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Chapter

Ion Channels and Their Regulation 
in Vascular Smooth Muscle
Arsalan U. Syed, Thanhmai Le, Manuel F. Navedo  

and Madeline Nieves-Cintrón

Abstract

Vascular smooth muscle excitability is exquisitely regulated by different ion 
channels that control membrane potential (Em) and the magnitude of intracellular 
calcium inside the cell to induce muscle relaxation or contraction, which signifi-
cantly influences the microcirculation. Among them, various members of the K+ 
channel family, voltage-gated Ca2+ channels, and transient receptor potential (TRP) 
channels are fundamental for control of vascular smooth muscle excitability. These 
ion channels exist in complex with numerous signaling molecules and binding part-
ners that modulate their function and, in doing so, impact vascular smooth muscle 
excitability. In this book chapter, we will review our current understanding of some 
of these ion channels and binding partners in vascular smooth muscle and discuss 
how their regulation is critical for proper control of (micro)vascular function.

Keywords: ion channels, signal transduction, vascular tone, vascular smooth muscle, 
microcirculation

1. Introduction

Vascular smooth muscle cells wrapping around small resistance arteries and 
arterioles are crucial for vascular reactivity [1]. These cells enable dynamic, 
moment-to-moment control of vessel diameter and pressure-induced contraction 
(e.g., vascular tone). This control is central to autoregulation of resistance vessels, 
maintenance of vessel caliber independently of changes in blood pressure, and 
proper perfusion to meet the metabolic demands of a given tissue.

To regulate arterial diameter, vascular smooth muscle receives and integrates 
many inputs, including changes in intraluminal pressure, vasoconstrictor and 
vasodilatory signals from endothelial cells lining the inner arterial wall, and nerve 
terminals innervating the vessels [2]. These inputs regulate vascular smooth muscle 
excitability, at least in part, by modulating the activity of a number of ion chan-
nels to control membrane potential (Em) and the magnitude of intracellular Ca2+ 
concentration ([Ca2+]i) [1]. Among the many ion channels, transient receptor 
potential (TRP) channels, voltage-gated (KV), Ca2+-activated (BKCa) and inward 
rectifier (Kir) K+ channels, and voltage-gated Ca2+ channels (VGCC) are funda-
mental in transducing mechanical force, establishing Em, and regulating [Ca2+]i 
[1]. Mechanisms for the regulation of vascular smooth muscle ion channels, includ-
ing those mentioned above, involve agonist-independent and agonist-dependent 
activation of Gq and/or Gs protein-coupled receptors (GxPCR) [3]. The optimal 
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activation and regulation of these mechanisms are often dependent on the forma-
tion of macromolecular complexes driven by scaffold proteins to target and com-
partmentalize proteins/signaling events to specific regions and substrates [4].

In this chapter, we provide a brief overview of our current understanding of the 
role of different subunits of TRP channels, several K+ channel subtypes, as well as 
key VGCCs in control of vascular smooth muscle excitability and (micro)vascular 
function. We will also discuss their regulation by signaling pathways and macromo-
lecular complexes. Note that many more studies than those cited here can be found 
in the scientific literature. Comprehensive studies exploring additional aspects of 
vascular ion channel regulation, vascular smooth muscle excitability, and (micro)
vascular function in health and disease can be found in recent reviews [1, 5–9].

2. TRP channels

The TRP channel superfamily is composed of 28 members divided into 6 
subfamilies based on their molecular and biophysical properties [10]. Functional 
TRP channels are composed of four subunits, each with six membrane-spanning 
helices that can exist in a homomeric or heteromeric form. Vascular smooth muscle 
cells express a number of these channels, including members of the TRPC, TRPV, 
TRPM, and TRPP subfamilies [7, 9]. The function of TRP channels in vascular 
smooth muscle ranges from regulating contractility to modulating the proliferative 
state of the cells. In this section, we focused our discussion on the functional role 
and regulation of specific TRP channels in vascular smooth muscle excitability.

2.1 Functional role of vascular smooth muscle TRP channels

The function of different TRP channels in vascular smooth muscle has been 
unmasked using conventional and innovative molecular, pharmacological, and 
genetic approaches. These approaches revealed distinctive roles of specific TRP 
channel subfamilies in modulating vascular smooth muscle excitability and vascular 
reactivity. For instance, studies have found that TRPC3 channels are not essential 
for pressure-induced constriction. Yet, TRPC3 channels play a key role in receptor-
mediated vasoconstriction of resistance arteries upon activation of various GqPCRs, 
including purinergic receptors, endothelin (ETA) receptors, and angiotensin II 
(AT1) receptors [7, 11, 12]. The mechanisms for TRPC3 channel activation involve 
direct coupling of the channel with IP3 receptors located in the sarcoplasmic reticu-
lum (SR) in a process that does not require SR Ca2+ release [13]. TRPC5 channels, in 
association with TRPC1 channels, have been shown to contribute to store-operated 
Ca2+ entry in vascular smooth muscle from arterioles [14], which may modulate cell 
excitability. Expression of TRPP channels in vascular smooth muscle contributes to 
stretch-activated cation currents, which causes vascular smooth muscle membrane 
depolarization. The activity of these channels has been associated with stretch-
dependent regulation of vascular tone in cerebral arteries and control of systemic 
blood pressure [15, 16]. The nonselective cation channel TRPC6 is involved in Ca2+ 
mobilization leading to vascular smooth muscle contraction [17]. More recently, 
these channels have been shown to be part of a mechanosensation complex [18]. In 
this model (see Figure 1), stretch is “sensed” by AT1 receptors. These receptors then 
induce the activation of TRPC6 channels to bolster Ca2+ release from the SR, which 
triggers TRPM4 channel activity and vascular smooth muscle contraction. This 
model reveals an exquisite and finely orchestrated macromolecular complex for 
control of stretch-induced contraction.
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Contrary to the contractile influences of the TRP channels described above, 
activation of TRPV4 channels is associated with vascular smooth muscle relaxation 
(Figure 1) [19]. The underlying mechanism involves the formation of a macro-
molecular complex between TRPV4 and BKCa channels in the plasma membrane 
and ryanodine receptors (RyR) in the SR. This complex does not depend on direct 
protein-protein interactions between TRPV4 and BKCa channels and RyR but 
requires their close physical proximity. The close association between these proteins 
facilitates Ca2+ influx via TRPV4 channels that stimulates RyR activity resulting in 
the generation of Ca2+ sparks. The ensuing Ca2+ sparks activate BKCa channels lead-
ing to vascular smooth muscle membrane potential hyperpolarization and relax-
ation [20]. Because of the high Ca2+ permeability of TRPV4 channels in vascular 
smooth muscle [21], they could potentially activate adjacent BKCa channels directly 
to regulate cell excitability and vascular reactivity. Examination of this exciting pos-
sibility is an excellent opportunity for further research. Moreover, additional work 
is needed to comprehensively define the role of TRP channels in vascular smooth 
muscle in the microcirculation during physiological and pathological conditions.

2.2 Regulation of TRP channels in vascular smooth muscle

It has been well documented that agonist-dependent activation of GqPCRs/
protein kinase C (PKC) and GsPCRs/protein kinase A (PKA) signaling regulates 
TRP channels [10]. Protein kinase G (PKG) modulation of TRP channels has also 
been reported. However, how these signaling pathways control TRP channel activ-
ity in vascular smooth muscle, as well as the underlying consequences in vascular 

Figure 1. 
Regulation of vascular smooth muscle excitability by TRP channels. Diverse TRP channels contribute to 
vascular smooth muscle relaxation or contraction. Ca2+ influx via TRPV4 channels is associated with an 
increase in the frequency of Ca2+ release through ryanodine receptors (RyR) located in the sarcoplasmic 
reticulum (e.g., Ca2+ sparks). The production of Ca2+ sparks triggers the activity of adjacent BKCa channels 
at the surface membrane to promote K+ efflux, membrane potential hyperpolarization, and vascular smooth 
muscle relaxation [18]. TRPV4 channel activity can be stimulated by activation of AT1 receptors (AT1R) by 
angiotensin II (angII) via an AKAP5-mediated PKC signaling pathway [20, 25]. This AT1R/AKAP5/PKC/
TRPV4 axis may serve as a negative feedback mechanism to offset stimulation of L-type Ca2+ channel CaV1.2 
(LTCCs) leading to contraction in response to angII. AT1R, independent of angII, has also been implicated in a 
mechanosensitive pathway that activates TRPC6 channels to boost cytosolic Ca2+ via stimulation of IP3 receptors 
(IP3R). This increase in cytosolic Ca2+ promotes the activity of TRPM4 channels leading to vascular smooth 
muscle membrane depolarization and subsequent contraction in response to stretch [17]. The orange wavelike 
lines highlight stretch-sensing proteins. The model was generated by taking in consideration studies cited and 
described above. Na+ = sodium; Ca2+ = calcium; AKAP5 = A kinase anchoring protein 5; PKC = protein kinase 
C; DAG = diacylglycerol; IP3 = inositol trisphosphate.
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reactivity are not well understood. A limited number of studies have shown that 
PKG inhibits TRPC3 channels and that this may contribute to nitric oxide (NO)-
mediated relaxation, but the mechanisms require further examination [22]. PKA 
signaling stimulates the activity of several members of the TRPV channel subfam-
ily while inhibiting TRPC5 and TRPC6 channels in vascular smooth muscle [7]. 
PKA-mediated inhibition of TRPC6 channels in response to agonist stimulation was 
shown to be dependent on phosphorylation of the TRPC6 subunit at threonine 69, 
which resulted in a reduction in angiotensin II (angII)-induced vasoconstriction 
[23], thus revealing a comprehensive mechanism for the regulation of TRP channels 
and the underlying effects in vascular reactivity.

PKC activity inhibits TRPC3 channels and activates TRPM4 and TRPV4 channels 
in smooth muscle [7, 9, 21, 24]. TRPM4 activation by PKC proceeds, at least in part, 
by stimulating channel trafficking and membrane translocation via a mechanism 
requiring PKCδ [25]. This PKCδ-dependent anterograde TRPM4 trafficking is func-
tionally relevant as it promotes vascular smooth muscle contraction. PKC-dependent 
regulation of TRPV4 channels has been suggested to be critical for counteracting the 
vasoconstriction stimulated by angII [21]. Intriguingly, TRPV4 channels are found in 
complex with the scaffold A kinase anchoring protein 5 (AKAP5 = human AKAP79 
and murine AKAP150) in vascular smooth muscle (Figure 1) [21, 26]. This scaffold 
protein provides a platform for targeting and compartmentalization of signaling 
molecules (e.g., PKA, PKC, protein phosphatase 2B = PP2B) to specific substrates 
(e.g., ion channels) [4]. With a suggested distance between them of ~200 nm [26], 
optimal AKAP5-anchored PKC modulation of TRPV4 activity is highly dependent 
on the distance between the targeted kinase and the ion channel. This tight regula-
tion of TRPV4 activity by AKAP5 may be essential for vascular smooth muscle 
excitability given the high Ca2+ permeability of these channels, as mentioned 
previously. Mechanisms regulating TRPP channels by PKA and/or PKC in vascular 
smooth muscle are currently unclear. The studies discussed above reveal the complex 
functional role of TRP channels in vascular smooth muscle and how their regulation 
alters vascular function and highlights unique opportunities for further research. 
For instance, it will be important to define the role of the AKAP5/PKC/PKA com-
plex and its association with other TRP channels in regulating vascular smooth 
muscle excitability and vascular reactivity. It also remains to be determined whether 
dynamic trafficking of other TRP channels and the involvement of the AKAP5/PKC/
PKA complex in this process also play a role in fine-tuning vascular reactivity.

3. K+ channels

The activity of K+ channels determines vascular smooth muscle membrane 
potential and is therefore key regulators of vascular tone [1]. By setting and con-
trolling the membrane potential, these channels influence the levels of [Ca2+]i and 
therefore, vascular smooth muscle contraction. Intriguingly, a subset of K+ channels 
has also been linked to regulation of vascular smooth muscle proliferation (see recent 
review on this topic in [27, 28]). Vascular smooth muscle cells express a wide variety 
of isoforms from several classes of K+ channels, including KV, BKCa, and Kir channels 
(see Figure 2). In the following sections, we will describe the expression, function, 
and regulation of these K+ channels and their control of vascular function.

3.1 KV channels

A number of KV channels isoforms are expressed in vascular smooth muscle, 
including members of the KV1 (KV1.1, KV1.2, KV1.3, KV1.5, KV1.6), KV2 (KV2.1), and 
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KV 7 (KV7.1–5), as well as several silent KV subunits (e.g., KV9.3) [1]. KV channels 
are formed by a homo- or heterotetrameric assembly of pore-forming α subunits 
and regulatory β subunits. Key examples with functional relevance in vascular 
smooth muscle excitability from multiple vascular beds are KV channels assembled 
by KV1.2/KV1.5 subunits, KV2.1 subunits with KV9.3, and KV1/KV7 subunits. These 
subunit compositions confer functional and pharmacological diversity essential 
for fine-tuning vascular smooth muscle excitability and vascular reactivity 
[29–31]. The mechanisms for this involve activation of KV channels by a depolar-
izing stimulus (e.g., stretch-induced depolarization) and their regulation by 
vasoactive agents [1, 32, 33]. The resultant K+ efflux hyperpolarizes the membrane 
potential of vascular smooth muscle leading to a decrease in the open probability 
of voltage-gated L-type Ca2+ channels CaV1.2 (LTCCs), which contributes to 
decrease [Ca2+]i and relaxation (Figure 2). Conversely, their inhibition depolarizes 
the membrane potential, which will increase the open probability of LTCCs and 
lead to an increase in global [Ca2+]i and vascular smooth muscle contraction. This 
negative feedback regulation, together with other K+ channels, is essential for fine 
control of vascular smooth muscle excitability and vascular reactivity. However, 
in the context of the microcirculation, not much is known regarding the expres-
sion, functional composition, physiological role, and regulation of KV channels in 
arteriolar vascular smooth muscle. Consideration of these issues is important as 
recent studies have implicated that impairment in KV channel expression and/or 
function in the development of channelopathies are associated with small vessel 

Figure 2. 
Regulation of vascular smooth muscle excitability by K+ channels. Vascular smooth muscle cells express a 
number of K+ channels that, upon activation, provide negative feedback regulation of membrane potential and 
vascular tone. K+ channel activation results in efflux of K+ ions that hyperpolarize the membrane potential 
(ΔEm; denoted by dotted black lines) leading to a reduction in the open probability of LTCC CaV1.2 and TTCC 
CaV3.1 that results in a decrease in global [Ca2+]i leading to vascular smooth muscle relaxation [32, 95]. As 
mentioned in Figure 1, activation of ryanodine receptors (RyR) K+ channels can be distinctively regulated by 
vasoactive agents acting through the Gs/AC/PKA, NO/sGC/PKG, and Gq/PLC/PKC axes to either increase 
or decrease their activity. An example is the regulation of KV1.X channels by β adrenergic signaling (e.g., 
through β1 adrenergic receptors) [44–46]. Here, KV1.X channel regulation by β1 adrenergic signaling requires 
PKA targeting to the channel by postsynaptic density protein 95 (PSD95). Whether PSD95 as well as further 
scaffolding of proteins by AKAP5 is required for PKA regulation of KV1.X and other K+ channels (e.g., KV2.X, 
KV7.X, Kir2.X) as well as RyR is unclear (denoted by dotted red lines in the cartoon). The model was generated 
by taking in consideration studies cited and described above. K+ = potassium; Ca2+ = calcium; AKAP5 = A 
kinase anchoring protein 5; BKCa = large-conductance Ca2+ activated potassium channels; AC = adenylyl 
cyclase; PKA = protein kinase A; NO = nitric oxide; sGC = soluble guanylyl cyclase; PKG = protein kinase G; 
PLC = phospholipase C; PKC = protein kinase C.
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diseases [34]. Moreover, additional pathologies such as hypertension, metabolic 
disorders, and diabetic hyperglycemia impair (micro)vascular function, at least in 
part, by altering the expression/function of KV channels, but mechanisms remain 
not fully understood (see review in [5]).

Many vasoactive agents modulate vascular function by acting on KV channels 
expressed in vascular smooth muscle. For instance, agents that trigger activation 
of GqPCRs, such as angII, phenylephrine, and endothelin 1, are known to stimulate 
vasoconstriction, at least in part, by decreasing the expression and/or function of 
KV channels, particularly those of the KV1, KV2, and KV7 subfamilies (Figure 2) 
[1, 35–37]. The effects of these vasoconstrictors are related to PKC-mediated 
phosphorylation and/or changes in surface expression of KV subunits [36, 38–40], 
perhaps via engagement of different PKC isoforms [41]. This may contribute to 
selective control of KV channel activity in response to different stimuli. In addition, 
increases in [Ca2+]i have also been associated with inhibition of KV channels [42, 
43]. Considering that activation of GqPCRs also increases [Ca2+]i, these data suggest 
that both PKC activity and elevated [Ca2+]i could synergize to exacerbate KV chan-
nel inhibition, which will result in membrane potential depolarization, activation 
of LTCCs, and vascular smooth muscle contraction.

In stark contrast to Gq signaling, activation of NO/PKG and Gs/PKA signaling 
is typically associated with stimulation of vascular KV channels, including the 
members of the KV1 and KV7 subfamilies [1]. The functional consequence of this 
regulation is vascular smooth muscle relaxation. Phosphorylation of KV channels by 
PKA is opposed by protein phosphatases such as PP2B, which will dephosphorylate 
the different subunits [44]. Whether GsPCR/PKA/PP2B regulation of KV chan-
nels requires scaffolding proteins that could target all components of the signaling 
complex within close proximity to the channels is not well understood. A recent 
series of studies have demonstrated that the scaffold protein postsynaptic density 
95 (PSD95), which was thought to be a neuronal-specific protein, is expressed in 
vascular smooth muscle (Figure 2) [45, 46]. Intriguingly, PSD95 was found to be 
necessary for basal- and isoproterenol-induced PKA-mediated activation of KV1.X 
channels that resulted in vascular smooth muscle relaxation [45–47]. This was due 
to the formation of a distinctive PSD95-mediated signaling complex involving the 
β1-adrenergic receptor (β1 AR)-, PKA-, and KV1.2-containing channels [45, 47]. 
Since PSD95 is associated with AKAP5 in neurons [48], the argument was made that 
the PSD95-AKAP5 complex may be essential for PKA targeting and regulation of 
KV1.2 function and that this will have an impact on vascular smooth muscle excit-
ability and vascular reactivity [47]. However, additional studies have found that K+ 
currents produced by KV1.X and KV2.X subunits and BKCa channels are of similar 
magnitude in wild-type and AKAP5-depleted (AKAP5−/−) vascular smooth muscle 
cells [5, 49, 50]. These results suggest that, at least basally, AKAP5 is not necessary, 
and PSD95 may be sufficient for PKA-dependent regulation of K+ channels in these 
cells. β-Adrenergic stimulation has also been found to regulate KV7 channels leading 
to vasorelaxation [51], but whether a scaffold protein is mediating these effects is 
unknown and thus requires further examination. In addition, it is also unclear how 
KV2-containing channels, which contribute about 70% of the KV current in mouse 
cerebral and mesenteric vascular smooth muscle [49], are regulated by PKA signal-
ing, presenting another area of further research.

3.2 BKCa channels

BKCa channels are abundantly expressed in vascular smooth muscle cells [52]. 
The pore-forming α subunit (BKCa α1.1) assembles into tetramers to form a func-
tional channel, but unlike TRP and KV subunits, it contains seven transmembrane 
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domains and a heavily regulated long carboxyl terminal. Further regulation of BKCa 
channel function is conferred by the association of the α subunit with accessory β1 
and LRRC26 γ subunits, which increases the Ca2+ sensitivity of the channel [52]. 
BKCa channels are sensitive to voltage and Ca2+. The Ca2+ source to activate BKCa 
channels comes from the release of Ca2+ from the SR via RyRs (Figure 2) [20]. 
This complex does not depend on direct protein-protein interactions between BKCa 
channels and RyR but requires that both of these ion channels are in close physi-
cal proximity to each other. As mentioned above, data also have suggested that 
TRPV4 is responsible for triggering RyR activity [19], and thus, these channels have 
been proposed to form part of the same signaling complex with BKCa and RyRs in 
vascular smooth muscle. Intriguingly, LTCCs have been found to have an indirect 
or “loose” coupling with RyRs that could enable their activation [53], perhaps by 
modulating the SR Ca2+ concentration [54]. Additional components of the same or 
similar signaling complexes (see T-type Ca2+ channels section) with divergent roles 
have been identified [1, 7, 13, 55], but an integrated model remains to be defined. 
Regardless, the activation of these channels should result in K+ efflux that hyperpo-
larizes the plasma membrane of vascular smooth muscle cells leading to relaxation. 
The physiological influence of BKCa channels in control of membrane potential and 
vascular tone, however, seems to be species-, stimulus-, and vessel-dependent, even 
when compared between different orders of the same vascular tree. Indeed, studies 
have reported a clear involvement of BKCa channels in tonic negative feedback regu-
lation of membrane potential and pressure-induced constriction, even in human 
resistance arteries, whereas others have failed to establish a relationship (exemplary 
studies in [56–62]). The differences may be associated with disparities in the BKCa 
channel’s Ca2+ sensitivity and/or subunit expression levels and composition in the 
different vascular beds. A recent and broader discussion on this topic can be found 
in [1]. Thus, given the distinctive role of BKCa channels in the vasculature, further 
research on how these channels are regulated to control vascular tone in different 
vascular beds during physiological and pathological conditions is warranted.

Generally, vasoactive agents that act via activation of the Gs/adenylyl cyclase 
(AC)/PKA and NO/soluble guanylyl cyclase (sGC)/PKG axes potentiate BKCa 
channel activity, whereas those acting through the Gq/phospholipase C (PLC)/PKC 
axis inhibit the channel [1, 52]. Vasoactive agents may also regulate BKCa channel 
activity indirectly by modulating the function of RyR in the SR or other ion chan-
nels (e.g., L-type CaV1.2 and T-type CaV3.2 channels) in the plasma membrane that 
are involved with direct activation of RyR or SR Ca2+ refilling [54, 63, 64]. Although 
there is some evidence that scaffold proteins such as AKAP5 may help target signal-
ing molecules to BKCa channels [65], whether this indeed occurs in native vascular 
smooth muscle cells, as well as its functional relevance, is unclear. Considering the 
role of BKCa channels in negative feedback regulation of vascular tone, the physi-
ological implications of vasoactive agents acting through distinct GxPCRs on BKCa 
channels will be either vascular smooth muscle relaxation or contraction.

3.3 Kir channels

As their name implies, Kir channels produce an inward current. This current is 
observed at a potential negative to the K+ equilibrium potential that helps stabilize 
the resting Em [1, 66]. They also produce a small outward current at depolarizing 
potentials that serves as an electrical amplifier to magnify hyperpolarization. 
Inward rectification occurs due to voltage-dependent blockade of the channel by 
polyamines and Mg2+. Kir channels are regulated by lipids (e.g., phosphatidylino-
sitol 4,5 bisphosphate (PIP2) and cholesterol) [1, 66]. Intriguingly, a recent study 
found that cholesterol, but not PIP2, regulates Kir channel activity in the cerebral 
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vascular smooth muscle [67], suggesting that these channels may be distinctively 
modulated by lipids depending on their tissue distribution. A functional Kir channel 
is formed when four pore-forming α subunits, each containing two membrane-
spanning domains, come together. Two main α subunits (e.g., Kir2.1 and Kir2.2) 
have been identified in vascular smooth muscle from multiple species [68–71]. 
Intriguingly, the expression of these subunits in a specific vascular bed may be 
species-dependent. Accordingly, although Kir subunit expression and channel 
activity have been extensively reported in murine cerebral vascular smooth muscle 
[67–69, 71], minimal, if any, Kir subunit expression and channel activity were found 
in the human cerebral vascular smooth muscle [72]. The functional implication of 
the activation of these channels in vascular smooth muscle is relaxation. Kir chan-
nel activity can be modulated by vasoactive agents with those acting through the 
Gq/PLC/PKC axis, inducing channel inhibition, and those acting on the Gs/AC/
PKA pathway, promoting channel activity [1]. The physiological relevance of these 
regulatory mechanisms on Kir channels and their control of vascular function are 
less well understood and therefore are in need of further evaluation.

4. Voltage-gated Ca2+ channels

Vascular smooth muscle cells express several subtypes of VGCCs [9]. These 
channels have been shown to be important for vascular smooth muscle contraction, 
and some subtypes have been implicated in relaxation mechanisms. In this section, 
we will focus on the role of two key subtypes of VGCCs, namely, LTCCs and T-type 
Ca2+ channels (TTCCs), in regulation of vascular smooth muscle excitability.

4.1 L-type Ca2+ channel CaV1.2

The L-type Ca2+ channel CaV1.2 (i.e., LTCCs) is essential for vascular smooth 
muscle contraction and vascular reactivity. Therefore, they play a key role in 
controlling blood flow and blood pressure [33, 73]. LTCCs are comprised of a 
pore-forming α1c subunit and auxiliary β, α2δ, and γ subunits that modulate channel 
function and trafficking [74]. The α1c subunit contains four homologous domains 
(I, II, III, IV). Each domain comprises of six membrane-spanning segments (S1–
S6) with intracellular amino- and carboxyl termini, which contain many regions 
relevant for channel regulation and control of cell excitability. In vascular smooth 
muscle, expression of the α1c subunit is critical for pressure-induced constriction as 
evidenced by an absence of myogenic response after LTCC blockade and depletion 
of the CaV1.2-α1c subunit in mice (e.g., SMAKO mouse) [33, 73, 75]. The auxiliary 
subunits α2 and δ are the product of the same gene that gets proteolytically cleaved 
after translation but remains connected by disulfide bonds, which give rise to the 
mature subunit. The α2δ subunit has been linked to regulation of α1c subunit surface 
expression that controls Ca2+ influx in vascular smooth muscle and the level of myo-
genic constriction [76]. The β subunit, which remains cytoplasmic, also contributes 
to the α1c subunit surface expression and channel regulation and therefore can 
modulate vascular smooth muscle excitability in health and disease [77, 78]. Unlike 
the other subunits, the expression, regulation, and function of the γ subunit in 
vascular smooth muscle are unclear and likely the subject of further research.

LTCCs in vascular smooth muscle are distinctively regulated by the Gs/AC/
PKA, NO/sGC/PKG, and Gq/PLC/PKC axes [9, 79]. Accordingly, the NO/sGC/PKG 
signaling axis has been shown to inhibit vascular LTCCs [80]. This has been associ-
ated with a reduction in [Ca2+]i that may be part of the vasodilatory mechanism 
underlying the activation of this pathway [79]. Receptor-mediated signaling via the 
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Gq/PLC/PKC axis typically results in potentiation of LTCC activity [9, 79, 81]. The 
functional effects of this Gq/PLC/PKC-mediated activation of LTCCs are vascular 
smooth muscle contraction and an increase in vascular tone. Intriguingly, activation 
of the Gs/AC/PKA axis has been shown to inhibit, activate, or produce no effect 
on vascular LTCC activity (Figure 3) [79]. Irrespectively of this however, PKA 
signaling has been generally linked with vasodilation, thus raising questions about 
the functional relevance, if any, of this kinase in the regulation of vascular LTCCs. 
Intriguingly, recent studies revealed that elevations in extracellular D-glucose 
(HG) potentiate LTCC activity via a Gs/AC/PKA pathway in vascular smooth 
muscle [82–85]. This HG-induced PKA-dependent activation of LTCCs resulted in 
increased global [Ca2+]i and vasoconstriction, thus providing the first example of a 
PKA-dependent pathway underlying vascular smooth muscle contraction. Future 
studies should further examine the in vivo relevance of this pathway.

LTCC regulation by Gs/AC/PKA and Gq/PLC/PKC axes in vascular smooth 
muscle is mediated by AKAP5 (Figure 3) [85, 86]. The involvement of the scaffold 
in this regulation was initially speculated from total internal reflection fluorescence 
(TIRF) microscopy experiments that optically recorded the activity of single or 
clusters of LTCCs [87, 88]. From these experiments, it was clear that the activity and 
location of functional LTCCs were heterogeneous throughout the surface mem-
brane of vascular smooth muscle cells [81, 87, 89]. Whereas some LTCCs showed 
stochastic activity with low Ca2+ flux and duration of events, others had persistent 
activity characterized by increased Ca2+ flux and events with prolonged open time 
that were produced by the opening of two or more channels [81, 87, 89–91]. The 

Figure 3. 
Regulation of vascular smooth muscle excitability by voltage-gated Ca2+ channels. Ca2+ influx via L-type 
Ca2+ channel CaV1.2 is essential for vascular smooth muscle contraction [33]. Their activity is regulated 
by Gs/PKA and Gq/PKC signaling pathways upon activation of a specific GPCR by a given stimulus (e.g., 
angII or HG). The association of CaV1.2 with these signaling pathways is orchestrated by AKAP5 [86]. PKA 
(and perhaps PKC) augments L-type Ca2+ channel CaV1.2 activity by increasing CaV1.2 phosphorylation at 
serine 1928 (pS1928) [82, 85]. The phosphatase PP2B suppresses enhancement of L-type Ca2+ channel CaV1.2 
activity presumably by preventing/opposing channel phosphorylation in vascular smooth muscle cells (gray 
line). Two TTCC subtypes are expressed in vascular smooth muscle, with CaV3.1 contributing to contractile 
mechanisms and CaV3.2 forming a complex with RyR in the sarcoplasmic reticulum and BKCa channels 
in the surface membrane to foster relaxation [95, 100]. Although PKA has been shown to inhibit CaV3.2, 
whether this requires AKAP5 function is unclear (dotted red lines with perpendicular line at the end). It is 
also unclear whether AKAP5-anchored PKC and PKA regulate CaV3.1 channel activity (dotted light and 
dark red lines with star near CaV3.1). Finally, whether the GPCRs activated by angII and HG are targeted 
to specific complexes by AKAP5 is unclear (red dotted line with ?? symbols). The model was generated by 
taking in consideration studies cited and described above. GPCR = G-protein coupled receptors; angiotensin 
II = angII; high glucose = HG; AKAP5 = A kinase anchoring protein 5; protein kinase A= PKA; protein kinase 
C = PKC; protein phosphatase 2B; PP2B; phosphorylation at CaV1.2 serine 1928 = pS1928; K+ = potassium; 
Ca2+ = calcium; ryanodine receptors = RyR.
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stochastic and persistent activity of LTCCs was modulated by membrane poten-
tial [92]. However, the occurrence of LTCCs with persistent activity is limited to 
specific regions of the surface membrane and has been demonstrated to be highly 
dependent on PKC activity and AKAP5 expression [81, 86]. The activity of phos-
phatases, such as PP2B, that are targeted to the channel by AKAP5, counteracts 
anchored kinase activity and restricts persistent LTCC activity (Figure 3) [89]. 
Accordingly, in vascular smooth muscle in which PKC is inhibited or cells from mice 
with genetically depleted PKC or AKAP5, the frequency of persistent LTCC activ-
ity is minimal [86, 87, 93]. In addition, PP2B inhibition stimulates persistent LTCC 
events in cells from wild type but not AKAP5−/− mice, suggesting that removing this 
“brake” facilitates kinase-mediated potentiation of channel activity [86, 89]. These 
results suggest an important role for AKAP5-anchored PKC and PP2B activity in 
modulating basal persistent LTCC activity. The physiological significance of these 
findings is underscored by data indicating that persistent LTCC events account for 
50% of the total dihydropyridine-sensitive (e.g., LTCCs) Ca2+ influx at physiologi-
cal membrane potentials [92], which is critical for vascular smooth muscle contrac-
tility in health and disease [82, 84, 86, 93].

4.2 T-type Ca2+ channels

T-type Ca2+ channels are formed by pore-forming α1 subunits with similar 
topology as that of the LTCC α1c subunit, but with no known auxiliary subunits 
that modulate channel function [74]. TTCCs are activated at more hyperpolar-
ized potentials and show similar conductance with Ca2+ or Ba2+ as charge carriers. 
Vascular smooth muscle cells express several TTCC α1 subunits, including CaV3.1 
(α1G) and CaV3.2 (α1H) [9, 94–98]. Intriguingly, CaV3.1, which is found in murine 
vascular smooth muscle, seems to be replaced by CaV3.3 (α1I) in human cells [96], 
suggesting that expression of TTCC α1 subunits is species-dependent. TTCCs have 
been shown to contribute to vascular smooth muscle excitability in several vascular 
beds from different species [9, 98]. However, rigorous analysis revealed that differ-
ent CaV3.X subunits may have very divergent physiological responses. For instance, 
whereas CaV3.1 (CaV3.3) mediates low-pressure-induced constriction, CaV3.2 
contributes to the negative feedback regulation of vascular tone by stimulating the 
RyR/BKCa axis (Figure 3) [64, 95, 96]. TTCCs can also be regulated by signaling 
molecules. Indeed, the NO/PKG and AC/PKA axes both inhibit vascular TTCCs 
[99, 100], which may have key implications in vascular smooth muscle excitability. 
Whether these signaling molecules are organized and targeted by scaffold proteins 
such as AKAPs to areas near TTCCs to fine-tune their function is unclear and 
therefore the subject of future studies.

5. Conclusions

Vascular smooth muscle excitability is exquisitely controlled by a repertoire of 
ion channels, which in themselves, are regulated by several vasoactive agents. The 
precise regulation of ion channels in vascular smooth muscle cells is essential for the 
dynamic adjustment of vascular tone necessary to maintain adequate tissue perfu-
sion and blood pressure. Here, we have provided a brief overview of our current 
knowledge of key ion channels and their regulation by receptor-mediated signal-
ing pathways that are activated by various vasoactive agents to modulate vascular 
smooth muscle excitability and therefore vascular tone. We focused on several TRP 
channels, multiple K+ channel subtypes, and various classes of VGCCs. We empha-
sized ion channel regulation by signaling pathways associated with the Gs/AC/PKA, 
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NO/sGC/PKG, and Gq/PLC/PKC axes given their important role in modulating vas-
cular smooth muscle excitability. When possible, we identified key gaps in knowl-
edge, even in areas that have been extensively studied, which are fertile ground for 
further research. Because of the importance of all the ion channels and signaling 
pathways discussed above on vascular control, understanding how they are affected 
during pathological conditions is essential for the development of rational therapies 
to treat (micro)vascular diseases.
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