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Chapter

Using Dynamic Analysis to Adjust
the Rheological Model of Three
Parameters to the Eurocode Creep
Criteria

Alexandre de Macédo Wahrhaftig

Abstract

A dynamic analysis of vibration for considering a three-parameter rheological
model to fit the same results as predicted for creep by the Eurocode (EN 1992)
criteria is performed based on the adjustment of its parameters. The use of a
rheological model of three parameters as a valid alternative for real problems brings
a huge facility for mathematical implementation and manipulation due the simplic-
ity of the solution. For adjustment of the elastics and the viscous parameters, a
numerical simulation to calculate the fundamental frequency of an actual rein-
forcement concrete pole is carried out in comparison with the standard Eurocode
criteria. In this determination, the geometry variation, a concentrated force present
at the free end of the structural element, and the self-weight of the structure are
considered. The physical nonlinearity of the concrete due to the cracks is also
considered by reducing of the flexural stiffness, and its viscoelastic behavior is
included in the calculation through a temporal modulus of elasticity. In the analysis,
the ground was modeled as a set of distributed springs along the foundation
length. The frequency over time is then analytically calculated as the critical
buckling load for different instants after the structure to be loaded.

Keywords: vibration, analytical solution, Eurocode, viscoelasticity, creep,
geometric nonlinearity, material nonlinearity

1. Introduction

A column represents a continuous structural member whose vibrations are
governed by nonlinear partial differential equations for which exact analytical
solutions cannot be found, as pointed out by [1]. Columns constitute continuous
systems, and their analysis can be reduced to an analogous system containing a
single degree of freedom. The vibration mode is restricted to a configuration previ-
ously established by a mathematical function that describes the vibratory move-
ment, and the properties of the system can be expressed as generalized coordinate
functions [2]. In his study on the vibration of elastic systems applied this technique
considering the function valid throughout the problem domain. However, for real
cases, where the properties of the structural elements vary along their length, the
formulation developed for calculating the stiffness and mass must be solved by
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Dynamical Systems Theory

observing the intervals defined in the geometry. In these cases, the integrals
obtained can be solved within the limits established for each interval, i.e., the
generalized properties can be calculated for each discrete segment of the structure,
as defined by its geometry within that segment. A variety of vibration problems
using that mathematical concept were solved by [3] who mentioned a previous one
[4] where the buckling load is calculated for stepped and tapered columns and
where how laborious or even impossible it is to apply it for problems with variable
geometry is registered. With the advent of digital computers, these problems passed
to be solved by modeling that use discretization technics of the continuum [5].

To analytically define the fundamental frequency for the case modeled in this
study, all the elastic stiffness components are considered in the calculation, includ-
ing the conventional stiffness, which depends on the material behavior; the geo-
metric stiffness, which depends on the normal force acting on the structure; and the
soil parcel, which accounts for the soil-structure interaction. It is important to note
that the soil-structure interaction cannot be ignored, particularly in the case of a
monopile foundation, because it may significantly influence the dynamic behavior
of the structure [6].

The structure selected for this study is a slender reinforced concrete (RC) having
both full and hollow circular section with variable geometry, for which the natural
frequency and the critical buckling load were calculated considering all nonlinear-
ities present in the system. It is important to highlight that nonlinearities play an
important role when calculating dynamic proprieties of a system, as well pointed by
[7]. In this work, the geometric nonlinearity was taken in consideration by using the
geometric stiffness parcel into the total stiffness of the system. The nonlinearity of
the material was computed by reducing its flexural stiffness, as similarly done by
[8], reflecting the development of cracking in the concrete when bended, which is
dependent on the magnitude of the stress. Another kind of material nonlinearity is
creep, which occurs due the viscoelastic behavior of the concrete, it being consid-
ered in two ways. The first one is the mathematical model for creep predicted by
Eurocode 2 (European Standard EN 1992-1-1) [9]. The second one is a three-
parameter viscoelastic model whose parameters are adjusted in order to meet the
results obtained when using the Eurocode. In this sense, the use of the three-
parameter viscoelastic model to represent the creep of concrete brings an enormous
facility of employment for actual cases due the reduced number of variables which
are manipulated. Indeed, just one of them is necessary because two of the three
parameters can be expressed in terms of the modulus of elasticity of the concrete,

a data easily calculated for any standard procedure or obtained in laboratory.

2. Analytical solution of the structural frequency

Figure 1 presents the bar model of a structure in free vibration. Consider the
following trigonometric function, taken as valid throughout its domain:

¢$(x) =1— cos <i>’ (1)

where x is the location of the calculation, originating at the base of the
cantilever, and L is the length of the column.

That model represents a column under an axial compressive load, N;(x), with
either constant or variable properties along its length. These properties include the
geometry, elasticity/viscoelasticity, and density. Applied springs of variable
stiffness k., (x) act as the lateral soil resistance until the foundation elevation Gr.
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Figure 1.
Frame element model in free vibration.

The system is under the action of gravitational normal forces, originating from the
distributed mass along the length of the column and of a lumped mass at the tip m,.

In the case of vibration of a cantilevered column that is clamped at its base and
free at its tip, the shape function given in Eq. (1) satisfies the boundary conditions
of the problem. The use of Eq. (1) as a shape function for an actual structure with
varying geometry has been validated by [10]. This validation involved a comparison
with a computational solution derived using computational modeling by finite
element method (FEM) and other mathematical expressions.

By applying the principle of virtual work and its derivations, the dynamic
properties of the subject system are obtained. The elastic/viscoelastic conventional

stiffness is given by

L 2 2 n
oy (£) = J E, ()1, (x) <d zc(f)) dx, with Ko(t) = 3 kas(t), )

Lx—l

where for a segment s of the structure, E(¢) is the viscoelastic modulus of the
material with respect to time; I;(x) is the variable moment of inertia of the section
along the segment in relation to the considered movement, obtained by interpola-
tion of the previous and following sections and if it is constant, it is simply I; ko (t)
is the temporal term for the stiffness; Ko(¢) is the final conventional stiffness
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varying over time; and 7 is the total number of segment intervals given by the
structural geometry. In Eq. (2), obviously, ¢ vanishes when the analysis considers a
material with purely elastic, time-independent behavior. The geometric stiffness
appears as a function of the axial load, including the self-weight contribution and is
expressed as

L, n 2
k) = | [No<mo>+ 3 Njws(x)(Ls—x)g] (1) axand @)

L, Jj=s+1

Ky(mo) =Y ke(mo), (4)

s=1

where kg () is the geometric stiffness in segment s, K,(m,) is the total geo-
metric stiffness of the structure with » as defined previously, and Ny (m,) is the
concentrated force at the top, all of which are dependent on the mass m, at the tip,
given by

No(WLo) = 7’}10g. (5)

Further, N; is the normal force from the upper segments, obtained by

Nj = | m,(x)gdx. (6)

L5,1

Then, the total generalized mass is given by

M(mg) = mo + m, 7)
considering that
n L,
m=>_mg,withm, = J 77, (x) (b (x))*dx, and 77 (x) = As(x)p, (8)
s=1 Lo,

where 77, (x) is the mass distributed to each segment s, which is obtained by
multiplying the cross-sectional area, A;(x), by the density, p;, of the material in the
respective interval. Therefore, 7, (x) is the mass per unit length, and m is the
generalized mass of the system owing to the density of the material, with # as
previously defined. If the cross section has a constant area over the interval, A;(x)
will be just A;; consequently, the distributed mass will also be constant. Similarly, if
the mass m does not vary, all the other parameters that depend on it will also be
constant.

One approach for considering the participation of the soil in the vibration of the
system is to consider it as a series of vertically distributed springs that act as a
restorative force on the system. With kg,(x) denoting the spring parameter, the
effective soil stiffness (as a function of the location x along the length) is generally
defined as

L,
Ks, = Z kg, with k, = J R sos (x)¢(x)2dx, where kg, (x) = S,Ds(x), (9)
s=1

L5,1
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where the parameter Kg, is an elastic characteristic consisting of the sum of
ksos(x) along the foundation depth, which depends on the geometry of the founda-
tion D,(x) and the soil parameter S,,. Considering the normal force as positive, the
total structural stiffness is obtained as

I((l’, Wlo) =Ky (t) — I<g(m0) + Ks,. (10)

Finally, the natural frequency (in Hertz), as a function of the time and the mass
at the tip, is calculated according to Eq. (11). The great advantage of using that
equation in terms of two independent variables is that it can be employed to
calculate the critical load of buckling as well, because all the generalized parameters
are expressed as a function of the mass at the top. Details of this analytical proce-
dure can be seen in [11]:

1 I((Z’, Wlo)

ft,my) = o W. (11)

3. Creep consideration

The creep represents the increase of deformation under constant stress, which
occurs in some materials due to its viscoelastic nature. It is essential to consider it in
the analysis of slender structural elements, because the stiffness of these members is
modified as a function of the rheology of the material. Usually, viscoelasticity is
associated with creep of structural elements and can be characterized by models
where the immediate elastic deformation is increased by viscous deformation,
resulting in a temporal function for deformation. Consequently, the modulus of
elasticity must also be provided as a temporal function that provides accurate
results under normal levels of stress. Due to the viscous nature of the concrete, even
at a constant stress level, the deformation of a structural element tends to increase
over time. An increase in strain over time under constant stress is a viscoelastic
phenomenon.

3.1 Solution of the three-parameter rheological model

Mathematically, viscoelasticity can be represented by a time-dependent function
associated with rheological models capable of describing the phenomenon. It is
conceptually convenient to consider classic viscoelastic models in which there are
only two types of parameters, relating to elasticity and viscosity. Classic viscoelastic
models are obtained by arranging springs and dampers, or dashpots, in different
configurations. Springs are characterized by elastic moduli and dashpots by viscos-
ity coefficients. The best known of these mechanical models are the Maxwell model,
containing a spring in series with a dashpot, and the Kelvin-Voigt model, containing
a spring and dashpot in parallel [12]. One model used to represent the viscoelasticity
of solids is the three-parameter model, in which the elastic parameter E, is
connected to the viscoelastic Kelvin-Voigt model with parameters E, and #, which is
a simplification of Group I of the Burgers model, as shown in Figure 2.

The three-parameter model is an appropriate model for describing the visco-
elastic nature of many solids [13] and is often used to study the phenomenon in
various scientific fields. Adaptation of the Burgers model in different fields of
structural analysis can be found in [14-19]. The total deformations of the Kelvin-
Voigt model are given by € = ¢° + €”, where ¢° is the deformation of the elastic model
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Figure 2.
Viscoelastic model of three parameters.

and ¢ is the deformation of the Kelvin-Voigt model. When differentiated with
respect to time, the total deformation is obtained as

f= & +e, (12)
which includes the constitutive equations of the elastic and Kelvin-Voigt models,

respectively. Considering the modulus of elasticity for both parts, elastic and
viscous, the stress becomes

c=E,fand o = E,&" + n.s"’ ) (13)

From the previous equations, one derives the following differential equation:

E,+E,
n

E.E,

c c=E, e+ &, (14)

where 6 = 0 fort < 0 and o = 6 for ¢t > 0, with ¢ representing the time and ¢ = 0
the instant of loading application. As the stress remains constant, the derivative of
the stress with respect to time is zero. Applying the previous stress condition, the
following ordinary differential equation is found:

EE,

Ee 8 + & =00, (15)

for which the general solution for ¢ > 0, taking the initial condition £(0) = 6¢/E,,
is

e(t) = oo [El'e +Elv (1 — e%vtﬂ . (16)

From Eq. (16), it is possible to extract the temporal function for the modulus of
elasticity of the three-parameter model:

E(t) = : (17)
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Therefore, it is easily seen that for

00

t=0=e¢ 1 =1.¢0) =2 (18)
_Ey 0o (Ee + Ev)
; L0 _ S0l T o) 1
— 00 =e e(o0) EE, (19)
E.E, 00
(o) E, +E, (c0) E() (20)

It is important to note that the viscoelastic behavior of the considered material is
completely represented by the temporal modulus of elasticity and it can be used for
static or dynamic applications. For instance, the previous solution was used in
numerical simulations as can be seen in [20, 21].

It is possible to transform the parameters of the viscous part to being just a
function of the modulus of elasticity of the elastic part, which can easily be calcu-
lated by any standard procedure or obtained in the simplest laboratory. Therefore,
these parameters can be written as

Ey = aEy;n = yE,, (21)
where a is a real positive number and y brings together a temporal unit.
3.2 Model predicted by Eurocode

The method specified in European Standard EN 1992-1-1 for incorporating creep
into structural analysis considers the effects of the creep behavior and its variation
with time. Eurocode 2 provides hypothetical and model limitations for creep calcu-
lation, wherein the creep coefficient ¢ is predicted as a function of the tangent
modulus of elasticity E,. The creep deformation of concrete is computed by multi-
plying the immediate deformation by the creep coefficient. The total concrete
deformation at time ¢, under constant temperature, can be obtained as the sum of
the terms that represent the immediate deformation and creep. All the factors
related to the phenomenon, such as loading and environment humidity, are calcu-
lated under the assumption that they remain constant over the considered time
interval, affording a specific result for the creep coefficient ¢. This coefficient is
then directly introduced into the slow deformation equation and used as input data
for various procedures. The basic equations for determining the creep coefficient of
concrete over time are based on the average compressive strength f.,,, (f., = fox + 8,
fu in MPa). The creep coefficient ¢(z, t(), as defined in Eq. (22), is the product of
two factors, namely, ¢ and f.(t, to), which, respectively, characterize the effects of
the rheological properties of the concrete under environmental conditions and the
evolution of creep with time after loading of the structure:

@(t,to) = @op.(t,to). (22)

The first factor ¢o defined in Eq. (23) consists of three other factors. The first of
them, gry (given by Eq. (24)), considers concrete compressive strengths >35 MPa
(as in the case that will be seen) and accounts for the effects of the environmental
relative humidity RH, the equivalent thickness %, of the member which is a func-
tion of the cross-sectional area A, and the external perimeter #, of the member in
contact with the environment. The second one, §(f.,,) (Eq. (26)), represents the
direct effect of the resistance on ¢¢. The third, (z9) (Eq. (27)), takes into account
the age of the concrete at the beginning of loading, i.e., at .
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?0 = @ruB () B(0)s (23)
[, 1-RH/100

¢RH - |:1 + 0.1\371/—['?.'“1 :| ag, (24)
ho =2, (25)

16.8
ﬂ om) — T > (26)

Vo) =10

1

p(to) = (27)

(0.1+ 4,92

The second factor, .(¢, to) (Eq. (28)), is a function of the coefficient Sy (given
by Eq. (29) for average concrete compressive strengths upper than 35 MPa), and it
is used to regulate the combined effects of the relative humidity and the equivalent
member thickness. The percolation path of the adsorbed water in a robust section of
concrete is so large that the effects of creep due to differential moisture are less
important for slimmer sections.

[ k-t 1%
P.(t,to) = [m} s (28)
iy = 1.5 [1 + (0.012RH)18}h0 +250a3 <1500, (29)

0.7 0.2 0.5
() e () e

Thus, the creep coefficient can be obtained using Eq. (22), and the temporal
function that describes the deformation in accordance with EN 1992-1-1 can be
expressed as

(31)

B 1 @(t,tg)
et t0) = e s |

Based on the above equations, the modulus of elasticity with respect to time can
be expressed as

E(t,to) = s (32)

1
1 @(to)
o) T Eulis)

where E,(t() is the modulus of elasticity at the beginning of loading and E,(¢,g) is
the modulus of elasticity 28 days after the commencement of loading.

4. An application

The case selected for the present study involves calculating the fundamental
frequency and the critical buckling load of an actual slender reinforced concrete
pole with variable geometry that presents both geometrical and material nonlinear-
ities as shown in Figure 3.

The structure is 46 m high, which includes a 40 m superstructure with a hollow
circular section and a 6-m-deep, full circular-type foundation. The moduli of
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elasticity adopted for the superstructure and foundation are 30.24 and 24.97 GPa,
calculated by Eq. (33) considering characteristic resistances (f. at 28 days after
production) of 45 and 20 MPa, respectively:

22 (f.+8\* .
E, = T <kaT) (GPa) (f,, in MPa). (33)

A set of antennas and a platform are installed at the tip of the structure, consti-
tuting a concentrated mass of 1098 kg. Cables and a ladder are installed along the
entire length, adding a distributed mass to the system of 40 kg/m. The densities of
the reinforced concrete were defined as 2600 and 2500 kg/m? for the super- and
infrastructure, respectively. The physical nonlinearity of the material was

Figure 3.
Photographic images of the actual slender veinforced concrete.
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computed for the superstructure and the foundation reducing the gross moment of
inertia by a multiplier factor equal to 0.3, allowing the performing of a simplified
nonlinear analysis according to Eurocode 2, as presented in [22], but being possible
the use of other coefficients as explained by [23].

The foundation is a relatively deep shaft having a bell diameter of 140 cm, bell
length of 20 c¢m, shaft diameter of 80 cm, and shaft length of 580 cm. The lateral soil
resistance is represented by an elastic parameter, S, equal to 2667 kN/ m>.

The geometric details of the evaluated pole are shown in Figure 4, where g
denotes gravitational acceleration; Gr means ground; s represents each structural
segment; S, D, and th are the type, the external diameter, and the wall thickness of
the section; d;, represents the reinforcing bar diameter; 7, is the number of
reinforcing bars; and ¢” is the reinforcing cover. The slenderness ratio of the tower
structure is approximately 400.

Because this is an RC structure, it is necessary to account for the presence of
the reinforcing bars when calculating the moment of inertia, which is
accomplished by homogenizing the cross section. Therefore, according to the
theorem of parallel axis, the factors, which multiply the nominal moment of inertia
of the section in terms of the total moment of inertia of the reinforcing steel, in
the homogenized section are appropriately calculated. Studies that assure the
occurrence of the transfer of creep to the reinforcement of columns were
development by [24, 25].

5. Simulation results

Considering E, is equal to E(¢o) = E(t,g) and setting @ and y as 3.913 and
10839 seconds, respectively, and adopting an environmental humidity of 70%, the
variation of the fundamental frequency for different instants in the lifetime of the
structure can be obtained. The produced results by using the Eurocode model can
be observed in Figure 5a, and the result by using the adjusted three-parameter
viscoelastic model can be seen in Figure 5b. It is important to mention that these
chosen values for a and y were defined so that simulation leads a good agreement
for instants approaching and after 2000 days. Therefore, they were intentionally
defined so that the frequency met the same values as given by Eurocode. The choice
of these coefficients has been done because the convergence of the deformations
occurs at 4000 days, at which time the interest of the structural engineering nor-
mally lies, being, however, possible to define other pairs of values for a and y in the
case of a particular objective or even to choose which can match both curves in the
whole time interval. Therefore, the mentioned coefficients have been adjusted so
that the frequency is equalized by both models considering a precision of six sig-
nificant digits, as can be highlighted in Table 1. When the modulus of elasticity is
calculated by both models, that precision is not reached.

Figure 6 shows a comparison between results produced through both models,
considering each selected instants of time.

By using the presented dynamic procedure, the critical buckling load is deter-
mined when the frequency is zero at any arbitrary time after the structure gets into
service. Taking all the previous explanation into consideration and varying the mass
at the tip, the force acting at the top also varies according to Eq. (5), as does the
frequency of the structure that varies according to Eq. (11). The results obtained for
the buckling load for both models can be seen in Figure 7. To obtain it, a short
routine of programming has been elaborated considering increments of 0.1 kg to the
lumped mass.

10
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Figure 5.

Frequencies: (a) Eurocode model; (b) three-parameter model.
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Time Eurocode 2/three-parameter model (Hz)
0 0.098440
2000 days 0.087980
4000 days 0.087665
Table 1.

Frequencies for both models at selected instants.

Figure 6.

Comparative of frequencies to different times. (a) t = 0. (b) t = 100 days. (c) t = 500 days. (d) t = 1000 days.
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6. Conclusions

13

* Because of the viscoelastic behavior of the material, the modulus of elasticity

presents a variation along the time, reflecting on the structural frequency and
critical buckling load.

A three-parameter viscoelastic model has been adjusted to fit the same results
as predicted by Eurocode creep criteria for a specific interval of time. The use
of two parameters makes the adjustment process more flexible.

It is important to stay clear that that adjustment does not lie on the adjustment
of the modulus of the elasticity which does not have the same precision when
observed for both models; for that a dynamic analysis is important.

* This article demonstrated the possibility of adjustment of a simple model to the

standard one and how easy it is used for practical applications to calculate the
first natural frequency as the critical buckling load.

For future works, a programing routine for obtaining a finer adjustment of the
curve between the viscoelastic rheological model of three parameters and that
of the model for creep as predicted by Eurocode must be developed.

* Further, comparative analyses considering other values of environmental

humidity should be also performed.
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