checking the stationary of
the signal. The model order is obtained by using auto correlation function (ACF)
and partial auto correlation function (PACF). Moreover, Akaike Information Crite-
rion also used to check the model order. The modified Yule-Walker method is used
estimate the model parameters. Once an optimal ARMA model is defined, a suitable
adaptive Kalman filter can be applied to minimize the drift of inertial sensors
[14, 30].
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In this chapter, we developed double transitive factors based on Sage-Husa
adaptive fading Kalman filter (SHAFKF), namely SHAFKF-P Adaption and
SHAFKEF-R adaption. In addition, ARMA model is used to model the random drift
errors of MEMS sensor. ARMA model based SHAFKF algorithm is developed and
applied for minimizing the bias drift and random noise in the presence of MEMS
gyroscope signal. The suggested algorithm is analyzed in two stages. In the first
stage, the predicted state error covariance is adapted by a transitive factor, whereas,
in the second stage, another transitive factor is scaled to the measurement noise
covariance matrix (R). The efficiency of the algorithm is analyzed using Allan
Variance technique.

The remainder of the paper is organized as follows. Section 2, explains the
theory of ARMA models for MEMS gyroscope random noise analysis. The Allan
Variance method is explained in Section 3. In Section 4, Conventional and adaptive
Kalman filters are discussed based on innovation sequence. Section 5 explains the
proposed algorithm based on double transitive factors. Designing state space
model for ARMA (2, 1) model is presented in Section 6. Experimental results and
static test analysis are explained in Section 7 and also followed by conclusions in
Section 8.

2. Auto regressive and moving average (ARMA) model

In literature, several time series models have been widely used in many fields
such as industry, science and engineering. Among the other model, auto regres-
sive (AR) and moving average (MA) models have been most popular and since
then widely used for forecasting [14-16]. The combination of AR and MA models
has been used for inertial sensors error modeling. In this chapter, stationary
ARMA model is proposed for characterizing the stochastic errors of the MEMS
gyroscope signals. In general, the ARMA model is a combination of weighted sum
of AR and MA model. The expression for the ARMA model with an order (p, g) is
defined as

p q
Y, = Z DBiY i Z ejgn—j + &, (1)
=1

j=1

where p and ¢q are the AR and MA model orders, receptively. ¢, is a sequence of
independent and identical distributed random variable. Y, is the measured time
series data of MEMS gyroscope signal. @1, @2, @3, ..., @p and 61, 63, 63, ..., 6, are the
auto regressive (AR) and moving average (MA) coefficients, respectively. The
MEME gyroscope sensor raw data is used to test the normality and zero mean of the
time series data of MEMS gyroscope. In general, the skewness and Kurtosis should
be 0 and 1 that tells that checking the zero mean and normal distributed data of the
time series data of the sensors.

2.1 Time series model selection

In the time series analysis, several methods have been developed for selecting
the order of the AR, MA and ARMA order. In general, auto-correlation function
(ACF) and partial ACF (PACF) are the basic methods to select the model based on
the characteristics of the ACF and PCF graphs as shown in Table 1. From Table 1,
we observed that both ACF and PACEF are tail off. In this chapter, ARMA (p, q) is
suitable for modeling the MEMS Gyroscope data.
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Model order ACF PACF
AR(p) Tail off Cut of at order P
MA(q) Cut of at order q Tail off
ARMA(p, q) Tail off Tail off

Table 1.

Determining the model and ovder of the MEMS gyro signal.

The samples autocorrelation function (ACF) is defined as

F (Yo =) (Yo — 1)

N (Yo —y)
and the partial autocorrelation is expressed as
&1 if k=1
ke—j
PACF =g, = { & 21 & 1) (gkﬁ) (3)

ifk=23..,n,

1- 577 (ge1) (82)

where k is the lag and g, is the sample autocorrelation. The y, and g, are the
samples mean and partial correlation at lag k.

This can also cross checked using Akaike Information Criterion (AIC) method.
In this work, AIC values of the time series data are evaluated using Table 1. The
model order is selected based on the minimum value of AIC.

The general expression of Akaike information criterion (AIC) is

AIC = log (@{1%— 2;;”1) (4)

aic

where O denotes the estimated residual of the model. d,;. and N, are the model
order and the number of time series observation respectively.

2.2 Model parameter estimation

Suitable model parameters are estimated by using Yule-Walker, Burg,
Unconstrained Least-Squares method and Levinson-Durbin methods. In general,
for large data-set analysis, Yule-Walker and Unconstrained Least-Squares method
are the better estimators.

3. Allan variance analysis

Allan variance (AV) is a popular time domain method has been widely used for
identifying and quantifying random errors in the presence of inertial sensor [14].
Cluster based analysis is used to develop the AV technique. In the AV analysis, the
IMU raw data can be divided into clusters with specified length, “m.” Let us take

«€__»

n” measurements of gyroscope (@), denote it by W, @@ @Bl @ The
collected MEMS sensor data is sampled at rate of fs (samples per seconds). The set
of samples called as cluster and denoted as “k.”. The total number of clusters can be
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represented by “K,” (i.e., K = ). The measured date of the gyroscope can be
written as

o o Bl Al ol o o & g* ]
To calculate each clusters average is
m .
Ex[kc] _ wa[kc—l]m—&-z (5)
i—1

Here, k. =1, 2, 3, ..., K is the number of clusters.
The Allan variance is computed from two successive cluster averages for the
specified correlation time which is defined as:

1 K-1

o) = 3k =) ,;1 (@ Mom —am))?) ()

where k, =1, 2, 3, ..., K, and 7, = /s, is averaged period (or specified correlation
time). The AV can be computed as a function of correlation times versus the Allan
deviation plot are shown in Figure 1. The different contribution error sources are
carried out simply by examining the slope of the AV plot. To extract the informa-
tion on a specific source of error from the AV plot.

There is a unique relationship between the Allan Variance (time domain) and
the PSD (frequency domain) of the random process as:

2 g [ sin*(afT)
G(Tm)—4JSg(f) ofT)? (7)

0

where Sq (f,) is the power spectral density (PSD) of the random process and

% is the transfer function of PSD.

Quantization Noise
Slope=-1
Correlation time ~=10 sec

/ Rate ramp

Harmonic Noise Bias Instability slope=1

Correlation time ~=10 min slope=0 Correlation time ~=10 hr
T ™S Correlation time=1 hr “

Angle Random walk + A
Slope=-0.5 \ Rate random walk
Correlation time ~=1 min Correlated Noise slope=0.5

Correlation time ~=1 hr

Root Allan Variance log 6 (1)

L J

Average time log T

Figure 1.
Allan variance log-log plot.



Modeling of Inertial Rate Sensor Errors Using Autoregressive and Moving Average (ARMA)...
DOI: http://dx.doi.org/10.5772/intechopen.86735

Noisy type Units Slope Root Allan variance

Quantization noise (QN) °/ sec -1 oon(t) = V3QN

Angle random walk (ARW) °/\/hr -1/2 oarw (1) = %

Bias instability (BS) °/hr 0 ops(t) = 0.668 Bs

Rate random walk (RRW) °//hr 1/2 orrw (7) = RRW /5

Rate ramp (RR) °/h72 1 orr(7) = RRW\%
Table 2.

Allan variance analysis vesults.

The different random noise processes are characterized at various frequencies
that are fitted by the AV method. The root Allan variance with each correlation time
and slope are computed and presented in Table 2.

4. Adaptive Kalman filtering
4.1 Conventional Kalman filter

The application of conventional Kalman filter (CKF) for the MEMS gyroscope
requires a prior knowledge of dynamic process and measurement models. In addi-
tion, the process and measurement noise of the MEMS gyroscope. Considering a
linear dynamic system, the state and measurement equations can be written as

X = Axp_1 + Bug + wy, (8)
2z = Hxy, + vy, 9)

where x;, is the state vector at epoch k; A is the state transition matrix; wy, is the
system (process) noise; 2, is the observation (measurement) at epoch k; H repre-
sents the observation matrix; and v, is the measurement noise. Let us assume that
the process w), and measurement noises (v;,) are the Gaussian white noise with zero
mean and finite variance that means that these are statistically independent from
each other, following properties can be satisfied:

E {wk} = 0, E {I)k} =0 (10)
E {wew; } = Q, (11)
E {n} } =Ry (12)

Basically, the Kalman Filtering estimation algorithm comprises two steps,
namely prediction and updating equations. The main Kalman Filtering equations
are given below.

Prediction equations can be expressed as

%y = ARy (13)

P, = AP, 1AT +Q, (14)
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In the above equations, A is the state transition matrix and A” denotes the
transpose of A. P, and Q,, represents prediction state error covariance and process
noise covariance matrix at epoch k.

In the linear Kalman filter, the measurement updated equations are

K = PyH (HPyH" +R) ™ (15)
X =%y + K, (ze — HX ) (16)
P, = (I — K H)P, (17)

where X}, is the estimated state, K}, is the gain matrix and Py, is the estimated of
state vector. R and I are the measurement noise covariance matrix and identify
matrix respectively.

4.2 Innovation based adaptive estimation adaptive Kalman filter (IAE-AKF)

CKF requires a prior knowledge of the measurement and dynamic process
models of MEMS IMU. In practice, statistical noise models of the process and
measurement models are varying with time because of that the CKF would deprive
optimality. To address this divergence, an adaptive KF (AKF) is a better solution. In
the AKF, the adaptation can be carried out using three ways: (a) varying Q by trial
and error until a stable state is estimated with fixed R [20]; (b) varying R by
keeping Q fixed; (c) varying Q and R simultaneously [21]. In the IAE-AKF algo-
rithm, we selected the second adaption method is that varying the measurement
noise covariance matrix (R) by keeping Q fixed based on innovation sequence V.

The innovation sequence is defined as the difference between true measure-
ments and predicated measurements that can assume to be additional information
to the filter. The innovation sequence is a zero-mean white Gaussian noise
sequence, defined as

Vk =3 — HD?,';; (18)

The weighted innovation Kj, (zk — Ha%,;) acts as a correction to the predicted
estimation X, to form x. By substituting the measurement model (5) in (14), we
getV, =H (xk — X, ). By taking variance on both sides of this, the theoretical
covariance matrix of V), is

Cy, = HP,HT + R, (19)

The optimal estimation of covariance matrix of innovation sequence using aver-
age window method can be expressed as

) 1 &
Cv, =52 Vi) (20)
=

where V; is the innovation sequence, D is the window size, jO =k — D, + 11is
the first epoch. If the window size is too small, the measurement estimation covari-
ance can be noisy; on the other hand, the estimation of measurement covariance
will be smoother. Usually, window size is chosen empirically for statistical
smoothing.

The estimated measurement noise covariance based on innovation sequence is
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R, =Cy, —HP,HT (21)

where R;, is the estimated measurement noise covariance matrix, H is the obser-

vation matrix, P, is the prediction state error covariance and Cy, is the estimated
covariance matrix of innovation sequence.

4.3 Sage-Husa adaptive Kalman filter (SHAKF)

Sage-Husa AKF (SHAKEF) is another class of adaptive filtering that uses a time-
varying noise statistical estimator to proceed recursively. It is also used to reduce
the sensor noise in the presence of MEMS IMU signals [16]. The linear dynamical
process and measurement model equations can be written in the Egs. (4) and (5).

The expectation and the covariance matrices of w; and v, are written as.

E{we} =g, (22)
E {0} = % (23)
E {wiwj } = Qy (24)
E {vw]} =Ry (25)

where Q, and R}, are the initial estimated process and measurement noise
covariance matrices, respectively.
The time-varying noise statistic recursive estimator is given by:

Pror = (1—di)ig + di (31 — HE, ) (26)

Ri1 = (1—d)Ry +dp (Vi VY — HP,H") (27)

Qi1 = (1 —di)q), + di(xe — Axy) (28)

Quir = (1—d)Q;, +di (Ke Vi ViK], + P — AP, ,A”) (29)

where d), = (1 —by)/ <1 - bi“) is the amnestic factor, value range between 0

and 1. The Kalman filtering output signal and Sage-Husa self-adaptive Kalman
filtering output signal are expressed in terms of following equations.
Prediction equations as.

.’)2'];_1 - A.?%k_l + qk (30)
P, = APk71AT + Qk—l (31)

Measurement updated equations are equations:

K, = PyHT (HPyH" +R,) " (32)
X, :.923]; -|-I(k(Zk —H)%,;) (33)
P, = (I — K.H)P;_, (34)

Here, an innovation sequence can be written as

Vk =2 — HJACk - 17'k (35)
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The Kj, is the Kalman updated gain. R, and I are the measurement noise covari-
ance matrix and identity matrix respectively.

5. Proposed: Sage-Husa adaptive fading Kalman filter (SHAFKF) based
on double transitive factors

Adaptive estimation methods have been developed for improving the CKF per-
formance [22, 23]. In the AKF, covariance matching techniques is used to estimate
the covariance matrix of the innovation or residual by fixing the values of Q. By using
a scale factor in the AKF hence the performance filter was improved for estimating
the state error covariance and also it improves the variance of the predicted state.
Further, adaptive fading Kalman filters have been developed for improving the filter
performance by introducing multiple adaptive scaling factors [24]. In the proposed
algorithms, adaptive transitive factors based linear Adaptive Kalman filter algorithm
is proposed also used for improving the MEMS gyroscope performance [25, 30].
However, a limited work has been reported the use of transitive factors in ARMA
model based Sage-Husa KF. The proposed algorithm is explained in two cascaded
stages. The predicted state error covariance P is adapted in the stage one, whereas in
the second stage, the measurement noise covariance R is adapted by another transi-
tive factor. The proposed scheme is shown in Sections 5.1 and 5.2, respectively.

5.1 Stage one: adaptation of predicted state error covariance (P)

In this stage, the predicted state error covariance is modified using an adaptive
transitive factor. This stage is also termed as SHAFKF-P adaptation. The transitive
factor is used to reduce the process noise of kinematic model based on the residual
sequence.

The transitive factor a4 (k) is evaluated as

1 tV(CVk) >tV(151—,k)

@)= 3 r(Cy, ~R,) . (36)
m, therwise

where tr is the trace function and Py, is the estimated covariance matrix of the
residual sequence expressed as

5 .,
Py, = ViV, (37)
The predicted state covariance P}, is updated as

A 1 -~
P, _.&;Z%jf%il (38)

The SHAFKF-P adaptation algorithm, the predicted and estimated state error
covariance are updated based on the SHAKEF algorithm.

=——P, (39)
= HP, H" + R, (40)

10
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The suboptimal state and update the measurement equations as

Ky =P, HT (HP,HT +R,) (41)
Xp =%, + Kp (e — Hxy,) (42)
P, = (I - K H)P;,_, (43)

where X, indicates the suboptimal estimated state vector and Cy, denotes the
suboptimal covariance matrix of innovation the state vector. For optimal filter
purpose, X, and P;, are further passed to the next stage. The flowchart of the stage
one of the algorithm is shown in Figure 2.

Given Initial value of New Information series

%o, Py, Ty, Ry, Go, Qoand b G = (1 = di )1 + di(x — A%y)
k+1
o T
l_ Qr = (1 = di)Gpe-1 + dR(KkaVkTKk + P — AP AT)
k
Calculate weighted Coefficient I
_ _(1-b)
dy = (1 — bk+1) Updated measurement equations as

1 K= PCHT(HP;HT + Ry)™!

New Information series

Ry = R + Ki(2, — HEY)

?'.‘.k - (1 — dk)?ﬁk—l + dk(zk - Hf;ml) Pk_ - al(k)Pk-_l
Vk=zk_ka_fk t
Ry = (1 = d )Ry + di(vyvy,” — HBHT) Calculate the transitive factor a, (k) as
1, tr(Cy,) > tr(Py)
a, (k) ={tr(C, —R
l 1(k) M, Otherwise
tr(Cy, — Ry)
Predicted state; Dy
e = ARy g+ Ty —) ﬁVk_E Vi Vj
Jj=jo
Predicted state error covariance; Cyr = HPCHT +R,
ﬁvk Vka

Ph.ic_ = Aﬁk—1AT +ok—1

Figure 2.
Flow chart of the SHAFKF-P adaptation algorithm.

5.2 Stage two: adaptation of measurement noise covariance matrix (R)

The stage one algorithm requires prior knowledge of the state error vector and
kinematic of model errors. To overcome this drawback and to eliminate the influ-
ence of the measurement noise disturbances, another transitive factor is introduced
for updating the measurement noise covariance matrix (R). This stage is also
termed as AUFKF-R adaptation.

In this stage, modified residual sequence is evaluated as the difference between
measurement vector zk and the suboptimal estimated state (x}) evaluated using
Eq. (45). Thus the modified residual sequence can be defined as

11
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Vk = Z) — HDACk — f‘k (44)

Furthermore, using the suboptimal state error covariance Py, similar to Eq. (41),
the estimated covariance matrix of the residual sequence can be written as
(45)

Cy. = HP,HT + R,
The suboptimal estimation of covariance matrix of residual sequence using the

average window method is

- 1 . or,.
Cor = ITS_Z Vie()Vy () (46)
J=50
The transitive factor a;,(k) for the stage two is evaluated as
1, tV(Cgk) >tir (ézjk)
k) = . 47
a:(k) L(?”k) ,  Otherwise (47)

tV(C5k>

In this algorithm, the measurement noise covariance matrix is scaled by a factor

az(k). Thus Eq. (48) can be rewritten as

Cy = HP, H' + a5(k)R, (48)
T e e New Information series
%o, Pos Tos Ro» Go, Qoand b G = (1 = die) ey + diexc — A%)
k+1
— G
e | i = _ ~ G -
l Qi =1 —di)Gje-1 + dk(KkaVkTKk + P, — AP AT)
k
Calculate weighted Coefficient 4'
e Cls
di = (1 — bk+1) Updated measurement equations as
1 Ky = B;HT(HP;HT + a,(K)R,)™
fk = f.;; o Kk(zk = Hf;)
New Information series
R
fie = (1 = di )iy + di(ze — HEy) = o)+
Vk=zk—ka—T"k '
Ry = (1 —dp)Ry_y + di (v T — HB HT) Calculate the transitive factor a,(k) as
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e R I
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Figure 3.

Flow chart of the SHAFKF-R adaptation algorithm.
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The Kalman gain and state equations are updated as Eqs. (41)-(46). In this
algorithm, measurement noise covariance matrix is multiplied by the adaptive
transitive factor, a,(k). If a5(k) large, R, becomes larger, this helps to reduce the
influence of uncertain measurement noise [23, 24]. The flow chart of the stage two,
i.e., SHAFKF-R adaptation, is shown in Figure 3.

6. Designing state space model for ARMA (2, 1) model

The ARMA (p, q) model order is obtained using AIC method as in Table 3. The
minimum values of AIC can be decided the optimal order of the ARMA (2, 1) is
chosen. The ARMA (2, 1) model parameters such as ®1 = —0.5422, ®2 = —0.1204
and 01 = 0.1382 are estimated based on the minimum AIC value, i.e., —5.7612. The
parameters are tabulated in Table 3.

The ARMA (2, 1) model is used to approximate the MEMS Gyro sensor as:

Y, = 901Yn71 + 402Yn72 + 016, 1 + &, (49)

where @ is the AR coefficients and 0 is the MA model parameter, ¢, is the system
input Gaussian white noise with zero mean and variance ¢2. State-space represen-
tation of the optimal ARMA (2, 1) model is described as

o1 @] [ Ve 1 6
X’“ll OHYW_2]+[0 o}w’e 0
Z, =1 0][ ”]+Vk (51)
n—1

where Wy, = [&, &1 ]T is the process noise. The initialize the state estimate X =

T . - . )
[0 0] and state error covariance, Py = I are selected. In practice, the process noise
covariance matrix and the measurement noise covariance matrix are assumed as

2
o
W, : . .
[ 0 * ) ] . In the CKF, the process and measurement noise covariance matrices
o
Vi

are constant whereas in the adaptive proposed algorithms, these parameters are
changed iteratively.

Model ®1 @5 0, AIC

AR(1) —0.5422 —5.1769

AR(2) —0.5422 —0.1204 —5.1832

MA(1) —0.1382 —5.1860

ARMA(1, 1) —0.5422 —0.1382 —5.5726

ARMA(2, 1) —0.5422 —0.1382 —5.7612
Table 3.

Parameters estimation results with AIC values.

7. Test results and discussion
The experimental setup consists of a single axis a prototype Xsens MTi 10 series

MEMS sensor, turn table control unit, data acquisition board, and data processing
computer. The MEMS gyroscope specification and test conditions of three single axis
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gyro sensor detailed results are reported in [36]. The experimental raw data is col-

lected for 1 hour duration with sampling frequency at 100 Hz at room temperature. In
the static condition, MEMS gyro is in zero rotation under the room temperature, for a
more detailed specification of the Xsens MTi 100 series MEMS please refer to [36, 37].

7.1 Static performance test analysis

Three single-axis MEMS gyro sensor raw data are collected for 1 hour duration
with sampling frequency at 100 Hz. The pre-processing methods are required to
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Figure 4.
(a) Three single axes of MEMS gyroscope raw signals and (b) corresponding Allan variance plot.
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test the zero mean values for the sensor raw data before analyzing the Allan vari-
ance (AV) results [16]. Three single-axes of the MEMS Gyro sensor signals and
corresponding AV results are plotted in Figure 4a and b respectively. From these
figures, we see that the —1/2 slope indicates the angle random walk (ARW), which
is a white noise characteristics. Bias instability (Bs) is due to internal and external
electronic components of the sensor and is indicated at zero slope in log-log AV plot
[16]. The three axes of MEMS IMU sensors are identified and quantified using AV
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Figure 5.
(a) X-axis MEMS gyro signal and de-noised vesults using the SHAFKF algovithm and (b) corresponding Allan
variance plot.
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(a) Y-axis MEMS gyro signal and de-noised results using the SHAFKF algovithm and (b) corresponding Allan
variance plot.

analysis, which are presented in Table 2. From this table, we can observe that ARW
and BI are the two that dominate noises in the presence of the MEMS sensor.
Conventional Kalman filter (CKF) algorithm is applied for minimizing the all
three axis MEMS gyro static signal. In this experiment, the initial values of mea-
surement and process noise covariance matrix are chosen as 0.098 and 0.0001
respectively. In practical application, these noise covariance matrices vary with
time. In real-time, by adjusting the noise parameters are critical. The adaptive KF
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Figure 7.
(a) Z-axis MEMS gyro signal and de-noised vesults using the SHAFKF algorithm and (b) corresponding Allan
variance plot.

algorithm, an innovation sequence is used to adjust the noise parameters of process
and measurement noise matrices ad it is followed by covariance matching principle.
In the IAE-AKF algorithm, the window width selection is critical and can decide the
filter optimality. In general, the window width is varied between 5 and 30. In this
analysis, we observed that 15 samples of the window width is the optimal choice for
statistical smoothing.
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In the SHAKF algorithm, the innovation sequence is used to estimate the mea-
surement noise covariance matrix and followed by sliding window average method.
In addition, statistical noise estimator is used in the AKF frame work for updating
the noise coefficients in each iteration recursively. The window width is 15 samples
for statistical smoothing. The SHAKF algorithm results are plotted in Figures 5a-7a,
respectively.

In the proposed approach, the predicted state error covariance is updated by one
transitive factor whereas the measurement noise covariance matrix is updated using
another transitive factors based on the residual sequence. The covariance matrix of
residual sequence is estimated using sliding average window method. In this
method, window width is chosen empirically as 15. In the first stage of the proposed
algorithm (SHAFKF-P adaption), the transitive factor (a;) is calculated in stage
one. The measurement noise covariance matrix is scaled by an adaptive transitive
factor (a,) is in the second stage. The transitive factors are used to scale R;, and

reciprocal to P;, for reducing the variance of uncertainty in the process model and
measurements, respectively. The developed algorithm is also applied to X, Y and Z-
axis MEMS gyroscope static signal. The test results of the proposed algorithm for X,
Y and Z-axis data are shown in Figures 5a—7a, respectively. From these figures, it is
observed that the angle random walk (ARW) and bias instability (Bs) noise are the
dominated noise sources. The quantified noise coefficients are tabulated in the
Tables 4-6, respectively. All the random noise and drift are quantified before and
after applying the de-noising algorithm. The drift is also calculated before and after
de-noising MEMS signal and tabulated in Tables 4-6, respectively. From these
tables, it is observed that the ARW is reduced by 1000 and also Bs random noise is
minimalized by order of 100 compared to the original value.

From these tables, it is evident that SHAFKF of R adaptation using transitive
factor improves the performance of the algorithm. In this proposed algorithm,

Methods ARW (0/\/;;) BS (°/hr) Drift (°/hr)
MEMS raw data 165.115 8.775 1.758
CKF 103.235 7.459 1.362
IAE-AKF 24.858 3.496 0.859
SHAKF 4.228 2.296 0.0014
SHAFKF-P Adaption 1.279 0.690 0.00038
SHAFKF-R Adaption 0.331 0.421 0.00012
Table 4.

Allan variance and drift vesults of X-axis MEMS gyro using proposed scheme in static condition.

Methods ARW (°/hr) BS (°/hr) Drift (°/hr)
MEMS raw data 33.0437 47297 1.7587
CKF 30.6510 1.5762 1.3624
SHKF 4.0098 1.2862 0.0859
IAE-SHAKF 3.4075 0.4371 0.00386
SHAFKF-P adaption 0.6570 0.2653 0.000562
SHAFKF-R adaption 0.442 0.150 0.000312
Table 5.

Allan variance and drift vesults of Y-axis MEMS gyro using proposed scheme in static condition.
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Methods ARW (°/vhr) BS (°/hr) Drift (°/hr)
MEMS raw data 38.9222 9.8105 1.758
CKF 24.3805 8.3228 1.216
SHKF 7.0068 3.502 0.597
IAE-SHAKF 3.3229 3.071 0.0013
SHAFKF-P adaption 1.2516 0.832 0.00028
SHAFKF-R adaption 0.914 0.542 0.00014
Table 6.

Allan variance and drift vesults of Z-axis MEMS gyro using proposed scheme in static condition.

measurement noise covariance is scaled by the transitive factor. It ensures the
variance is inversely proportional to the uncertainty of measurement. Due to this,
SHAFK-R adaptation algorithm outperforms other algorithms.

In addition, we observed the Drift error for the MEMS gyroscope signals. Drift
error is considered as one of the performance indicator of all the proposed algo-
rithms. From Tables 4-6, it is observed that the proposed SHAFKF-R adaptation
filter performs better than CKF, IAE-AKF SHAKF, and SHAFKF-P adaptation fil-
ters because of that the measurement noise covariance tunes by the adaptive tran-
sitive factor a,(k) to reduce the influence of uncertainty in measurement noise of
the sensor.

8. Conclusions

In this chapter, the MEMS gyroscope drift is modeled by using ARMA (2, 1) for
characterizing the MEMS gyro noise behavior. Moreover, ARMA-based linear Sage-
Husa adaptive fading Kalman filter with double transitive factors is proposed. In the
proposed algorithm, double adaptive transitive factors are used to update in the
predicted state vector and measurement noise covariance matrix. The suggested
algorithm is used to reduce the drift and random noise in the presence of MEMS
gyroscope. From the AV analysis, the noise terms of ARW and Bs are reduced by
order of 100. The proposed SHAFKF outperforms the CKF, IAE-AKF, and SHAKF
algorithms in static case. It concludes that the SHAFKF algorithm is suitable for
MEMS gyroscope signal drift minimization.
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