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Chapter

Boundary Element Model
for Nonlinear Fractional-Order
Heat Transfer in Magneto-
Thermoelastic FGA Structures
Involving Three Temperatures
Mohamed Abdelsabour Fahmy

Abstract

The principal objective of this chapter is to introduce a new fractional-order
theory for functionally graded anisotropic (FGA) structures. This theory called
nonlinear uncoupled magneto-thermoelasticity theory involving three tempera-
tures. Because of strong nonlinearity, it is very difficult to solve the problems
related to this theory analytically. Therefore, it is necessary to develop new numer-
ical methods for solving such problems. So, we propose a new boundary element
model for the solution of general and complex problems associated with this theory.
The numerical results are presented graphically in order to display the effect of the
graded parameter on the temperatures and displacements. The numerical results
also confirm the validity and accuracy of our proposed model.

Keywords: boundary element method, fractional-order heat transfer, functionally
graded anisotropic structures, nonlinear uncoupled magneto-thermoelasticity,
three temperatures

1. Introduction

Functionally graded material (FGM) is a special type of advanced inhomoge-
neous materials. Functionally graded structure is a mixture of two or more distinct
materials (usually heat-resisting ceramic on the outside surface and fracture-
resisting metal on the inside surface) that have specified properties in specified
direction of the structure to achieve a require function [1, 2]. This feature enables
obtaining structures with the best of both material’s properties, and suitable for
applications requiring high thermal resistance and high mechanical strength [3–12].

Functionally Graded Materials have been wide range of thermoelastic applica-
tions in several fields, for example, the water-cooling model of a fusion reactor
divertor is one of the most widely used models in industrial design, which is
consisting of a tungsten (W) and a copper (Cu), that subjected to a structural
integrity issue due to thermal stresses resulted from thermal expansion mismatch
between the bond materials. Recently, functionally graded tungsten (W)–copper
(Cu) has been developed by using a precipitation-hardened copper alloy as matrix
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instead of pure copper, to overcome the loss of strength due to the softening of the
copper matrix.

The carbon nanotubes (CNT) in FGM have new applications such as reinforced
functionally graded piezoelectric actuators, reinforced functionally graded
polyestercalcium phosphate materials for bone replacement, reinforced function-
ally graded tools and dies for reduce scrap, better wear resistance, better thermal
management, and improved process productivity, reinforced metal matrix func-
tionally graded composites used in mining, geothermal drilling, cutting tools, drills
and machining of wear resistant materials. Also, they used as furnace liners and
thermal shielding elements in microelectronics.

There are many areas of application for elastic and thermoelastic functionally
graded materials, for example, industrial applications such as MRI scanner cryo-
genic tubes, eyeglass frames, musical instruments, pressure vessels, fuel tanks,
cutting tool inserts, laptop cases, wind turbine blades, firefighting air bottles, dril-
ling motor shaft, X-ray tables, helmets and aircraft structures. Automobiles appli-
cations such as combustion chambers, engine cylinder liners, leaf springs, diesel
engine pistons, shock absorbers, flywheels, drive shafts and racing car brakes.
Aerospace applications rocket nozzle, heat exchange panels, spacecraft truss struc-
ture, reflectors, solar panels, camera housing, turbine wheels and Space shuttle.
Submarine applications such as propulsion shaft, cylindrical pressure hull, sonar
domes, diving cylinders and composite piping system. Biotechnology applications
such as functional gradient nanohydroxyapatite reinforced polyvinyl alcohol gel
biocomposites. Defense applications such as armor plates and bullet-proof vests.
High-temperature environment applications such as aerospace and space vehicles.
Biomedical applications such as orthopedic applications for teeth and bone replace-
ment. Energy applications such as energy conversion devices and as thermoelectric
converter for energy conservation. They also provide thermal barrier and are used
as protective coating on turbine blades in gas turbine engine. Marine applications
such as parallelogram slabs in buildings and bridges, swept wings of aircrafts and
ship hulls. Optoelectronic applications such as automobile engine components,
cutting tool insert coating, nuclear reactor components, turbine blade, tribology,
sensors, heat exchanger, fire retardant doors, etc.

According to continuous and smooth variation of FGM properties throughout in
depth, there are many laws to describe the behavior of FGM such as index [13],
sigmoid law [14], exponential law [15] and power law [16–24].

There was widespread interest in functionally graded materials, which has
developed a lot of analytical methods for analysis of elasticity [25–32] and
thermoelasticity [33–53] problems, some of which have become dominant in scien-
tific literature. For the numerical methods, the isogeometric finite element method
(FEM) has been used by Valizadeh et al. [54] for static characteristics of FGM and
by Bhardwaj et al. [55] for solving crack problem of FGM. Nowadays, the boundary
element method is a simple, efficient and powerful numerical tool which provides
an excellent alternative to the finite element method for the solution of FGM
problems, Sladek et al. [56–58] have been developed BEM formulation for transient
thermal problems in FGMs. Gao et al. [59] developed fracture analysis of function-
ally graded materials by a BEM. Fahmy [60–72] developed BEM to solve elastic,
thermoelastic and biomechanic problems in anisotropic functionally graded struc-
tures. Further details on the BEM are given in [73, 74] and the references therein.

In the present paper, we propose new FGA structures theory and new boundary
element technique for modeling problems of nonlinear uncoupled magneto-
thermoelasticity involving three temperatures. The boundary element method
reduces the dimension of the problem, therefore, we obtain a reduction of numer-
ical approximation, linear equations system and input data. Since there is strong
nonlinearity in the proposed theory and its related problems. So, we develop new
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boundary element technique for modeling such problems. The numerical results are
presented graphically through the thickness of the homogeneous and functionally
graded structures to show the effect of graded parameter on the temperatures and
displacements. The numerical results demonstrate the validity and accuracy of our
proposed model.

A brief summary of the chapter is as follows: Section 1 outlines the background
and provides the readers with the necessary information to books and articles for a
better understanding of mechanical behaviour of magneto-thermoelastic FGA
structures and their applications. Section 2 describes the formulation of the new
theory and its related problems. Section 3 discusses the implementation of the new
BEM for solving the nonlinear radiative heat conduction equation, to obtain the
three temperature fields. Section 4 studies the development of new BEM and its
implementation for solving the move equation based on the known three tempera-
ture fields, to obtain the displacement field. Section 5 presents the new numerical
results that describe the through-thickness mechanical behaviour of homogeneous
and functionally graded structures.

2. Formulation of the problem

We consider a Cartesian coordinate system for 2D structure (see Figure 1)
which is functionally graded along the 0x direction, and considering z-axis is the
direction of the effect of the constant magnetic field H0 .

The fractional-order governing equations of three temperatures nonlinear
uncoupled magneto-thermoelasticity in FGA structures can be written as follows [6].

ð1Þ

ð2Þ

ð3Þ

where , , uk, Cpjkl (Cpjkl ¼ Cklpj ¼ Ckljp), ( ), μ and hp are

respectively, mechanic stress tensor, Maxwell stress tensor, displacement, constant
elastic moduli, stress-temperature coefficients, magnetic permeability and
perturbed magnetic field.

The nonlinear time-dependent two dimensions three temperature (2D-3 T)
radiation diffusion equations coupled by electron, ion and phonon temperatures
may be written as follows

Figure 1.
Geometry of the FGA structure.
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ð4Þ

where

ð5Þ

and

, , Kp ¼ ApT
3þB

p (6)

The total energy per unit mass can be expressed as follows

ð7Þ

where are conductive coefficients, are temperature functions,
are isochore specific-heat coefficients, ρ is the density, τ is the time.

In which, , , B, Aei, Aep are constant inside each subdomain, Wei

and Wep are electron-ion coefficient and electron–phonon coefficient, respectively.
Initial and boundary conditions can be written as

ð8Þ

ð9Þ

ð10Þ

ð11Þ

ð12Þ

ð13Þ

ð14Þ

ð15Þ

3. BEM numerical implementation for temperature field

This section outlines the solution of 2D nonlinear time-dependent three
temperatures (electron, ion and phonon) radiation diffusion equations using
a boundary element method.
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Now, let us consider and discretize the time interval 0;F½ � into

F þ 1 equal time steps, where , Let be
the solution at time . Assuming that the time derivative of temperature within the
time interval can be approximated by.

ð16Þ

denotes the Caputo fractional time derivative of order a defined by [75].

ð17Þ

By using a finite difference scheme of Caputo fractional time derivative of order
a (17) at times and , we obtain:

ð18Þ

Where

ð19Þ

ð20Þ

According to Eq. (18), the fractional order heat Eq. (4) can be replaced by the
following system

ð21Þ

According to Fahmy [60], and using the fundamental solution which satisfies
the system (21), the boundary integral equations corresponding to nonlinear three
temperature heat conduction-radiation equations can be written as

ð22Þ
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which can be written in the absence of internal heat sources as follows

ð23Þ

Time temperature derivative can be written as

ð24Þ

where f j rð Þ are known functions and are unknown coefficients.

We suppose that is a solution of

ð25Þ

Then, Eq. (23) yields the following boundary integral equation

ð26Þ

where

ð27Þ

and

ð28Þ

In which the entries of f�1
ji are the coefficients of F�1 with matrix F defined as

[76].

ð29Þ

Using the standard boundary element discretization scheme for Eq. (26) and
using Eq. (28), we have

ð30Þ

The diffusion matrix can be defined as

ð31Þ
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with

T̂
� �

ij
¼ T̂

j
xið Þ (32)

Q̂
n o

ij
¼ q̂j xið Þ (33)

In order to solve Eq. (30) numerically the functions and q are interpolated as

ð34Þ

ð35Þ

where determines the practical time τ in the current time

step.
By differentiating Eq. (34) with respect to time we get

ð36Þ

The substitution of Eqs. (34)–(36) into Eq. (30) leads to

ð37Þ

By using initial and boundary conditions, we get

ð38Þ

This system yields the temperature, that can be used to solve (1) for the
displacement.

4. BEM numerical implementation for displacement field

Based on Eqs. (2) and (3), Eq. (1) can be rewritten as

ð39Þ

where

ð40Þ

when the temperatures are known, the displacement can be computed by
solving (39) using BEM. By choosing u ∗

p as the weight function and applying the

weighted residual method, Eq. (39) can be reexpressed as
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ð41Þ

The first term in (41) can be integrated partially using Gau β theory yields

ð

R
Cpjkluk, lju

∗

p dR ¼

ð

C
Cpjkluk, lu

∗

p njdC�

ð

R
Cpjkluk, lu

∗

p, jdR (42)

The last term in (42) can be integrated partially twice using Gau β theory yields

ð

R
Cpjkluk, lu

∗

p, jdR ¼

ð

C
Cpjkluku

∗

p, jnldC�

ð

R
Cpjkluku

∗

p, jldR (43)

Based on Eq. (43), Eq. (42) can be rewritten as

ð

R
Cpjkluk, lju

∗

p dR�

ð

R
Cpjkluku

∗

p, jldR ¼

ð

C
Cpjkluk, lu

∗

p njdC�

ð

C
Cpjkluku

∗

p, jnldC (44)

which can be written as

ð45Þ

The boundary tractions are

tp ¼ Cpjkluk, lnj ¼ Gjluk and t ∗p ¼ Cpjklu
∗

k, jnl ¼ G ∗

jl u
∗

k (46)

By using the symmetry relation of elasticity tensor, we obtain

ð47Þ

ð48Þ

Using Eqs. (46)–(48), the Eq. (45) can be reexpressed as

ð49Þ

We define the fundamental solution u ∗

mk by the relation

ð50Þ

By modifying the weighting functions, Eq. (49) can be written as

ð51Þ
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From (39), (50) and (51), the representation formula may be written as

ð52Þ

Let

ð53Þ

The displacement particular solution may be defined as

ð54Þ

Differentiation of (54) leads to.

ð55Þ

Now, we obtain the traction particular solution t
q
pn and source function f qpn as

tqpn ¼ Cpjklu
q
kn, lnj,Ljlu

q
kn ¼ fqpn (56)

The domain integral may be approximated as follows

ð57Þ

The use of (57) together with the dual reciprocity

ð

R
Ljlu

q
knu

∗

mp � Ljlu
∗

mku
q
pn

� �

dR ¼

ð

C
u ∗

mpt
q
pn � t ∗mpu

q
pn

� �

dC (58)

Leads to

ð59Þ
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From (50), we can write

ð60Þ

By using (52), (59) and (60), we obtain

ð61Þ

According to Fahmy [9–11], the right-hand side integrals of (61) can be
reexpressed as

ð62Þ

and

ð63Þ

According to Fahmy [12], Guiggiani and Gigante [77] and Mantič [78] Eqs. (62)
and (63) can respectively be expressed as

ð64Þ

ð65Þ
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By using (64) and (65), the dual reciprocity boundary integral equation becomes

ð66Þ

On the basis of isoparametric concept, we can write

ð67Þ

ð68Þ

By implementing the point collocation procedure and using (67) and (68),
Eq. (66) may be reexpressed as

ð69Þ

Let us suppose that

ð70Þ

ð71Þ

ð72Þ

We can write (69) as follows

ð73Þ

By using the point collocation procedure, can be calculated from (53) as

ð74Þ

Now, from (74), we may derive

ð75Þ

From (73) using (75) we have

ð76Þ
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where

ð77Þ

By considering the following known k and unknown u superscripts nodal vectors

ð78Þ

Hence (76) may be written as

ð79Þ

From the first row of (79), we can calculate the unknown fluxes as follows

ð80Þ

From the second row of (79) and using (80) we get

ð81Þ

where

ð82Þ

Eq. (81) can be written at nþ 1ð Þ time step as

ð83Þ

where

ð84Þ

In order to solve (83), The implicit backward finite difference scheme has been
applied based on the Houbolt’s algorithm and the following approximations
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ð85Þ

ð86Þ

By using (85) and (86), we have from (83)

ð87Þ

In which.

ð88Þ

ð89Þ

We implement the successive over-relaxation (SOR) of Golub and Van Loan

[79] for solving (87) to obtain . Then, the unknown and can be

obtained from (76) and (77), respectively. By using the procedure of Bathe [80], we
obtain the traction vector tunþ1 from (73).

5. Numerical results and discussion

The BEM that has been used in the current paper can be applicable to a wide
variety of FGA structures problems associated with the proposed theory of three
temperatures nonlinear uncoupled magneto-thermoelasticity. In order to evaluate
the influence of graded parameter on the three temperatures and displacements, the
numerical results are carried out and depicted graphically for homogeneous
(m ¼ 0) and functionally graded (m ¼ 0:5 and 1:0) structures.

Figure 2.
Variation of the electron temperature Te through the thickness coordinate x.
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Figures 2–4 show the distributions of the three temperatures Te, Ti and Tp

through the thickness coordinate Ox. It was shown from these figures that the three
temperatures increase with increasing value of graded parameter m.

Figures 5 and 6 show the distributions of the displacements u1 and u2 through
the thickness coordinate Ox. It was noticed from these figures that the displacement
components increase with increasing value of graded parameter m.

Figure 3.
Variation of the ion temperature Ti through the thickness coordinate x.

Figure 4.
Variation of the photon temperature Tp through the thickness coordinate x.

Figure 5.
Variation of the displacement u1 through the thickness coordinate x.
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Figures 7 and 8 show the distributions of the displacements u1 and u2 with the
time for boundary element method (BEM), finite difference method (FDM) and
finite element method (FEM) to demonstrate the validity and accuracy of our
proposed technique. It is noted from numerical results that the BEM obtained
results are agree quite well with those obtained using the FDM of Pazera and
Jędrysiak [81] and FEM of Xiong and Tian [82] results based on replacing heat
conduction with three-temperature heat conduction.

Figure 6.
Variation of the displacement u2 through the thickness coordinate x.

Figure 7.
Variation of the displacement u1 with time τ.

Figure 8.
Variation of the displacement u2 with time τ.
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6. Conclusion

The main aim of this article is to introduce a new fractional-order theory called
nonlinear uncoupled magneto-thermoelasticity theory involving three tempera-
tures for FGA structures and new boundary element technique for solving problems
related to the proposed theory. Since the nonlinear three temperatures radiative
heat conduction equation is independent of the displacement field, we first deter-
mine the temperature field using the BEM, then based on the known temperature
field, the displacement field is obtained by solving the move equation using the
BEM. It can be seen from the numerical results that the graded parameter had a
significant effect on the temperatures and displacements through the thickness of
the functionally graded structures. Since there are no available results for the con-
sidered problem. So, some literatures may be considered as special cases from the
considered problem based on replacing the heat conduction by three temperatures
radiative heat conduction. The numerical results demonstrate the validity and
accuracy of our proposed model. From the proposed BEM technique that has been
performed in the present paper, it is possible to conclude that the proposed BEM
should be applicable to any FGM uncoupled magneto-thermoelastic problem with
three-temperature. BEM is more efficient, accurate and easy to use than FDM or
FEM, because it only needs to solve the unknowns on the boundaries and BEM users
need only to deal with real geometry boundaries. Also, BEM is reducing the com-
putational cost of its solver. The present numerical results for our complex problem
may provide interesting information for computer scientists, designers of new FGM
materials and researchers in FGM science as well as for those working on the
development of new functionally graded structures.
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