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Chapter

Techniques for Calculating Two
Interesting Types of Dielectric
Materials in Straight Rectangular
Waveguides and Their
Applications
Zion Menachem

Abstract

This chapter presents two interesting types of dielectric materials in the straight
rectangular waveguides. Five examples of the different discontinuous cross sections
and complementary shapes will demonstrate. We will introduce in all case the effec-
tive technique to calculate the dielectric profile in the cross section. The first type will
demonstrate where the dielectric material is located in the center of the cross section.
The second type will demonstrate where the hollow core is located in the center of the
cross section in the case of the hollow waveguide. The two different types are
complementary shapes for two different applications. The proposed techniques relate
to the method based on Laplace and Fourier transforms and the inverse Laplace and
Fourier transforms. The method is based also on Fourier transform, thus we need use
with the image method to calculate the dielectric profile in the cross section. The
image method and periodic replication are needed for fulfilling the boundary condi-
tion of the metallic waveguide. The applications are useful for straight waveguides in
millimeter regimes, in the cases where the dielectric profile is located in the center of
the cross section, for cases where the hollow rectangle is located in the center of the
cross section, and also for complicated and discontinuous profiles in the cross section.

Keywords: wave propagation, dielectric profiles, rectangular waveguides,
dielectric materials

1. Introduction

Review of numerical and approximate methods for the modal analysis of general
optical dielectric waveguides with emphasis on recent developments has been
published [1]. In this review, interesting methods are given such as, the finite-
difference and the finite-element methods. Review of numerical methods for the
analysis of the homogeneous and inhomogeneous, isotropic and anisotropic, micro-
wave and optical dielectric waveguides with arbitrarily-shaped cross sections has
been published [2]. The main approaches as the integral equations, finite difference,
and finite element have been discussed.
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A fundamental and accurate approach to compute the attenuation of electro-
magnetic waves propagating has been proposed [3]. The propagation constant was
found by substituting the values of transverse wave numbers into the dispersion
relation. A Green’s dyadic for describing the propagating electromagnetic waves in a
rectangular dielectric waveguide has been developed [4]. The use of Green’s dyadic
developed in order to calculate the effect of small perturbations upon the system.

An analytical method for solution of one-dimensional optical systems, based on
the differential transfer matrices has been presented [5]. An approach to solve the
problem of the propagation of electromagnetic waves in unidimensional media with
an arbitrary variation of their dielectric permittivity has been proposed [6]. This
method was deduced from the Maxwell equations with a minimum of approxima-
tions and allows a full vectorial description of both the electric and magnetic fields
through the direct calculation of their cartesian coordinates. The equations permit
the simulation of materials with a continuous variation of their dielectric permit-
tivity without approximating them by discontinuous layered media, reducing so the
computational effort of the models.

An analytical method for solution of non-homogeneous anisotropic optical sys-
tems, based on the extension of transfer matrices into differential form has been
presented [7]. This approach can be used for exact calculation of various functions
including reflection and transmission coefficients, band structures and bound states.
A full-wave analysis of lossy dielectric waveguides using a hybrid vector finite ele-
ment method has been presented [8]. The direct matrix solution technique with
minimum degree of reordering has been combined with the modified Lanczos algo-
rithm to solve for the resultant sparse generalized eigenmatrix equation efficiently.

Three-dimensional finite-element method with edge elements for electromag-
netic waveguide discontinuities has been proposed [9]. This paper shows that the
finite-element method using edge elements succeeds in suppressing spurious solu-
tions and moreover that this method succeeds in the analysis of three-dimensional
electromagnetic waveguide problems with metal wedges. An analytical approach
based on scalar wave approximation to estimate the modal dispersion characteris-
tics and cutoff condition of an optical waveguide has been presented [10]. This
approach has an arbitrary and uniform core cross-section. The structure represents
the core of a circular waveguide which is compressed at both the ends of a diameter.

Propagation characteristics of modes in some rectangular waveguides using the
finite-difference time-domain method have been studied [11]. The method in this
paper was used to determine the modal characterization of rectangular waveguide
structures by means of a least-square non-linear fitting to a theoretical modal
expansion. Wave propagation along a rectangular waveguide with slowly varying
width has been investigated [12] with the help of field theory and approximate
circuit theory. Many properties of the modulated periodic structure, e.g., the fre-
quency dependence of the propagation constant, group and phase velocities, and
the electric field axial variation for the fundamental space harmonic and its filter-
like property have been investigated.

A method for measuring samples using a partially-filled waveguide has been
presented [13]. A mode-matching technique was used to determine the fields in the
three regions. An advantageous finite element method for the rectangular wave-
guide problem has been developed [14] by which complex propagation character-
istics may be obtained for arbitrarily shaped waveguide.

A method has been introduced for the frequency domain analysis of arbitrary
longitudinally inhomogeneous waveguides [15]. The integral equations of the lon-
gitudinally inhomogeneous waveguides, converted from their differential equa-
tions, were solved using the method of moments. A method has been introduced for
the frequency domain analysis of arbitrarily loaded lossy and dispersive
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nonuniform transmission lines [16]. In this method, all distributed primary param-
eters of the line and also the voltage and current distribution along the line were
considered as a Taylor’s series.

A technique based on the two-dimensional Fourier transform has been
presented [17] and applied to the study of nonlinear wave propagation phenomena
in one-dimensional, finite, nonlinear transmission lines.

A method for calculating the modes of arbitrarily shaped dielectric waveguides
has been presented [18]. It consists of expanding the field in a two-dimensional
Fourier series. The expansion has been used to convert the scalar wave equation into
a matrix eigenvalue equation. A transfer matrix function for the analysis of electro-
magnetic wave propagation along the straight dielectric waveguide with arbitrary
profiles has been proposed [19]. This method is based on the Laplace and Fourier
transforms and the inverse Laplace and Fourier transforms.

2. Complicated and discontinuous profiles in the cross section

In this chapter, we present some examples of dielectric structures as shown in
Figure 1a–e. The method is based on Fourier transform, thus we need use with the
image method and periodic replication for fulfilling the boundary conditions of the
metallic waveguide. We relate also to the complementary shapes for different appli-
cations. The periodicity and the symmetry properties are chosen to force the bound-
ary conditions at the location of the walls in real problem, by extending the

Figure 1.
The image method and periodic replication for five examples. (a). The cross section entirely filled with the
dielectric material, (b). The dielectric material is located in the center of the cross section, (c). The hollow
waveguide where the hollow rectangle is located in the center of the cross section, (d). The cross section consists
with four dielectric profiles, and (e). The hollow waveguide with four hollow rectangles.
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waveguide region (0≤ x≤ a, and 0≤ y≤ b) to a fourfold larger regions (�a≤ x≤ a,
and �b≤ y≤ b), as larger regions, as described in [19]. Figure 1a shows the case
where the cross section entirely filled with the dielectric material. The dielectric
material in Figure 1b is located in the center of the cross section. Figure 1c represents
the hollow waveguide where the hollow rectangle is located in the center of the cross
section. The cross section of Figure 1d consists with four dielectric profiles in the
cross section. Figure 1e represents the hollow waveguide with four hollow rectangles.

Note that the geometries from Figure 1a–e become more complex. Calculating of
the dielectric profile for Figure 1a is the simplest and for Figure 1e is the most
complicated in relation to the examples described in these examples. The integrals of
the dielectric profiles of the geometries described in Figure 1a and b can be calculated
by analytical form and without solving numerical form. The calculation of the dielec-
tric profile for the geometry of Figure 1c for a hollow rectangle in the center is
interesting in the case of hollow waveguide, but it is more complicated than the case
of Figure 1b. Therefore, in this case we should calculate the dielectric profile by
substracting the dielectric profile of Figure 1b from the dielectric profile of Figure 1a.
The calculation of the integrals of the dielectric profiles for the geometries depicted in
Figure 1d and e are already more complicated, and in such cases the proposed
techniques require that the integrals be solved numerically. We will explain the
proposed technique for calculating the dielectric profile for each case.

Figure 2c represents an example of receiving a hollowwaveguidewhere the hollow
rectangle is located in the center by substracting thewaveguidewith dielectricmaterial

Figure 2.
Example of receiving a hollow waveguide where the hallow rectangle is located in the center (c) by substracting
the waveguide with dielectric material located at the center of the cross section (b) from the waveguide entirely
filled with the dielectric material (a), and by using the image method (d).

Figure 3.
Example of receiving a hollow waveguide with four hollow rectangles (c) by substracting the four dielectric
rectangles (b) from the waveguide entirely filled with the dielectric material (a), and by using the image
method (d).
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located at the center of the cross section (Figure 2b) from thewaveguide entirely filled
with the dielectricmaterial (Figure 2a), and by using the imagemethod (Figure 2d).
Figure 3c represents an example of receiving a hollowwaveguidewith four hollow
rectangles by substracting the four dielectric rectangles (Figure 3b) from thewaveguide
entirely filledwith the dielectricmaterial (Figure 3a), and by usingwith the image
method (Figure 3d).

3. The analytical technique to calculate the dielectric profiles

This section presents a technique to calculate the dielectric profile for the two
inhomogeneous geometries of the cross section, as shown in Figure 4a and b.

Figure 4a and b show the cross section of Figure 1b and c, respectively, with the
relevant parameters. These figures represent two examples of the complementary
shapes in the cross section. The periodic replication is shown in Figure 4c by using
with the image method. The dielectric material in Figure 4a is located in the center
of the cross section. The hollow rectangle in Figure 4b is located in the center of the
cross section in the case of the hollow waveguide.

The dielectric profile g x, yð Þ is given according to ϵ x, yð Þ ¼ ϵ0 1þ g x, yð Þð Þ. If
g x, yð Þ ¼ g0 and ϵr x, yð Þ ¼ ϵr, then we obtain that g0 = ϵr � 1. According to
Figure 4a and c for g x, yð Þ ¼ g0, we obtain

g n,mð Þ¼
g0
4ab

ða

�a
dx

ðb

�b
exp �j kxxþ kyy

� �� �

dy

¼
g0
4ab

ðx12

x11

dx

ðy12

y11

exp �j kxxþ kyy
� �� �

dyþ

ð�x11

�x12

dx

ðy12

y11

exp �j kxxþ kyy
� �� �

dy

(

þ

ð�x11

�x12

dx

ð�y11

�y12

exp �j kxxþ kyy
� �� �

dyþ

ðx12

x11

dx

ð�y11

�y12

exp �j kxxþ kyy
� �� �

dy

)

¼
g0
4ab

ðx12

x11

dx

ðy12

y11

exp �j kxxþ kyy
� �� �

dyþ

ðx11

x12

� dx

ðy12

y11

exp �j �kxxþ kyy
� �� �

dy

(

þ

ðx11

x12

� dx

ðy11

y12

� exp �j �kxx� kyy
� �� �

dyþ

ðx12

x11

dx

ðy11

y12

� exp �j kxx� kyy
� �� �

dy

)

¼
g0
4ab

ðx12

x11

exp j kxxð Þ½ �dx

ðy12

y11

exp j kyy
� �� �

dyþ

ðx12

x11

exp j kxxð Þ½ �dx

ðy12

y11

exp �j kyy
� �� �

dy

(

þ

ðx12

x11

exp �j kxxð Þ½ �dx

ðy12

y11

exp j kyy
� �� �

dyþ

ðx12

x11

exp �j kxxð Þ½ �dx

ðy12

y11

exp �j kyy
� �� �

dy

)

¼
g0
4ab

ðx12

x11

dx

ðy12

y11

exp �j kxxþ kyy
� �� �

dyþ

ðx12

x11

dx

ðy12

y11

exp j kxx� kyy
� �� �

dy

(

þ

ðx12

x11

dx

ðy12

y11

exp j kxxþ kyy
� �� �

dyþ

ðx12

x11

dx

ðy12

y11

exp �j kxx� kyy
� �� �

dy

)

¼
g0
2ab

ðx12

x11

exp jkxx
� �

þ exp �jkxx
� �� �

dx

ðy12

y11

cos kyy
� �

dy

)

,

(

(1)
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where kx ¼ nπxð Þ=a, and ky ¼ mπyð Þ=b. The derivatives of the dielectric profile
are calculated according to gx x, yð Þ ¼ 1=ϵ x, yð Þð Þ dϵ x, yð Þ=dxð Þ, and
gy x, yð Þ ¼ 1=ϵ x, yð Þð Þ dϵ x, yð Þ=dyð Þ, where ϵ x, yð Þ ¼ ϵ0 1þ g x, yð Þð Þ.

For the cross section as shown in Figure 4a and according to Figure 4c, the
center of the dielectric rectangle is located at (a/2, b/2). According to Figure 4a and
c, the Fourier components of the dielectric profile are given by

g1 n,mð Þ ¼

g0
4ab

4cdð Þ n ¼ 0, m ¼ 0

g0
4ab

8d

k0ym
sin

k0ymc

2

� �

cos
k0ymb

2

� �� �

n ¼ 0, m 6¼ 0

g0
4ab

8c

k0xn
sin

k0xnd

2

� �

cos
k0xna

2

� �� �

n 6¼ 0, m ¼ 0

g0
4ab

16

k0xk0ynm
sin

k0xnd

2

� �

cos
k0xna

2

� �

sin
k0ymc

2

� �

cos
k0ymb

2

� �� �

n 6¼ 0, m 6¼ 0

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

:

(2)

Similarly, for the cross section entirely filled with the dielectric material as
shown in Figure 1a, the Fourier components of the dielectric profile are given by

g2 n,mð Þ ¼

g0 n ¼ 0, m ¼ 0

g0
4ab

8a

k0ym
sin

k0ymb

2

� �

cos
k0ymb

2

� �� �

n ¼ 0, m 6¼ 0

g0
4ab

8b

k0xn
sin

k0xna

2

� �

cos
k0xna

2

� �� �

n 6¼ 0, m ¼ 0

g0
4ab

16

k0xk0ynm
sin

k0xna

2

� �

cos
k0xna

2

� �

sin
k0ymb

2

� �

cos
k0ymb

2

� �� �

n 6¼ 0, m 6¼ 0

8

>

>

>
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>

>

>

>

>
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>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

:

(3)

The Fourier components of the dielectric profile (g n,mð Þ) of the hollow rectan-
gular waveguide with the hollow rectangle in the center of the cross section

Figure 4.
Two examples of the complementary shapes of profiles in the cross section and the periodic replication, (a). The
dielectric material is located in the center of the cross section with the relevant parameters of Figure 1b, (b).
The hollow rectangle is located in the center of the cross section in the case of the hollow waveguide with the
relevant parameters of Figure 1c, (c). The periodic replication according to the image method.
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(Figure 4b) are calculated by subtracting the dielectric profile of the waveguide
with the dielectric material in the core ( g1 n,mð Þ) as shown in Figure 4a from the
dielectric profile of the waveguide entirely with the dielectric material (g2 n,mð Þ) as
shown in Figure 1a. Namely, the Fourier components of the dielectric profile
( g n,mð Þ) are given by g2 n,mð Þ � g1 n,mð Þ. The two different types of the cross
sections are complementary shapes for two different applications.

4. The numerical technique to calculate the dielectric profiles

4.1 Calculation of the dielectric profile according to the ωε function

Figure 5a and b show the cross section of Figure 1d and e, respectively, with the
relevant parameters. These figures represent two examples of the complementary
shapes in the cross section. The cross section consists with four dielectric profiles as
shown in Figure 5a. The hollow waveguide with four hollow rectangles is shown in
Figure 5b. The centers of the first, the second, the third and the firth dielectric
rectangles in Figure 5a and hollow rectangles in Figure 5b are located at the points
(a/4, b/4), (3a/4, b/4), (a/4, 3b/4), and (3a/4, 3b/4), respectively. The calculation
of the elements of the matrix in Figure 5b is already more complicated. Thus, the
Fourier components of the dielectric profile ( g n,mð Þ) of the hollow waveguide with
four hollow rectangles in Figure 5b are calculated by subtracting the dielectric
profile of the cross section with four dielectric profiles in Figure 5a from the
dielectric profile of the waveguide entirely with the dielectric material ( g2 n,mð Þ) as
shown in Figure 1a, and according to Eq. (3).

In order to calculate the elements of the dielectric profiles of the inhomogeneous
geometry of the cross section in Figure 5a, we can use with the ωε function [20],

as shown in Figure 6. The ωε function is defined as ωε rð Þ ¼ Cε exp �ε2= ε2ð½ � rj j2Þ�
for ∣r∣>ε, where Cε is a constant, and

Ð

ωε rð Þdr ¼ 1. In the limit ε ! 0, the ωε

function is shown in Figure 6.

Figure 5.
Two examples of the complementary shapes of profiles in the cross section and their relevant parameters. The
centers of the first, the second, the third and the firth rectangles are located at the points (a/4, b/4), (3a/4, b/4),
(a/4, 3b/4), and (3a/4, 3b/4), respectively: (a) the cross section consists with four dielectric profiles with the
relevant parameters of Figure 1d; (b) the hollow waveguide with four hollow rectangles with the relevant
parameters of Figure 1e.
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4.2 The technique based on ωε function for the inhomogeneous cross section

It is good idea to calculate the dielectric profile of Figure 4a again, by using the
ωε function, and before considering to the more complicated geometry as shown in
Figure 5a. The second way to calculate the dielectric profile of Figure 4a is given
according to the ωε function, where the dielectric profile is located at (a/2, b/2) and
is given by

g xð Þ ¼

g0 exp 1� g1 xð Þ
� �

a� d� εð Þ=2≤ x< a� dþ εð Þ=2

g0 a� dþ εð Þ=2< x< aþ d� εð Þ=2

g0 exp 1� g2 xð Þ
� �

aþ d� εð Þ=2≤ x< aþ dþ εð Þ=2

0 else

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

, (4)

and

g yð Þ ¼

g0 exp 1� g3 yð Þ
� �

b� c� εð Þ=2≤ y< b� cþ εð Þ=2

g0 b� cþ εð Þ=2< y< bþ c� εð Þ=2

g0 exp 1� g4 yð Þ
� �

bþ c� εð Þ=2≤ y< bþ cþ εð Þ=2

0 else

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

, (5)

where

g1 xð Þ ¼
ε2

ε2 � x� a� dþ εð Þ=2½ �2
, g2 xð Þ ¼

ε2

ε2 � x� aþ d� εð Þ=2½ �2
,

g3 yð Þ ¼
ε2

ε2 � y� b� cþ εð Þ=2½ �2
, g4 yð Þ ¼

ε2

ε2 � y� bþ c� εð Þ=2½ �2
:

Similarly, we can calculate the rectangular dielectric profile according to the
location of the profile in the cross section of the waveguide.

The elements of the matrix in Fourier space of the inhomogeneous geometry
described in Figure 4a are given in the case of b 6¼ c by

Figure 6.
The ωε function to calculate the elements of the dielectric profiles of the inhomogeneous geometry.
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g n,mð Þ ¼ 

g0
ab

ð a�dþεð Þ=2

a�d�εð Þ=2
exp 1� g1 xð Þ

� �

cos
nπx

a

� 	

dx

(

þ

ð aþd�εð Þ=2

a�dþεð Þ=2
cos

nπx

a

� 	

dxþ

ð aþdþεð Þ=2

aþd�εð Þ=2
exp 1� g2 xð Þ

� �

cos
nπx

a

� 	

dx

)

ð b�cþεð Þ=2

b�c�εð Þ=2
exp 1� g3 yð Þ

� �

cos
mπy

b

� 	

dy

(

þ

ð bþc�εð Þ=2

b�cþεð Þ=2
cos

mπy

b

� 	

dyþ

ð bþcþεð Þ=2

bþc�εð Þ=2
exp 1� g4 yð Þ

� �

cos
mπy

b

� 	

dy

)

:

(6)

4.3 The technique based on ωε function for the inhomogeneous cross section

Figure 5a shows the cross section where the centers of the first, the second, the
third and the firth rectangles are located at the points (a/4, b/4), (3a/4, b/4), (a/4,
3b/4), and (3a/4, 3b/4), respectively, and for ϵr = 1.1, 1.2, 1.3 and 1.4, respectively.
We assume for simplicity that d1 ¼ d2 ¼ d and c1 ¼ c2 ¼ c, according to Figure 5a.

The dielectric profile of Figure 5a is given according to the ωε function by

g xð Þ ¼

g0 exp 1� q1 xð Þ
� �

a=2ð Þ � d1 � εð Þ=2≤ x< a=2ð Þ � d1 þ εð Þ=2

g0 a=2ð Þ � d1 þ εð Þ=2< x< a=2ð Þ þ d1 � εð Þ=2

g0 exp 1� q2 xð Þ
� �

a=2ð Þ þ d1 � εð Þ=2≤ x< a=2ð Þ þ d1 þ εð Þ=2

g0 exp 1� q3 xð Þ
� �

3a=2ð Þ � d2 � εð Þ=2≤ x< 3a=2ð Þ � d2 þ εð Þ=2

g0 3a=2ð Þ � d2 þ εð Þ=2< x< 3a=2ð Þ þ d2 � εð Þ=2

g0 exp 1� q4 xð Þ
� �

3a=2ð Þ þ d2 � εð Þ=2≤ x< 3a=2ð Þ þ d2 þ εð Þ=2

0 else
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>

:

, (7)

and

g yð Þ ¼

g0 exp 1� q5 yð Þ
� �

b=2ð Þ � c1 � εð Þ=2≤ y< b=2ð Þ � c1 þ εð Þ=2

g0 b=2ð Þ � c1 þ εð Þ=2< y< b=2ð Þ þ c1 � εð Þ=2

g0 exp 1� q6 yð Þ
� �

b=2ð Þ þ c1 � εð Þ=2≤ y< b=2ð Þ þ c1 þ εð Þ=2

g0 exp 1� q7 yð Þ
� �

3b=2ð Þ � c2 � εð Þ=2≤ y< 3b=2ð Þ � c2 þ εð Þ=2

g0 3b=2ð Þ � c2 þ εð Þ=2< y< 3b=2ð Þ þ c2 � εð Þ=2

g0 exp 1� q8 yð Þ
� �

3b=2ð Þ þ c2 � εð Þ=2≤ y< 3b=2ð Þ þ c2 þ εð Þ=2

0 else
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:

, (8)

where

q1 xð Þ ¼
ε2

ε2 � x� a=2ð Þ � d1 þ εð Þ=2½ �2
, q2 xð Þ ¼

ε2

ε2 � x� a=2ð Þ þ d1 � εð Þ=2½ �2
,

q3 xð Þ ¼
ε2

ε2 � x� 3a=2ð Þ � d2 þ εð Þ=2½ �2
, q4 xð Þ ¼

ε2

ε2 � x� 3a=2ð Þ þ d2 � εð Þ=2½ �2

q5 yð Þ ¼
ε2

ε2 � y� b=2ð Þ � c1 þ εð Þ=2½ �2
, q6 yð Þ ¼

ε2

ε2 � y� b=2ð Þ þ c1 � εð Þ=2½ �2
,

q7 yð Þ ¼
ε2

ε2 � y� 3b=2ð Þ � c2 þ εð Þ=2½ �2
, q8 yð Þ ¼

ε2

ε2 � y� 3b=2ð Þ þ c2 � εð Þ=2½ �2
:
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The elements of the matrix for the inhomogeneous geometry of the cross section
of Figure 5a are calculated in Fourier space by

g n,mð Þ ¼ 

g0
ab

ð a=2ð Þ�d1þεð Þ=2

a=2ð Þ�d1�εð Þ=2
exp 1� q1 xð Þ

� �

cos
nπx

a

� 	

dx

(

þ

ð a=2ð Þþd1�εð Þ=2

a=2ð Þ�d1þεð Þ=2
cos

nπx

a

� 	

dxþ

ð a=2ð Þþd1þεð Þ=2

a=2ð Þþd1�εð Þ=2
exp 1� q2 xð Þ

� �

cos
nπx

a

� 	

dx

þ

ð 3a=2ð Þ�d2þεð Þ=2

3a=2ð Þ�d2�εð Þ=2
exp 1� q3 xð Þ

� �

cos
nπx

a

� 	

dx

þ

ð 3a=2ð Þþd2�εð Þ=2

3a=2ð Þ�d2þεð Þ=2
cos

nπx

a

� 	

dxþ

ð 3a=2ð Þþd2þεð Þ=2

3a=2ð Þþd2�εð Þ=2
exp 1� q4 xð Þ

� �

cos
mπy

b

� 	

dx

)

ð b=2ð Þ�c1þεð Þ=2

b=2ð Þ�c1�εð Þ=2
exp 1� q5 yð Þ

� �

cos
mπy

b

� 	

dy

(

þ

ð b=2ð Þþc1�εð Þ=2

b=2ð Þ�c1þεð Þ=2
cos

mπy

b

� 	

dyþ

ð b=2ð Þþc1þεð Þ=2

b=2ð Þþc1�εð Þ=2
exp 1� q6 yð Þ

� �

cos
mπy

b

� 	

dy

þ

ð 3b=2ð Þ�c2þεð Þ=2

3b=2ð Þ�c2�εð Þ=2
exp 1� q7 yð Þ

� �

cos
mπy

b

� 	

dy

þ

ð 3b=2ð Þþc2�εð Þ=2

3b=2ð Þ�c2þεð Þ=2
cos

mπy

b

� 	

dyþ

ð 3b=2ð Þþc2þεð Þ=2

3b=2ð Þþc2�εð Þ=2
exp 1� q8 yð Þ

� �

cos
mπy

b

� 	

dy

)

:

(9)

According to Ref. [19]. The cyclic matrix G is given by the form

G ¼

g00 g�10 g�20 … g�nm … g�NM

g10 g00 g�10 … g� n�1ð Þm … g� N�1ð ÞM

g20 g10 ⋱ ⋱ ⋱

⋮ g20 ⋱ ⋱ ⋱

gnm ⋱ ⋱ ⋱ g00 ⋮

⋮

gNM … … … … … g00

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

(10)

Similarly, the Gx and Gy matrices are obtained by the derivatives of the Fourier

components of the dielectric profile. These matrices relate to the method that
based on the Laplace and Fourier transforms, the inverse Laplace and Fourier
transforms [19].

The proposed technique to calculate the elements of the matrix G relates to the
method [19]. This method becomes an improved method by using the proposed
technique also for discontinuous problems of the hollow rectangular waveguide.

5. Numerical results

This section presents several examples for the different geometries in the cross
section. Five examples of the different discontinuous cross sections and comple-
mentary shapes are demonstrated in Figure 1a–e. All the next graphical results are
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demonstrated as a response to a half-sine (TE10) input-wave profile and the inho-
mogeneous geometries of the cross section.

Figure 7a–e shows the results of the output field as a response to a half-sine
(TE10) input-wave profile for the rectangular dielectric profile (Figure 4a) in the
rectangular cross section for ϵr = 3, 5, 7, and 10, respectively, where a = b = 20 mm,
and c = d = 5 mm. The center of the dielectric rectangle is located in the center of the
cross section at the point (a/2, b/2), where ϵr = 3, 5, 7, and 10, respectively. The
output field in the same cross section of Figure 7a–d is shown in Figure 7e for the x-
axis where y = b/2 = 10 mm, where ϵr = 3, 5, 7, and 10, respectively. The other
parameters are z = 15 cm, k0 = 167 1=m, λ = 3.75 cm, and β = 58 1=m.

The results of Figure 7a–e are demonstrated for ϵr = 3, 5, 7, and 10, respectively.
The results are strongly affected by the half-sine (TE10) input-wave profile, and the
location of the center of the dielectric material.

The output field for the hollow rectangular waveguide where the dielectric
material is located between the hollow rectangle and the metal is shown in

Figure 7.
The output field as a response to a half-sine (TE10) input-wave profile for the rectangular dielectric profile
Figure 4a in the rectangular cross section, where a = b = 20 mm, and c = d = 5 mm. The center of the
rectangle dielectric profile is located in the center of the cross section, for (a) ϵr = 3, for (b) ϵr = 5, for (c) ϵr = 7,
and for (d) ϵr = 10. (e). The output field in the same cross section of the results (a–d) for x-axis and where
y = b/2 = 10 mm, for the values of ϵr = 3, 5, 7, and 10, respectively.
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Figure 8a–d, where a = b = 20 mm, and c = d = 14 mm. In this case the thickness of
the dielectric layer is equal to 3 mm (e = f = 3 mm). The results are demonstrated for
ϵr = 2.5, ϵr = 3, ϵr = 3.5, and ϵr = 4, respectively. The output field in the same cross
section of Figure 8a–d is shown in Figure 8e, for εr = 2.5, 3, 3.5, and 4, respectively,
for x-axis where y = b/2 = 10 mm. In this case, z = 15 cm, k0 = 167 1=m, λ = 3.75 cm,
and β = 58 1=m. These results are shown for ϵr = 2.5, 3, 3.5, and 4, respectively, and
these results are strongly affected by the half-sine (TE10) input-wave profile, the
location of the center of the dielectric material, and the thickness of the dielectric
material between the hollow rectangle and the metal.

We can find the relevant parameters to obtain the Gaussian behavior of the
output field. We can show that the Gaussian behavior is obtained when the thick-
ness of the dielectric layer is equal to 3 mm, as shown in the results of Figure 8a–d.
The output results are strongly affected by the thickness of the dielectric layer.

Figure 9a–d shows the results of the output field as a response to a half-sine
(TE10) input-wave profile for the cross section with four dielectric profiles, as

Figure 8.
The output field as a response to a half-sine (TE10) input-wave profile for the hollow rectangular waveguide
where the hollow rectangle is located in the center of the cross section Figure 4b, where a = b = 20 mm,
c = d = 14 mm. The thickness of the dielectric layer is equal to 3 mm (e = f = 3 mm). The results are shown for
(a) ϵr = 2.5, for, (b) ϵr = 3, for, (c) ϵr = 3.5, and for, (d) ϵr = 4, (e) the output field in the same cross section of
the results (a–d) is shown for x-axis and where y = b/2 = 10 mm, for ϵr = 2.5, 3, 3.5, and 4, respectively.
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shown in Figure 5a. In this example we suppose that a = b = 20 mm, c = d = 0.4 mm,
z = 15 cm, the centers of the first, the second, the third, and the firth dielectric
rectangles are located at the points (a/4, b/4), (3a/4, b/4), (a/4, 3b/4), and (3a/4,
3b/4), respectively, and for εr = 1.1, 1.2, 1.3 and 1.4, respectively. The other param-
eters are k0 = 167 1=m, λ = 3.75 cm and β = 58 1=m. By increasing the parameter ϵr
from 1.1 to 1.4, the output dielectric profile increased, the output profile of the half-
sine (TE10) profile decreased, and the output amplitude increased. These results are
strongly affected by the half-sine (TE10) input-wave profile, and the locations of the
rectangular profiles along x-axis and y-axis.

Figure 10a–d shows the results of the output field as a response to a half-sine
(TE10) input-wave for the hollow waveguide with four hollow rectangles, where
a = b = 20 mm, c = d = 3.3 mm, and z = 15 cm, ϵr = 1.2, 1.3, 1.4, and 1.5, respectively.
The centers of the first, the second, the third and the firth hollow rectangles are
located at the points (a/4, b/4), (3a/4, b/4), (a/4, 3b/4), and (3a/4, 3b/4), respec-
tively. The other parameters are k0 = 167 1=m, λ = 3.75 cm and β = 58 1=m. These
results are strongly affected by the half-sine (TE10) input-wave profile, and the
locations of the rectangular profiles along x-axis and y-axis.

By increasing only the parameter ϵr, the output dielectric profile increased, the
output profile of the half-sine (TE10) profile decreased, and the output amplitude
increased. These results are strongly affected by the half-sine (TE10) input-wave
profile, and the locations of the rectangular profiles along x-axis and y-axis.

The applications are useful for straight waveguides in millimeter regimes, in the
cases where the dielectric profile is located in the center of the cross section, for the
cases where the hollow rectangle is located in the center of the cross section, and
also for complicated and discontinuous profiles in the cross section.

Figure 9.
The output field as a response to a half-sine (TE10) input-wave profile for the cross section with four
dielectric profiles, as shown in Figure 5a. The centers of the first, the second, the third and the firth dielectric
rectangles are located at the points (a/4, b/4), (3a/4, b/4), (a/4, 3b/4), and (3a/4, 3b/4), respectively.
The parameters are a = b = 20 mm, c = d = 0.4 mm, and z = 15 cm, where (a). ϵr = 1.1; (b). ϵr = 1.2;
(c). ϵr = 1.3; (d). ϵr = 1.4.
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6. Conclusions

This chapter presents two interesting types of dielectric materials in the straight
rectangular waveguides and their applications. Five examples of the different dis-
continuous cross section were demonstrated. The effective technique was proposed
for all case of Figure 1a–e, in order to calculate the dielectric material in the specific
cross section.

The proposed techniques are very important to understand the influence of the
dielectric materials and the hollow rectangles in all case of discontinuous geometry in
the cross section. All the graphical results are demonstrated as a response to a half-
sine (TE10) input-wave profile. The proposed techniques relate to the method based
on Laplace and Fourier transforms and the inverse Laplace and Fourier transforms.

The method is based on Fourier transform, thus we need use with the image
method to calculate the dielectric profile in the cross section. The image method and
periodic replication are needed for fulfilling the boundary condition of the metallic
waveguide.

Figure 8a–e relates to the hollow rectangular waveguide where the hollow
rectangle is located in the center of the cross section as shown in Figure 4b. We can
find the relevant parameters to obtain the Gaussian behavior of the output field.
From the results of Figure 8a–e, the Gaussian behavior is obtained when the
thickness of the dielectric layer is equal to 3 mm. The output results are strongly
affected by the thickness of the dielectric layer.

By increasing only the parameter ϵr, the output dielectric profile increased, the
output profile of the half-sine (TE10) profile decreased, and the output amplitude

Figure 10.
The output field as a response to a half-sine (TE10) input-wave profile for the hollow waveguide with four
hollow rectangles, as shown in Figure 5b. The centers of the first, the second, the third and the firth hollow
rectangles are located at the points (a/4, b/4), (3a/4, b/4), (a/4, 3b/4), and (3a/4, 3b/4), respectively. The
parameters are a = b = 20 mm, c = d = 3.3 mm, and z = 15 cm, where hollow waveguide with four hollow
rectangles, as shown in Figure 1e, (a). ϵr = 1.5; (b). ϵr = 2; (c). ϵr = 2.5; (d). ϵr = 3.
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increased. The results are strongly affected by the half-sine (TE10) input-wave
profile, the location of the center of the dielectric material, and the thickness of the
dielectric material between the hollow rectangle and the metal.

The applications are useful for straight waveguides in millimeter regimes, in the
cases where the dielectric profile is located in the center of the cross section, for
cases where the hollow rectangle is located in the center of the cross section, and
also for complicated and discontinuous profiles in the cross section.
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