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Chapter

Production, Processes and
Modification of Nanocrystalline
Cellulose from Agro-Waste:

A Review

R.A. Ilyas, S.M. Sapuan, R. Ibrahim, M.S.N. Atikah,
A. Atigah, M.N.M. Ansari and M.N.F. Norrrahim

Abstract

Nanocrystalline cellulose is a renewable nanomaterial that has gained huge
attention for its use in various applications from advanced biomedical material to
food packaging material due to its exceptional physical and biological properties,
such as high crystallinity degree, large specific surface area, high aspect ratio, high
thermal resistance, good mechanical properties, abundance of surface hydroxyl
groups, low toxicity, biodegradability, and biocompatibility. However, they still
have drawbacks: (1) sources of raw materials and its utilization in the production of
nanocomposites and (2) high chemical and energy consumption regarding the
isolation of macro-sized fibers to nano-sized fibers. The incorporation of hydro-
philic nanocrystalline cellulose within hydrophobic polymer limits the dispersion of
nano-sized fibers, thus resulting in low mechanical properties of nanocomposites.
Hence, surface modification on nano-sized fiber could be a solution to this problem.
This review focuses on the advanced developments in pretreatment, nanocrystal-
line production and modifications, and its application in food packaging, biomedi-
cal materials, pharmaceutical, substitution biomaterials, drug excipient, drug
delivery automotive, and nanopaper applications.

Keywords: nanocrystalline cellulose, nanocomposites, surface modification,
hydrolysis, agro-waste

1. Introduction

During the past decades, huge efforts have been made to improve new chemicals
and/or materials and replace broadly used petroleum-based products by utilizing
biomass renewable feedstock [1-3]. Biocompatible composites and biodegradable
plastics produced from biorenewable resources are regarded as promising biomate-
rials that could replace petrochemical-based polymers and hence reduce global
dependence on nonrenewable sources (i.e., fossil fuels: coal, petroleum, and
natural gas) and provide simplified recycling or end-of-life disposal [4-10].

Agro-based industry’s function is to increase the value of raw agricultural products
through downstream processing so that products are marketable, consumable, and
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Nanocrystalline Materials

used to generate income and provide profit to the producer [11]. However, there is
waste generated through the process of downstream and upstream of agro-industry.
The composition of industrial wastes varies depending on the types of industry as
different countries apply various categories for industrial waste which contribute
adversely to air, soil, and water quality. This is due to some of the industrial wastes
which are neither toxic nor hazardous. For example, organic wastes, such as corncob,
sugarcane bagasse, sugar palm (fiber, frond, bunch, trunk), areca nut husk fiber, wheat
straw fiber, soy hull fiber, pineapple leaf fiber, oil palm (mesocarp fiber, empty fruit
bunch, frond), rubber wood thinning, curaua fiber, banana fiber, water hyacinth fiber,
wheat straw, sugar beet fiber, etc. that are produced by agro-based industries are not
hazardous in nature and thus have potential for other uses [12-14]. Figure 1 shows the
by-products of agro-industry that are used for sources of lignocellulose biomass.
Biomass renewable feedstocks are of great interest due to the possibility of
nontoxicity, renewability, and biodegradability as well as sustainability [12-17].
Lignocellulosic can be classified as lower-value biomass (LVB). Lower-value bio-
mass (LVB) in forest or agriculture industry constitutes noncommercial material
traditionally left on site following harvesting of crops. However, emerging markets
for energy, chemicals, and bioproducts have increased incentives to harvest and
utilize this material in some cases [20-25]. Lignocellulosic biomass suppliers do not
use any kind of wood indiscriminately due to economic and environmental reasons;
they usually used mobilized woody biomass sourced from by-products of forest
operations, agriculture, and crops’ waste as well as the wood industry waste such as
sawmills. Lignocellulosic biomass sector has been developed to work in synergy
with other agro-based industry and wood-based industries to give value to
non-mobilized and/or low-value biomass such as trunk, fiber, sugar cane bagasse,
manure bedding, plant stalks, vines, hulls, leaves, vegetable matter, sawdust, mill

Cofee Husk Coir Pitch Corn Mealier Corn Shell Corn Waste Cotton Flowers Cotton Seeds Waste

o

Sugarcane Waste Pitch

Figure 1.
By-products of agro-industry that are used for sources of lignocellulose biomass.
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Figure 2.
By-products of forest operation that ave used for sources of lignocellulose biomass. Adapted from Ref. [23].
http://www.europeanbioenergyday.eu/solid-bioenergy-in-questions-an-asset-to-eu-forests/.

Figure 3.

Schematic representation of lignocellulosic agro-waste and by-product of fovest classification. Adapted from

Ref. [7].

residues, thinnings, low-quality wood, tops, and limbs. Biomass generators do not
use high-quality timber or main agricultural products, as using lumber or major
crops would make the price of biomass wholly uncompetitive for end consumers.
Figure 2 shows the by-products of forest operation that are used for sources of
lignocellulose biomass. Natural fibers or lignocellulosic fibers can be classified into
two main groups that are wood and non-wood bio-fibers (Figure 3). This review
will be focusing on production, processes, modification, and application of
nanocrystalline cellulose from agro-waste.

2. Lignocellulosic biomass from agro-waste fiber and forest by-products

Lignocellulosic biomass comprises of three major chemical components that
are cellulose, lignin, and hemicellulose [18-21]. The chemical compositions of
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Fibers Holocellulose (wt%) Lignin (wt%) Ash (wt%) Extractives (wt%) Crystallinity (%) Ref.
Cellulose (wt%) Hemicellulose (wt%)
Sugar palm fiber 43.88 7.24 33.24 1.01 2.73 55.8 [6]
Sugar palm frond 66.49 14.73 18.89 3.05 2.46 — [28]
Sugar palm bunch 61.76 10.02 23.48 3.38 2.24 — [28]
Sugar palm trunk 40.56 21.46 46.44 2.38 6.30 — [28]
Wheat straw fiber 43.2 +0.15 341+12 22.0 +£31 — — 57.5 [29]
Soy hull fiber 56.4 + 0.92 125+ 0.72 18.0 £ 2.5 — — 59.8 [29]
Areca nut husk fiber 34.18 20.83 31.60 2.34 — 37 [14]
Helicteres isora plant 71 +2.6 31+£05 214+ 09 — — 38 [30]
Pineapple leaf fiber 81.27 £+ 2.45 12.31 +1.35 3.46 + 0.58 — — 35.97 [31]
Ramie fiber 69.83 9.63 3.98 — — 55.48 [32]
Oil palm mesocarp fiber (OPMF) 282+ 0.8 327+ 4.8 324+ 4.0 — 6.5+ 0.1 34.3 [33]
Oil palm empty fruit bunch (OPEFB) 371+ 4.4 39.9 + 0.75 18.6 + 1.3 — 31+34 45.0 [33]
Oil palm frond (OPF) 45.0 + 0.6 320+ 1.4 169+ 0.4 — 23+£1.0 54.5 [33]
Oil palm empty fruit bunch (OPEFB) fiber 40 £2 23+2 21+1 — 2.0+0.2 40 [34]
Rubber wood 45+3 20£2 29+2 — 254+ 0.5 46 [34]
Curaua fiber 702+ 0.7 18.3+ 0.8 93+0.9 — — 64 [35]
Banana fiber 7.5 74.9 7.9 0.01 9.6 15.0 [36]
Sugarcane bagasse 43.6 27.7 27.7 — - 76 [37]
Kenaf bast 63.5+ 0.5 17.6 £1.4 12715 22+0.8 4.0 £1.0 48.2 [38]
Phoenix dactylifera palm leaflet 33.5 26.0 27.0 6.5 — 50 [39]
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Fibers Holocellulose (wt%) Lignin (wt%) Ash (wt%) Extractives (wt%) Crystallinity (%) Ref.

Cellulose (wt%) Hemicellulose (wt%)

Phoenix dactylifera palm rachis 44.0 28.0 14.0 25 — 55 [39]

Kenaf core powder 80.26 23.58 — — — 48.1 [40]

Water hyacinth fiber 42.8 20.6 41 — — 59.56 [41]

Wheat straw 432 + 0.15 3414+1.2 22.0 £31 — — 57.5 [42]

Sugar beet fiber 44.95+ 0.09 25.40 £+ 2.06 11.23 + 1.66 17.67 + 1.54 — 35.67 [43]

Mengkuang leaves 373+0.6 34.4+0.2 24 £+ 0.8 2.54+0.02 55.1 [44]
Table 1.

Chemical composition of agro-waste fibers and forest by-products from different plants and different parts.
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Nanocrystalline Materials

Cellulose Hemicellulose Lignin

Structure * Cellulose is assembled * Hemicellulose is a cell * Lignin is a cross-

together with pectin
fibers, which function to
bind the cellulose
together to produce
tighter cell walls in
natural fibers,
accounting for their
strength providing
resistance to lysing in the
presence of water
Hemicelluloses consist of
long chain—7000-
15,000 glucose
molecules per polymer

wall polysaccharide that
has the capacity to bind
strongly to cellulose
microfibrils by hydrogen
bonds

Hemicelluloses consist
of short chains—500-
3000 glucose molecules
per polymer

linked polymer
with molecular
masses in excess
of 10,000 u

Function * Connecting cells to form Responsible for the * Responsible for
tissue moisture absorption, UV degradation
* Provide structural biodegradation * Lignin assists and
support Microfibrils are cross- strengthens the
* Provides a strong linked together by attachment of
resistance to stress hemicellulose hemicelluloses to
* Prevents the cell from homopolymers microfibrils
bursting in hypotonic * Lignin plays a
solution crucial part in
conducting water
in plant stems
Properties e Thermal stability Thermal stability * Thermal stability
(occurred from 315 to occurred from 220 to occurred from
~400°C) ~315°C 165 to ~900°C
Table 2.

Functions and properties of cellulose, hemicellulose, and lignin. Adapted from Refs. [6, 7, 27].

agro-waste fibers are different depending on the type of fiber as summarized in
Table 1. Besides that, it can be concluded in Table 1 that the highest cellulose
contents are pineapple leaf fibers (81.27%), followed by kenaf core powder
(80.26%). Besides that, from Table 1 also we can summarize that the chemical
composition of natural fibers is 30-80% cellulose, 7-40% hemicellulose, and 3-33%
lignin. Cellulose, hemicellulose, and lignin have their own properties and function-
ality. Table 2 shows the functional properties of the cellulose, hemicellulose, and
lignin. The physical, thermal, and mechanical properties of the natural fibers are
diverse between each other as they are mostly depending on cellulose crystallinity.
Intra- and intermolecular hydrogen bonding among the cellulose chains affects the
packing compactness of cellulose crystallinity. Table 1 shows the chemical compo-
sition of natural fibers and their crystallinity. From the abovementioned lignocellu-
losic, particularly, the hemicellulose and cellulose have promising features such as
existing refining agro-forest or agro-waste factories. For centuries, cellulose has
been utilized in the form of non-wood plant fibers and wood as building materials,
clothing, textile, and paper.

3. Nanocrystalline cellulose

Nanocrystalline cellulose (NCC) has several notable optical, chemical, and elec-
trical properties due to their needlelike shape, high surface area, high aspect ratio
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(length/diameter), high crystallinity, nanoscale size, high strength and stiffness,
low density, and highly negative charge which lead to unique behavior in solutions.
The high chemical reactivity of the surface makes NCC customizable for various
applications, besides their heat stability which allows high-temperature applica-
tions. Moreover, they also have huge surface OH groups which provide active

sites for hydrogen bonding through the interlocking with nonpolar matrix

[4,7, 10, 45, 46]. Nanocrystalline cellulose can be isolated from cellulose as shown
in Figure 4. The nanocellulose can be obtained through two approaches: top-down
by the disintegration of plant fiber or bottom-up by biosynthesis [46]. For bottom-
up biosynthesis approach, fermentation of low-molecular-weight sugars occurred
by using bacteria from Acetobacter species. Meanwhile, for the top-down approach,
the production of nanocrystalline cellulose is chemically induced via removing
amorphous region. The chemical or mechanical treatments or a combination of both
treatments involves enzymatic treatment, grinding, high-pressurized homogeniza-
tion, acid hydrolysis, TEMPO-mediated oxidation, microfluidization, cryocrushing,
and high-intensity ultrasonification. Table 3 shows the hydrolysis approaches from
various sources of agro-waste and forest by-product for NCC isolation.

Isolating NCC from agro-waste
fibres and forest by-products

middie lamella

;secondary wall salliiees
wood fibers wood cells | | {three-layered) s maolecule

primary wall macrofibril microfibril

10.0 nm

Nanocrystalline cellulose are isolated from the
amorphous cellulose and are needle-like shaped

Figure 4.
Schematic representation of lignocellulosic agro-waste and by-product of forest classification. Adapted from

Ref. [47].

Source Process References
Acacia mangium H,SO, hydrolysis [56]
Algae H,SO, hydrolysis [57]
Areca nut husk fiber HCI hydrolysis [14]
Bacterial cellulose H,SO,4 hydrolysis [58]
Bamboo H,SO, hydrolysis [59]
Bamboo (Pseudosasa amabilis) H,SO, hydrolysis [60]
Banana fiber H,C,0,4 hydrolysis [31]
Banana pseudo-stem TEMPO-mediated oxidation, formic acid hydrolysis [61]
Cassava bagasse H,SO, hydrolysis [62]
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Source Process References
Coconut husk H,SO, hydrolysis [63]
Colored cotton H,SO, hydrolysis [64]
Corncob H,SO, hydrolysis [13]
Cotton (cotton wool) H,SO, hydrolysis [65]
Cotton linters HCI hydrolysis [66]
Cotton Whatman filter paper H,SO, hydrolysis [67]
Cotton (Gossypium hirsutum) H,SO, hydrolysis [68]
linters
Cotton stalk TEMPO-mediated oxidation and H,SO,4 hydrolysis  [69]
Cotton fiber H,SO, hydrolysis [70]
Curaua fiber H,S0,, H,S0,4/HCI, HCl hydrolysis [35]
Eucalyptus kraft pulp H,SO, hydrolysis [71]
Grass fibers H,SO, hydrolysis [72]
Grass fibers (Imperata brasiliensis)  H,SO4 hydrolysis [73]
Groundnut shells H,SO, hydrolysis [74]
Hibiscus sabdariffa fibers Steam explosion H,SO,4 hydrolysis [75]
Humulus japonicus stem H,SO, hydrolysis with high-temperature [76]
pretreatment
Industrial bioresidue H,SO, hydrolysis [77]
Industrial bioresidue (sludge) H,SO, hydrolysis [78]
Kraft pulp H,SO, hydrolysis [79]
Kenaf core wood H,SO, hydrolysis [40]
MCC H,SO, hydrolysis [55]
Mengkuang leaves H,SO, hydrolysis [44]
Mulberry H,SO, hydrolysis [80]
Oil palm trunk H,SO, hydrolysis [81]
Oil palm empty fruit bunch H,SO, hydrolysis [82]
(OPEFB)
Phormium tenax (harakeke) fiber H,SO, hydrolysis [83]
Potato peel waste H,SO, hydrolysis [84]
Flax fiber H,SO, hydrolysis [83]
Ramie KOH hydrolysis [85]
Ramie H,SO, hydrolysis [86]
Ramie H,SO, hydrolysis [87]
Rice husk H,SO, hydrolysis [63]
Rice straw H,SO, hydrolysis [88]
Sesame husk H,SO, hydrolysis [89]
Sisal fiber H,SO, hydrolysis [90]
Soy hulls H,SO, hydrolysis [91]
Sugar palm fiber H,SO, hydrolysis [6]
Sugar palm frond H,SO, hydrolysis [92]
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Source Process References
Sugarcane bagasse H,SO, hydrolysis [37]
Sago seed shells H,SO, hydrolysis [93]
Tunicate H,SO, hydrolysis [94]
Water hyacinth fiber HCI hydrolysis [48]
Wood pulp TEMPO oxidation followed by HCI hydrolysis [95]
Wheat straw H,SO, hydrolysis [96]
Valonia ventricosa HCI hydrolysis [97]

Table 3.
Available process of extraction approaches from different sources for NCC isolation.

4. Processes of nanocrystalline cellulose

Recently, researchers are exploring the potential utilization of agriculture or
forest wastes as NCCs’ sources. As a consequence, the various local sources are used
to investigate the potential of NCC in certain technologies. The isolation of NCC
needs intensive hydrolysis chemical treatment. However, according to the degree of
processing and raw material, physical, chemical, enzymatic, and ionic pretreat-
ments are performed before nanocrystalline cellulose synthesis. Figure 5 shows the
sources, pretreatments, synthesis, and application of nanocrystalline cellulose. It is
good to know that appropriate pretreatments of cellulosic fibers promote the acces-
sibility of hydroxyl group, alter crystallinity, increase the inner surface, and break
cellulose hydrogen bonds and hence improved the reactivity of the fibers [6, 7, 10].
Several approaches to diminish cellulosic fibers into nanofibers can be divided into
several techniques such as acid hydrolysis, alkali treatment, mechanical treatments,
and combination of mechanical and chemical treatments. Common methods for
isolate NCC are hydrolysis methods which are a chemical method. Figure 6 shows

*Wood and Forest
by-product

sAgricultural waste
ePlant fibres

eBacteria and
Algae

Figure 5.

*Physical process
eChemical process
eEnzymatic process
elonic liquids

eAcid hydrolysis
eAlkali treatment
*Mechanical
treatments
eCombination of
mechanical and
chemical
treatments

Source of Pretreatments Nanocrystalline Nanocrystalline
nanocrystalline Fhisries] cellulose cellulose
cellulose synthesis applications

*Food packaging
*Optical devices
*Bone tissue
engineering
*Biomedical
capplication
ePharmacology
eCatalysis

Sources, pretreatments, synthesis, and application of nanocrystalline cellulose. Adapted from Refs. [6, 7, 10].
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( Strong acid hydrolysis of pure cellulosic material is performed under i

strictly controlled experimental conditions (temperature, time, agitation,

and control of other conditions such as nature and concentration of the
acid and the acid to cellulose ratio)

Dilution of hydrolysis with water to halt reactions and repeated
washing with consecutive centrifugation

Considerable dialysis against distilled water to fully dispose of free
acid molecules

Mechanical treatment such as sonication scatter the nanocrystals as a
uniform stable suspension

Eventual concentration and drying of the suspension to produce solid
NCCs

Figure 6.
Typical process for the production of nanocrystalline cellulose. Adapted from Refs. [4, 5, 8].

the typical process for the production of nanocrystalline cellulose. Hydrolysis pro-
cess includes inserting raw plant fibers into a strong acidic environment with the
help of mechanical agitation. Concentrated acid and shear forces on solution gener-
ate shear rates in the stream and decrease the size of fibers to the nanoscale. Sulfuric
acid (H,SO,) is commonly used in the isolation process of NCC besides other
chemicals such as HCL [48], HBr [49], and H3PO, [50]. Hydrolysis process using
sulfuric acid solution resulted in a high number of negatively charged sulfate groups
on the surface of NCC. This process limits the agglomeration and flocculation of
NCC in an aqueous medium [51]. The drawback from this process is that the NCC
displays moderate thermostability. Hence to overcome this drawback, the NCC will
either undergo dialysis process using distilled water to fully dispose free acid mole-
cules or use sodium hydroxide (NaOH), which functions to neutralize nanoparticles
[52]. Figure 7 displays three steps in the mechanism of acid hydrolysis [53]:

1.Development of conjugated acid by reactions between oxygen protons and
glycoside acid

2.Breaking down of C-O bonds and segregation of conjugated acid into cyclic
carbonium ions

3.Release of the proton and free sugar after the addition of water

There are numerous studies that have been conducted on the effects of concen-
tration of acid, acid-to-fiber ratio, and temperature and time of the hydrolysis
process on the dimensions and morphological properties of yielded nanocrystalline
cellulose. According to Azizi et al. [29], there is a strong relationship between the
hydrolysis time and acid-to-fiber ratio to the length and dimensions of nanocrys-
talline cellulose, which by increasing the hydrolysis time and acid-to-fiber ratio
would reduce the dimension and length of nanocrystalline cellulose.

Besides that, there are large numbers of published studies [51, 54] that describe
the dimension, size, and shape of NCC that were affected by the conditions of
hydrolysis process (purity of the material, temperature, time, and ultrasound

10
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Figure 7.

Mechanism of hydrolysis of acid [53].

treatment) and a variety of cellulosic fiber sources. Bondeson et al. [55] conducted
an experiment on the isolation of NCC and found that the optimized condition is at
a concentration of 63.5% H,SO,, which yielded 38 wt.% of NCCs with a width of
10 nm. Another experiment that is conducted by Ilyas et al. [6] found that the
optimum yield for isolating sugar palm nanocrystalline cellulose is at a concentra-
tion of 60 wt% H,SO,4 and duration hydrolysis of 45 min, with length and diameters
of 130 £ 30 and 9 £ 1.96 nm, respectively. Table 3 shows the preparation of NCC
using various acid hydrolysis processes from different cellulosic sources. Typical
procedures for NCC extraction are composed of several steps: strong acid hydroly-
sis, dilution, dialysis, sonification, and drying of NCC.

5. Limitation and modification of nanocrystalline cellulose

There are several limitations when using natural fibers as reinforcement filler in
the polymer matrix such as single-particle dispersion, barrier properties,

Single Particles Barrier Properties Permeability Properties
Dispersion
+ reducing the chain * hydrophilic material

» strong propensity for self- segmental mobility and

association (surface accordingly the penetrant

interact- ing of OH groups) d1ffus19n
« agglomeration and limit the * tortuosity by the

potential of mechanical, nanocellulose fibres

thermal, and conductivity

properties
* sensitive to the ionic

strength of the medium

Figure 8.
Limitation of nanocellulose. Adapted from Refs. [6, 7, 10].
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permeability properties, and poor interfacial adhesion (Figure 8). Nanocrystalline
cellulose has a strong propensity of self-association due to the interaction of abun-
dance OH groups within its surface, which causes agglomeration and limits its
potential applications. Besides, hydrophilic properties of nanocrystalline cellulose
make it difficult to disperse homogenously within any medium and matrix. There-
fore, in order to overcome the incompatible nature, poor interfacial adhesion, and
difficult dispersion of nanocrystalline cellulose in a polymer matrix, surface modi-
fication of fibers or modification of matrix is introduced. Nanocellulose displays a
high surface area valued more than 100 m*/g. This gives advantages to
nanocellulose for surface modification in order to introduce any desired surface
functionality. However, according to Postek et al. [98], the surface chemistry of
nanocellulose is primarily controlled by the process of isolation that used to prepare
these nanocelluloses from raw cellulose substrate. Figure 9 shows the most com-
mon surface chemical modifications of nanocrystalline cellulose. Surface modifica-
tion of NCC can be categorized into three typical groups, namely, (1) polymer
grafting based on “grafting onto” strategy with different coupling agents (as indi-
cated with blue arrows in Figure 9), (2) substitution of hydroxyl group with small
molecules (as indicated with red arrows in Figure 9), and (3) polymer grafting

CH;

\c/CHa 0 N § m / n HaCO
a® o
| \SE 0\c;/ H"l’O/\’]/CH: o
D *
amyla‘ed o TEMPO oxidative CN | i :SE

ASA modified CN PEG grafted onto CN
PNiPAAM graﬂed from CN

\s..,,....- cn / %

/ HO
\ O PEO grafted onto CN
(SI-SET-LRP) ._A

/
Atiphatlu polymers grafted onto CN
OH OH OH ?
‘PK/\/\/O 0.
’K S O

PLA grafted from CN
PCL grafted onto CN

HN
0
o *
CH;
CH,
* oﬁc,NH{J\/o ol
PGL graftaditrom Ch | Jeffamine macromolecules grafted onto CN

EJ\ B, ) oA \ 1 MOCm
*

(ATRP) PMMAZO grafted from CN
(ATRP)} PAA grafted from CN * o] PDMAEMA grafted from cN

(ATRP)
(ATRP) Polystyrene grafted from CN

Figure 9.

Schematic diagram illustrating nanocellulose surface functionalization modification. PEG, poly(ethylene
glycol); PEO, poly(ethylene oxide); PLA, poly(lactic acid); PAA, poly(acrylic acid); PNiPAAm, poly(N-
isopropylacrylamide); PDMAEMA, poly (N, N-dimethylaminoethyl methacrylate). Adapted from Ref. [99].
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based on the “grafting from” approach with a radical polymerization involving
single-electron transfer-living radical polymerization (SET-LP), ring opening poly-
merization (ROP), and atom transfer radical polymerization (ATRP) (as indicated
with yellow arrows in Figure 9). The enhancement of NCC-polymer matrix inter-
action is predicted to improve the stress transfer from the matrix to the dispersed
phase and hence enhances the capability of load bearing material. Besides, the
chemical modification of NCC can be dispersed in the low polarity of organic
solvent and mixed with a polymer matrix solution or directly introduced into the
polymer melt after drying. Nevertheless, two effects ascend from this process: (1)
allow the improvement of dispersion of modified NCC in the polymer matrix and
(2) limit the interaction between NNC and matrix through hydrogen bonding
which is the basis of the outstanding mechanical properties of nanocellulose-based
nanocomposites.

6. Applications of nanocrystalline cellulose from agro-waste fiber
and forest by-products

The incorporation of nanocrystalline cellulose in biopolymers for the
nanocomposite production provides huge advantages with superior performance
which would extend their applications in various applications. This is due to their
outstanding thermal and mechanical properties. NCC also can reduce the water
vapor permeability of the composites due to its high gas permeability [26]. Besides
that, NCC can be used to stabilize the encapsulated bioactive compounds in bio-
polymers for allowing better control in food applications which can improve the
food quality, extend the shelf-life of food, and serve as active substance carriers
such as antifungal, antioxidant compounds, antimicrobial, and insecticide.

The utilization of natural cellulose-based materials continues today as verified
by the various industry players from forest product to make pulp and paper to the
advanced technology used in biomedical applications. These uses have been
reported extensively as summarized in Table 4. NCC can be used as a drug delivery

Polymer component Manufacturing Applications References
technique

Cellulose esterified with ~ Solution casting and ~ Interface melting [101]

lauroyl chloride thermopressing

Ethyl acrylate; methyl-  Solution mixing Drug carrier [100]

methacrylate

Ethylene-co-vinyl Solution mixing and ~ Transparent, rubbery materials [102]

acetate rubber vulcanization

Maleic-anhydride Electrospinning Bone tissue engineering [103]

grafted PLA

Methylcellulose Hydrogel by aqueous  Thermoreversible and tunable [104]
dispersion nanocellulose-based hydrogels

PC Masterbatch melt Optical devices [105]
extrusion process

PC-based polyurethane  Solution casting Smart actuators and sensors [106]

blend

Plasticized PLA Twin-screw extruder  Film blowing, packaging [107]

Plasticized starch Solution casting Transparent materials [108]

13
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Polymer component Manufacturing Applications References
technique
PU Solution casting High temperature biomedical devices [109]
PVA Solution casting Stretchable photonic devices [110]
PVA Solution casting Wound diagnosis/biosensor scaffolds [111]
PVA Solution casting Conductive materials [112]
Starch Blending, solution Air permeable, resistant, surface- [113, 114]
casting sized paper, food packaging
Starch Solution casting Food packaging [60]
Cassava starch Solution casting Food packaging [62]
Sugar palm starch Solution casting Food packaging [115]
Wheat starch Solution casting Food packaging [87]
Tuber native potato Solution casting Packaging [116]
Cereal corn Solution casting Packaging [116]
Legume pea Solution casting Packaging [116]
Waterborne acrylate Solution mixing Corrosion protection [79]
Wheat straw Solution casting Packaging [96]
hemicelluloses
PVA Solution casting Food packaging [83]
Chitosan Solution casting Food coating/packaging [70]
Table 4.

Polymer component reinforced NCCs and its manufacturing technique and applications.

excipient; Burt et al. [100] investigated the capability of pure NCC to bind water-
soluble antibiotics (tetracycline and doxorubicin) and the potential of cationic NCC
to bind non-ionized hydrophobic anticancer agents (docetaxel, paclitaxel, and
etoposide). Moreover, besides direct use as drug delivery excipient, NCC can also
be used as co-stabilizer to improve the physicochemical and flow properties of
polymeric excipients. Acrylic beads prepared via emulsion polymerization using
NCC as co-stabilizer were proven to be a suitable excipient.

Table 5 shows several nanocelluloses, NFCs, and NCCs that have been used as
reinforcement fillers in polymer matrices. The polymer matrices used are from both
synthetic and natural polymers. Table 6 shows examples of NCCs used as fillers in
polymeric matrices.

Source Filler = Polymer matrix Ref.
Sugar palm NCC  Sugar palm starch [117]
Sugar palm NFC  Sugar palm starch [115]
Acacia mangium NCC PVA [56]
Bacteria NCC CAB (0-10 wt% filler) [58]
Cotton NCC PVA (0-12 wt% filler) [118]
Flax NFC/  PVA (10 wt% filler), waterborne [119, 120]
NCC  polyurethanes (0-30 wt% filler)

Hemp NFC PVA (10 wt% filler) [120]
Kraft pulp NCC  Waterborne acrylate [79]
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Source Filler = Polymer matrix Ref.
MCC NCC PLA (5 wt% filler) [121]
Potato pulp NFC Starch/glycerol (0-40 wt% filler) [122]
Ramie NFC Unsaturated polyester resin [85]
Ramie NCC Starch/glycerol (0-40 wt% filler) [87]
Rutabaga NFC PVA (10 wt% filler) [120]
Soy hulls NFC No attempts were made with composites [29]
Sugar beet NFC/  Styrene/butyl acrylate (6 wt% filler) [123]
NCC
Tunicate NCC  Styrene/butyl acrylate (6 wt% filler), starch/sorbitol [94, 124—
(25 wt% filler), waterborne epoxy (0.5-5 wt% filler) 126]
Water hyacinth NCC Yam bean starch [48]
fiber
Water hyacinth NFC Yam bean starch [127]
fiber
Wheat straw NFC  No attempts were made with composites [29]
Wheat straw NCC Wheat straw hemicelluloses [96]
Wood pulp NFC/  PVA (10 wt% filler), PLA (5 wt% filler) [120, 128]
NCC
Cassava bagasse NCC Cassava starch [62]
Ramie NCC Wheat starch [87]
Phormium tenax NCC PVA [83]
(harakeke) fiber
Flax fiber NCC PVA [83]
Potato peel fiber ~ NCC  Starch [84]
Table 5.

Different nanocellulose sources of reinforcement fillers in polymer matrices.

Polymer References
Cellulose acetate butyrate [58, 129]
Cellulose [130]
Chitosan [131-133]
Poly(acrylic) acid, PAA [134]
Poly-(allylmethylamine hydrochloride), PAH [135]
Poly-(dimethyldiallylammonium chloride), PDDA [136]
Poly(ethylene-co-vinyl acetate), EVA [137]

Poly (hydroxyalkanoate), PHA [133, 138]
Poly(hydroxyoctanoate), PHO [139]
Poly(lactic acid), PLA [118, 121, 140-144]
Poly(methyl-methacrylate), PMMA [145, 146]
Poly(oxyethylene), PEO [147, 148]
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Polymer References
Poly(styrene-co-butyl acrylate) [94, 149, 150]
Poly(vinyl alcohol) (PVA) [56, 83, 151]
Poly(vinyl alcohol), PVOH [67, 152-154]
Polycaprolactone, PCL [155-157]
Polypropylene, PP [158, 159]
Polystyrene [160]
Polysulfone [161]
Polyurethane, PU [162-164]
Polyvinyl chloride, PVC [165-167]
Regenerated cellulose [168, 169]
Soy protein [170]
Starch-based polymers [60, 62, 84, 152, 171-173]
Waterborne acrylate [79]
Xylan [174-176]
Hemicellulose [96]

Table 6.

NCC used as filler in polymeric matrices.

7. Conclusion

Agro-waste is an unavoidable by-product that arises from various agricultural and
agro-forest activities’ operation. However, different kinds of agro-product industries,
change of lifestyle, and population growth are assumed to be within the main factors
that increase the rate of waste generation globally and locally. Therefore, proper
waste management selections are very important based on the types of wastes and
cost-effective factors in order to reduce the damage to the ecosystem. One of the
alternatives to reduce agro-waste disposal is converting it to high-end value products
such as nanocrystalline cellulose. In the present work, an overview of the production,
processes, modification, and application of nanocrystalline cellulose from different
agricultural wastes was proposed and leads to the following main concluding remarks:
(1) it is important to select the proper raw material of agro-waste fiber, due to a broad
variety of structure and chemical composition and its pretreatment process before the
extraction process of nanocellulose begin; (2) the surface charge and morphology of
nanocrystalline cellulose are affected by the production conditions such as hydrolysis
time, temperature, and the acid-to-fiber ratio; and (3) nanocrystalline cellulose can
be used in various applications including in hydrophobic polymer after some modifi-
cation is made. The utilization of several lignocellulosic wastes from agricultural and
forest by-product activities becomes the best proposal regarding cost/energy savings
and economic development. The agricultural residue is available worldwide, abun-
dant, cheap, and an unexploited source of cellulose that could be used as large-scale
production of nanocellulose products.
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