
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

19

The Allocation of Time and Location Information
to Activity-Travel Sequence Data by Means of

Reinforcement Learning

Janssens, Wets
Hasselt University, Transportation Research Institute

Belgium

1. Introduction

In the transportation research area, activity and travel modes are critically important
information, based on which the transportation demand/status are simulated or predicted.
Once the sequential activity-travel combination is known, such as for instance Sleep-Eat-car-
Work-Eat-Work-car-Eat-bike-Shop-bike-Leisure-bike-Sleep, it is meaningful to observe how
a learning agent can allocate time and location information for given activity-travel pattern
combinations in a reasonable way. Also interesting to observe is how it reacts when it is
thrown off its optimal arrangement because of some unforeseeable events, such as for
instance a traffic jam. Given a constrained environment, we simulate and look into a
learning agent’s behavior under the framework of Reinforcement Learning (Mitchell, 1997;
Sutton & Barto; 1998), which is in fact a synonym for learning by interaction (Kaelbling,
1996). More specifically, the vector <activity, starting time, duration, location> denotes the
agent’s current state, where duration indicates how long the agent has spent on the current
activity. There are two actions available for each state: Stay (continue current activity for
another time slot at the same location) or Move (travel to a possible location where the agent
starts to perform the next activity in the pattern). At each state, the agent will receive a
reward from the environment when any possible action is chosen. By accumulating this
reward information that it obtained from its trial and error search in the state space, the
agent finally gets the optimal/satisfactory time and location arrangement. Previous research
work in this area generally deals with only one of these two allocation problems: they either
focus on the time planning of the activity patterns (Charypar et al., 2004), or search the
shortest path in a dynamic programming way (Dijkstra, 1959). In reality, however, a rational
person will consider the time and location arrangements simultaneously in order to achieve
a total maximal reward. To the best of our knowledge, it is the first time that both problems
are integrated and solved using Reinforcement Learning.
Reinforcement Learning goes back to the very first stages of Artificial Intelligence and
Machine Learning and has several applications in the domain of Intelligent Knowledge
Engineering Systems. Indeed, the applications of reinforcement learning are situated in the
basic roots of artificial intelligence, such as for instance game playing (Littman, 1994; esauro,
1992, 1994; Thrun, 1995) and robotics (Mahadevan & Connell, 1992; Schaal, 1994). However,
there are also numerous other application domains such as for instance in elevator

Source: Reinforcement Learning: Theory and Applications, Book edited by Cornelius Weber, Mark Elshaw and Norbert Michael Mayer
ISBN 978-3-902613-14-1, pp.424, January 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Reinforcement Learning: Theory and Applications 360

dispatching (Crites & Barto, 1996; Barto & Sutton, 1981), production scheduling (Schneider
et al., 1998), but also in a transportation-related context such as in intelligent lane selection
(Moriarty, 1998) for achieving a higher traffic throughput. Within an activity-based
framework, the reinforcement learning technique has been first applied by Arentze and
Timmermans (Arentze & Timmermans, 2003) in the context of learning and adaptation, and
only recently by Charypar et al. (Charypar et al., 2004; Charypar & Nagel, 2005) in a time
allocation problem.
The current paper elaborates this latter approach by not only focusing on an optimal time
allocation solution, but also on the allocation of location information. Furthermore, the time
and location allocation problem were treated and integrated simultaneously, which means
that the respondents’ reward is not only maximized in terms of minimum travel duration,
but also simultaneously in terms of optimal time allocation. With respect to the allocation of
location information, the travel time between two locations (origin and destination
locations) is used and is made dependent on the transport mode that has been chosen for
travelling from one location to another. Indeed, travel durations between two locations are
obviously not equal over different transport modes, so it is warranted to take this dimension
into account.
The remainder of this paper has been organized as follows. The basic conceptions of
reinforcement learning are elaborated in section 2, along with the introduction to Qlearning,
one of the popular algorithms to realize reinforcement learning. In section 3, we will detail
by means of artificial examples how Q-learning can be applied to the time and location
allocation problem respectively, which will help us improve the understanding of
reinforcement learning. Section 4 illustrates characteristics and results of activity-travel
patterns being optimized in a more realistic environment. Finally, concluding remarks are
given in section 5.

2. Reinforcement learning

Under a constrained environment, the learning agent can perceive a set S of distinct states,
which are normally characterized by a number of dimensions, and has a set A of actions to
perform at each state. Reinforcement learning tasks are generally treated in discrete time
steps. At each time step t, the agent observes the current state st and chooses a possible

action to perform, which leads to its succeeding state st+1= (st, at). The environment
responds by giving the agent a reward r(st, at). These rewards can be positive, zero or
negative. It is probable that these preferable rewards come with a delay. In other words,
some actions and their consequential state transitions may bring low rewards in short term,
while it will lead to state-action pairs later with a much higher reward. On the contrary, an
action in a given state may receive an immediate high reward, whereas it makes the agent
enter into a path where a series of actions followed, have very low or even negative
rewards.

Therefore, the task of the agent is to learn a policy : S A, according to which the agent

will achieve the maximal accumulative reward over time. Given an arbitrary policy from
an arbitrary state st, the accumulative reward can be formulated as follows:

The Allocation of Time and Location Information to
Activity-Travel Sequence Data by Means of Reinforcement Learning 361

[0,1] is the discount factor and it also determines the relative value of immediate versus
delayed reward, which indicates how far the agent looks into the future. The agent only

considers the immediate reward if is set at zero. A parameter close to one means that
rewards in the far future are given greater emphasis relative to the immediate rewards.

Now the agent is required to learn the optimal policy * (s) that maximizes the accumulative
reward:

We refer to the optimal value function V * as V* for the sake of simplicity. Given a state s, the
formula above can be extended with the immediate reward explicitly displayed, which
indicates that the optimal action a at current state s should maximize the immediate reward

r(s, a) plus the value V*(s) of the succeeding state, discounted by :

where (s, a) denotes the resulting state after action a is performed at state s.

2.1 Q-learning algorithm

It is natural to choose V* as the evaluation function in order to let the algorithm determine
the state and action pairs that optimize V*. Unfortunately, it is required that the perfect

knowledge of immediate reward function r and state transition function are known in
advance. When the agent has learned through trial and error the reward and state transition
pairs responded by its environment at any state, it is able to calculate the optimal action a at
any state s.
In reality, however, it is usually impossible for the agent to predict in advance the exact
outcome of applying an arbitrary action to an arbitrary state. In other words, the domain
knowledge is probably not perfect. Q-learning (Watkins, 1989; Watkins & Dayan, 1992) is
then devised to select optimal actions even when the agent has no knowledge about the
reward and state transition functions. It employs the novel evaluation function Q(s, a) as
follows

 (1)

Then *(s) and V*(s) in terms of Q (s, a) can be revised as:

Taking into account equation (1), this gives

 (2)

The recursive definition of Q(s, a) enables Q-learning algorithm to iteratively approximate

Q- values. Q̂ is referred as the agent’s estimate of the actual function Q. The Q-learning

algorithm maintains a large table with entries to each state-action pair. For each entry, the

value of Q̂ (s,a) is stored and initially fulfilled with a random number. The agent

Reinforcement Learning: Theory and Applications 362

repeatedly observes its current state s, chooses a possible action a to perform, and

determines its immediate reward r(s, a) and resulting new state (s, a). The Q̂ (s,a) value is

then updated according to the following rule:

 (3)

That is to say, the Q̂ -value of current state-action pair is refined based on its immediate

reward and the Q̂ -value of its next state. After the Q-values of state-action pairs are well

estimated by Q-learning algorithm, the agent can reach a globally optimal solution by
repeatedly selecting the action that maximize the local values of Q for current state. The
actual learning process can be described as follows (Charypar et al., 2004):
1. 1. Initialize the Q-values.
2. 2. Select a random starting state s which has at least one possible action to select from.
3. 3. Select one of the possible actions. This action leads to the next state s’.
4. 4. Update the Q-value of the state action pair (s, a) according to the update rule above.
5. 5. Let s = s’ and continue with step 3 if the new state has at least one possible action. If

it has none go to step 2.

2.2 Explore vs exploit

The 2nd step in the learning process does not specify how actions are chosen by the learning
agent. In each state the agent basically can choose from two kinds of behavior: either it can
explore the state space or it can exploit the information already present in the Q-values. By
choosing to exploit, the agent usually gets to states that are close to the best solution so far.
Because of this, it can refine its knowledge about that solution and collect relatively high
rewards. On the other hand, by choosing to explore states that are further apart from the
current best solution, it is possible that it discovers a solution that yields higher rewards
than the one already known. The strategy above is similar to the local and global search in
most known optimization algorithms.
It is common in Q-learning to use a probabilistic approach to selecting actions. One
straightforward strategy is -greedy method, where the probability of making a random
choice is handled by the parameter . In every step, with a probability of 1- , the agent
exploits the information stored in the Q-values, and with probability the agent chooses a
random action in order to explore the state space.
In the exploration mode, the -greedy method assumes equal selection probabilities across
possible actions, whereas the chance of selecting a better action may be increased by taking
the current value distribution across alternatives into account. A commonly used method
assumes a Boltzmann distribution and selects action a with probability:

where is a parameter usually called the temperature. The higher the temperature, the more
evenly probabilities are distributed across alternatives and, hence, the higher the system’s
tendency to explore (Arentze & Timmermans, 2003). As the temperature decreases, the

The Allocation of Time and Location Information to
Activity-Travel Sequence Data by Means of Reinforcement Learning 363

system assigns increasingly higher probability to the highest valued action, and, hence, the
lower the tendency to exploit. The value of the temperature parameter (as well as) might
be a function of time rather than a constant. Then, the system can simulate a tendency to
increase exploration in new environments and decrease this tendency as experience is
accumulating.
There are two other possible ways of influencing the system’s tendency to explore. First, the
choice of the initial value for the value function is relevant. When initial values are set to a
high level relative to what can be expected, the system will, even for = 0 (in the greedy
method) or low temperature (in the Boltzmann method), display a high rate of exploration
in an early stage. Second, the system may incrementally update an aspiration level (under
each state) and switch to an exploration mode each time the currently best alternative
(under the concerned state) drops below the aspiration level.

The reinforcement learning is a Markov decision process (MDP), where the functions (s, a)
and r(s, a) depend only on current state and action-pairs. In our application, we will restrict
ourselves to a discrete MDP, for a discussion of a continuous MDP and for more examples,
we refer to (Mitchell, 1997). The Q-learning algorithm will converge under two conditions
(Watkins & Dayan, 1992). First, the immediate reward is bounded, i.e. there exist some
positive constant c such that for all state action pairs, |r(s, a)|< c. The second condition is
that the agent selects actions in such a fashion that it visits all possible state-action pairs
infinitely often. Both conditions were met in the experimental results shown in the
remainder of the paper.

3. Time and location allocation for activity and travel combinations

In this section, a hypothetical example has been presented to improve the understanding of
Q-learning. A similar example has been presented and explained in Charypar et al. (2004),
which is repeated here for the sake of clarity. The behavior of the Q-learning algorithm is
first explained with respect to the time allocation problem; location allocation is dealt with
subsequently. The integration of time and location allocation in a more realistic environment
is treated in the next section.

3.1 Time allocation by means of Q-learning

3.1.1 Assumptions

For this first application and for the sake of clarity, the presence of travel modes has been
ignored in the fixed sequence of activities. There are a number of other simplifying
assumptions which are made to better understand the behaviour of the agent:

Fixed order of only 4 activities (1 sequence), i.e.: Home – Work – Shop – Leisure

Time of the day is discretized with a course time slot of 6 hours. The time structure is
assumed to be periodic, i.e. 24:00 P.M. is connected to 0:00 A.M.. The duration of each
activity is restricted to 12 hours in order to keep the number of state finite.

A state s is characterized by the activity, starting time of activity and duration (time
already spent at activity), and denoted as a triple (a, s, d).

For a state s, an action may be to Stay (‘S’) at the current activity for another time slot or
to Move (‘M’) on to perform the next activity.

No travel time between two activities (ignorance of travel modes)

Reinforcement Learning: Theory and Applications 364

Parameter setting: Learning rate = 1; Discounting factor =0.8; =1 (-greedy method

applied). For purely discrete worlds, can be safely set equal to 1. The reason is that
since the system is discrete and finite, the trajectory eventually needs to come back to a
state where it was before. Once this point has been reached, the system will do exactly
the same as in the previous “round”. A learning rate of 1 will then lead to the most
optimal and fastest learning. The agent should not only be interested in immediate
rewards, but in the total discounted reward. As mentioned before, the discounting

factor defines how much the expected future rewards, affect decisions now. High

means that potential future rewards have a major influence on decisions now – and
that one is willing to trade short-term loss for long-term gain. While this value can be
chosen arbitrarily, it should be close to 1 since we are interested in finding the daily time
plan that maximizes the reward. The chosen value has an impact on the learning speed
of the algorithm, which is of less importance for the application framework that is
presented in this paper. More information can be found in Watkins & Dayan (1992).

In addition to these assumptions, reward tables are artificial and extremely simple, as
shown in Table 1.

Table 1. An example of a simple reward table for activities

It can be seen from Table 1, that the reward of working 0 hours is 0 and is independent of
the starting-time of the work-activity. Arriving at work at 6:00 A.M. gives somebody a
reward of 3 (units) at the moment he/she is working for 6 hours (i.e. from 6:00 A.M. -
12:00A.M.) or a reward of 5 (units) at the moment the person is working for 12 hours (i.e.
from 6:00 A.M. - 6 P.M.). Arriving at work later than 6 A.M. gives no reward at all. The
reward tables for home, shop and leisure are similar.

3.1.2 Evolution of Q-values and state-action pairs

Let us now reconsider the Q-learning algorithm. Since = 1 and = 0.8, the update rule for

our simple example is equal to . In the first step of the

learning process, all the Q-values of every state-action pair are set equal to zero. Next, a
random starting state s will be chosen, which has at least one possible action to select from.
In our example, the starting state may be equal to (Work, 0:00 A.M., 6 hours). The third step
selects one of the possible actions, which will bring us to the next state s’. Because the
exploration probability was set maximal, i.e. =1, the agent will always randomly choose an
action in order to explore the state space in an attempt to find a new, better solution than the
one already known. (On the contrary, when =0, the agent will choose the action that has
the largest Q-value so far.) Suppose the agent randomly chooses to Move on the next

The Allocation of Time and Location Information to
Activity-Travel Sequence Data by Means of Reinforcement Learning 365

activity. The next state turns to be (Shopping, 6:00 A.M., 0 hour). According to the update
rule in step 4, the updated Q (s, a) = Q (Work, 0:00 A.M., 6 hours; Move) is still equal to 0
since both the immediate reward and the maximal Q-value of its next state-action pairs are
zeros.
Table 2 shows the states that have been visited by the agent in every loop, while Table 3
illustrates the progress of the Q-values for every state-action pair during the execution of the
algorithm.

Table 2. Visited states per loop (Numbers denote the loop number)

In the final loop, the state s will be set equal to the state (Shopping, 6:00 A.M., 0
hours). In this artificial example, no travel time has been taken into account. It should
be noted that in a realistic scenario, the start time of state s’ should thus be
augmented with the travel time which is needed to get from state s to state s’. For
now, the algorithm continues with loop 2, which starts again at step 3 of the
algorithm procedure. The Q-values stay equal to zero until the 5th loop. In this loop,
the action is Stay, which will bring the agent to the state (Leisure, 6:00 P.M., 6 hours)
and a 3-unit immediate reward. It is worth mentioning that the immediate rewards
are given as “utility per time slice”, which corresponds to a coarse version of
marginal utility. Also interesting to observe is for instance the 23rd loop, where the
agent chooses to stay for another 6 hours when it has already been home for 6 hours
(start from 6:00 P.M.). The immediate reward is calculated as 0 – 1 = -1, which means
that the agent feels unworthy if continues to Stay. The 24th loop is the first where the
Q-values of its next state-action pairs are non-zeros. The immediate reward is equal to
0, but the second part of the update rule looks at the latest updated Q-value for every
state-action pair, takes the largest Q-value over all the actions and multiplies this by
the discounting factor. In this case the latest updated Q-value for the state-action pair
(Work, 6:00 A.M., 0 hours; Stay) is 3 (see loop number 9) and for (Work, 6:00 A.M., 0
hours; Move) it is 0 (initialization). For this reason, the updated Q-value of the 24th

Reinforcement Learning: Theory and Applications 366

loop is equal to = 0 + 0.8 * Max (3, 0) = 2.4. The computation for the other loops is
similar (see Table 3).

Table 3. Q-values and state-action pairs

3.1.3 Optimal time allocation

The learning procedure continues until each state-action pair has been visited for a sufficient
large number of times and until the corresponding Q-value converges. Then at each state,
the agent chooses the action that achieves a maximal Q-value, which means that an optimal
policy chart can be constructed as shown in Table 4. Starting from an arbitrary state, the
policy will finally guide the agent to its stable and optimal time planning within a day:

Table 4. Policy Chart for iterations going to infinity

The Allocation of Time and Location Information to
Activity-Travel Sequence Data by Means of Reinforcement Learning 367

For instance, the algorithm will first choose a random start state. Let’s say (Shop, 0:00
A.M., 6 hours). The corresponding action in the policy chart is Stay. As a result, the
next state is equal to (Shop, 0:00 A.M., 12 hours). According to the policy chart, the
agent chooses to Move (since the maximal duration for each activity is 12 hours), and
comes to the next states (Leisure, 12:00 A.M., 0 hours). Carrying out the policy in
Table 4, the agent sequentially arrives at (Leisure. 12:00 A.M., 6 hours), (Leisure, 12:00
A.M., 12 hours), (Home, 0:00 A.M., 0 hours), (Home, 0:00 A.M., 6 hours), (Work, 6:00
A.M., 0 hours), (Work, 6:00 A.M., 6 hours), (Shop, 12:00 A.M., 0 hours), (Shop, 12:00
A.M., 6 hours), (Leisure, 6:00 PM, 0 hours) and (Leisure, 6:00 PM, 6 hours). Next the
agent will Move again to the state (Home, 0:00 A.M., 0 hours), thus forming a cycle
within a day, which is the same as the optimal time planning above. It can be seen
from the policy chart that an arbitrary start state, such as (Leisure, 0:00 A.M., 6 hours)
or (Home, 6:00 A.M., 12 hours), will ultimately lead to the same optimal solution.

3.1.4 Discussion

Finally, some remarks need to be made with respect to the use of the Q-learning
algorithm to solve the time allocation problem. First, cycles can also be multiples of
24 hours. For example, an agent can have one full day where it gets up early and goes
to bed late, alternated with a less full day where it gets up later and goes to bed
earlier. Second, an interesting side-effect of the structure of Q-learning is that the
result of the computation is not only the optimal “cycle” through state space, but also
the optimal “paths” if the agent is pushed away from the optimal cycle. For example,
if an activity takes considerably longer than expected, the Q-values at the arrival state
will still point the way to the best continuation of the plan, as shown in the example
above. Third, it is possible that some of the Q-values do not converge when their
state-action pairs have not been sufficiently visited. Then the agent will nevertheless
find a cycle, albeit possibly not the optimal one. In reality, it may be time consuming
to visit each state-action pair infinitely in a huge state space with many possible
actions, which pushes the agent to a tradeoff between the learning time and solution
quality.

3.2 Location allocation by means of Q-learning

Consistent with the time allocation problem, location allocation can also be solved by
means of Q-learning. For this purpose, it is assumed that people try to
maximize/minimize the reward/cost of its travel in total.
Travel distance may not be an optimal measure for determining the burden of travel
because it is plausible in a realistic situation that the distance between location A and
location B is shorter than the distance between location A and C, while the travel time
may be longer (for instance because of a better road network). Furthermore, it is
possible that there is a difference in the transport mode that is used.
Translated into a context of Q-learning, the agent learns to find a travel policy that
achieves maximal reward/minimal cost. It is assumed that the immediate reward of
traveling between two locations depends upon the travel mode, and has a negative
correlation with travel time.

Reinforcement Learning: Theory and Applications 368

3.2.1 Assumptions

Again, consider a simple example with the following simplifying assumptions to better
understand the behaviour of the decision agent:

One activity-travel sequence: Home – public transport – work – walk – leisure – walk –
shop – public transport – Home.

A state is characterized by the activity and current location, and is denoted as (a, l).

For a state, an action is to choose the location where the agent can perform the next
activity in sequence. Activities can be carried out in a limited number of locations:
Home : Location A
Work : Location B
Leisure : Location C or D
Shop : Location E or F

Only the rewards that come from travel are learned to be maximized.

Parameter setting: Learning rate = 1; Discounting factor = 0.9; =1 (-greedy
method applied).

In addition to these assumptions, reward tables are artificial and extremely simple, as
shown in Table 5.

Table 5. An example of a simple reward table for travel

3.2.2 Evolution of Q-values and state-action pairs

Taking these simplifying assumptions into account, Home and Work can only be carried out
at location A and B. It is obvious that the agent only has to decide about the location of
Leisure and Shop activities, and each of them has two possible choices. The remainder of
this section illustrates the learning procedure of the agent.
After all state-action pairs are initialized as zeros, a random state s will be chosen. It should
be recalled that the state is defined by an activity and an origin location. Assume that the
agent first visits state (Work, B). In the third step of the learning procedure, the agent
chooses a random action in order to explore the state space in an attempt to find a better
solution than the one already know. Let us assume that action (destination) C has been
chosen to perform the next activity Leisure. The travel mode lies on the sequence and here is
walk. The updated Q (Work, B; C) thereby equals -8 + 0.9 * max (Q (Leisure, C; E), Q

(Leisure, C; F) = -8. Assume that the agent selects to walk to E for Shop when it is at the new
state (Leisure, C), Q (Leisure, C; E) turns to be -10 + 0.9 * max (Q (Shop, E; A)) = -10. As

The Allocation of Time and Location Information to
Activity-Travel Sequence Data by Means of Reinforcement Learning 369

shown in Table 6, the agent visited these states sequentially. These actions at each state and
their corresponding updated Q-values are demonstrated in Table 7.

Table 6. Visited states per loop

Table 7. Q-values and State-action pairs

3.2.3 Optimal location allocation

The Q-values tend to converge when each state-action pair has been visited for a sufficient
large number of times. Then at each state, the agent chooses the optimal action that achieves
maximal Q-value, thus constructing a policy (chart), as shown in Table 8.

Table 8. Policy chart for iterations going to infinity

The optimal location allocation for this sample sequence is thus equal to:

Reinforcement Learning: Theory and Applications 370

Home (A) – public transport – Work (B) – walk – Leisure (D) – walk – Shop (E) – public
transport – Home (A)…

According to these stored Q-values of each state-action pair, the agent know how to react
properly back to the optimal path when something unforeseeable happens. For instance,
when location D for Leisure is not available today, the agent carries out Leisure at location C
instead. Making use of its Q-values information about its two choices at location C, the agent
wisely selects F as the location for Shopping. Next, it moves back Home at location A and is
situated on the optimal path again.

4. Empirical results

4.1 Optimizing activity-travel pattern allocations
4.1.1 Preface

The previous two sections have independently considered time and location allocation in an
artificial environment. In reality, however, the reward function will be more complex, there
may exist a more refined time granular; an abundant number of locations may be available
for a certain activity, and the distribution of these locations may be more disarrayed.
Because of this, it becomes not so straightforward in the planning of time or locations.
Furthermore, people will simultaneously take the time and location arrangements into
account in order to get a maximal reward in total. It is recalled that the reward of daily
activities depends upon the duration as well as start time, people will not simply endeavor
to obtain an optimal route for travel, since such a route design may not be perfectly suitable
for the time arrangement of daily activities. On the other hand, when people allocate time
for activities, they have to consider the flexible travel times since a number of locations are
available for the next activity. The time and location arrangements are therefore interacted.

4.1.2 Assumptions

We will integrate the two problems under the framework of Q-learning in a more realistic
environment, which can be described as follows:

The elements of sequences are limited to four kinds of activities (i.e. Home, Work, Shop
and Leisure) and four kinds of travel modes (i.e. walk, bike, car and public transport).

Time of the day is discretized with a refined time slot of 15 minutes, and the maximal
duration of each activity is 12 hours.

A state s is characterized by activity, starting time of activity, time already spent at
activity (duration) and the origin location where the activity is performed.

For a state s, an action a may be to Stay: keep performing the activity at current location
for another time slot, or to Move: move to a possible location where it starts to perform
the next activity. The travel mode the agent uses to reach these locations is determined
by the sequence.

The reward functions of these four activities are illustrated in Figure 1 by means of example.
Probably the best way to derive these reward tables in reality is to conduct elaborated stated
preference experiments that are able to quantitatively assess the reward that people
experience per start time and per time unit that was spent per activity. As a second-best
alternative, one may use the frequency information per time frame which is available in the
activity diaries as an approximation for the rewards. While frequency is certainly not a

The Allocation of Time and Location Information to
Activity-Travel Sequence Data by Means of Reinforcement Learning 371

synonym for reward, the idea might work fairly well if we have a look at the purpose of our
experiment. In our application, the aim is to come up with a time allocation (per activity),
that corresponds best with the information that is present in the data. Obviously, some
direct relationship is needed between the model and the data to achieve this. So, even
though people may not like it to get to work at 7 A.M. (and may report a low reward in a
realistic situation), the learning model will assign a lot of activities starting at that point in
time if this happens frequently often in the data. However, the frequency information
cannot be used entirely without any modification. A simple example can illustrate this.

Fig. 1. Reward tables

Suppose that somebody has reported to have end sleeping at 3.15 A.M. and that the time
that he/she was already sleeping was 15 minutes. The reward table that is defined by a 3.00
A.M. starting time and a 15 minute duration, needs be incremented by 1 unit. However,
assume now that a second person reported to have ended sleeping at 4.00 A.M. and that the
time that he/she was already sleeping was 60 minutes. Now, in this case, not only the
reward table that is defined by a 3.00 A.M. starting time and a 60 minute duration needs to

Reinforcement Learning: Theory and Applications 372

be updated, but the 15-, 30- and 45-minute interval needs to be updated as well. A simple
program has been established to automate these kind of conversion procedures for the
frequency information that is present in the data. This may result in a reward function that
looks like Figure 1 where for instance starting to work for 15 minutes at 2:00 A.M. brings a
negative reward. However, the agent has a much higher reward if it starts to work at 8:00
A.M. for the same duration. Additionally, assuming that the shop is only available between
8:00 A.M. – 8:00 P.M., the agent will acquire no reward if it starts to shop at 6:00 A.M. or
continues to shop at 11:00 P.M.
With respect to location allocation, 100 locations were collected in a city and we recorded
the distances among them. These locations are graphically illustrated in Figure 2, by
applying the multi-dimensional scaling (MDS) technique (Johnson & Wichern, 1998). Of
these 100 locations, 20 locations are available for Shopping, and 15 for Leisure. For each
person, there is only one location available, both for Home and for Work.

4.1.3 Reward/cost function

For each travel mode, the travel time among these locations are logged. It is assumed that
the reward/cost function in term of travel time is as follows:

Reward t c *(b*t)a

,where c is identical for all travel modes and is applied to easily control the relative
importance of travel compared with daily activities. The parameters b and a are specifically
set for each travel mode in order to respectively dominate the range of reward and its
evolution trend.

Fig. 2. Location distribution

The Allocation of Time and Location Information to
Activity-Travel Sequence Data by Means of Reinforcement Learning 373

The setting of these parameters are shown in Table 9 and their corresponding curve is
depicted in Figure 3.

Table 9. Parameter setting for reward functions of each travel mode

Fig. 3. Reward function curves of each travel mode

In such a complicated environment, it is required for the learning agent to look far into the

future in order to find a good daily plan of time and locations. The discounting factor is set
at 0.99, which is close to one and makes the learning procedure harder to converge. The -
greedy method that was explained before is adopted and is set as 1 in order to explore the
state space sufficiently.
Due to the use of discrete time intervals, the starting time of activity is calculated as the
ending time of previous activity plus, instead of real travel time, the minimal number of
time slots that contains the travel time. It is expected that this adaptation causes trivial
influence because of the small time granular.
Furthermore, the discount per time slot should be the same during the learning procedure.

As a result, the discount factor is equal to m if it takes the agent m time slots to travel to the
next location.

4.1.4 Empirical results

Three sequences were dealt with in this paper by means of example:
1. Home – car – Work – car – Shop – car – Leisure – car – Home
2. Home – public transport – Work – public transport – Home – bike – Leisure – bike – Shop –

bike – Home
3. Home – public transport – Work – walk – Leisure – walk – Shop – public transport - Home
The optimal behaviour of three persons are presented for each pattern by means of example.

Reinforcement Learning: Theory and Applications 374

The home and location pair for each person can be listed as follows:
Person A: Home – location 7; Work – location 82
Person B: Home – location 29; Work – location 9
Person C: Home – location 30; Work – location 54
The outputs are displayed in Table 10.

Table 10. Optimal output

*H – Home, W – Work, L – Leisure, S – Shop.
*Each element in the optimal behavior is denoted as Activity (Start time – End time,
location).
For example, when person A chooses sequence 2 for everyday life, he/she would like to stay
at home from 22:30 P.M. to 6:45 A.M., and then moves by public transport to location 82. At
17:30 PM, he/she stops working and returns home. Person A does not spend in home time
(which means that the home activity that was assumed to exist in the given sequence, is
skipped) and directly rides bicycle to location 0 for Leisure. After two hours leisure, he
heads to location 6 for one hour’s shopping. Finally, he starts to move by bike back home at
22:00 P.M.

4.2 Route optimization vs. activity-travel optimization

As mentioned above, the equation Reward (t)= -c*(b*t)a is applied to calculate the travel
reward (cost). We also run our optimization program when c is set as infinite large, which
makes the agent arrange his route in a fashion that achieves lowest travel cost. The
experiments revealed that for sequences 2 and 3, the route arrangements are the same as
those in Table 10, while the situation is probably different for sequence 1. For instance, when
c is infinite large and sequence 1 is adopted, person A prefer location 83 than location 87 for
Shop, and person C prefer location 39 than location 33 for Leisure. The output is the result of
the fact that in sequence 1, traveling by car suffers from low cost and the route arrangement
is often subject to the activity arrangement in order to achieve highest reward in total, while

The Allocation of Time and Location Information to
Activity-Travel Sequence Data by Means of Reinforcement Learning 375

traveling by public transport, bike or walk is costly and the route should also be carefully
designed to alleviate the travel cost as much as possible.
Another interesting output, when c is infinitely large, is that the agent will keep performing
each activity as long as possible (12 hours in our environment) in order to avoid
unnecessary location transfers in everyday life, which is apparently reasonable.

4.3 Back to optimal path gracefully

When unforeseeable events often happen in our life, such as traffic jam or overtime on work,
the agent is put off the optimal path. One extraordinary advantage of Q-learning is that the
agent, according to the Q-values accumulated in the learning procedure, can wisely choose
the appropriate action and move back to optimal path gracefully as it was also mentioned in
Charypar & Nagel (2005). We illustrate this characteristic by means of the following two
examples.
Example 1: Suppose person A takes sequence 1 as his daily activity-travel pattern. One day,
he has to deal with extra tasks and keeps working till P.M. 19:00, which is off his optimal
daily arrangement. He then chooses to go shopping at location 87 for 1 hour and 45 minutes.
Then he moves to location 0 for leisure and get back home at A.M. 00:00. He will get up at
A.M. 07:15 as usual and be on the optimal path again. The adjustment process is as: Work
(07:45 --19:00, 82), Shop (19:15 --21:00, 87), Leisure (21:15 --23:45, 0), Home (00:00 --07:15, 7),
Work (07:45 --18:00, 82)…
Example 2: Assume person B adopts sequence 2. One morning, he is delayed one hour by
traffic jam and starts to work at A.M. 08:45. Based on his experience, he will wisely work for
9 hours. He then arrives at home at P.M. 19:15 and directly moves to location 0 for leisure.
After one hour’s leisure, he starts to shop at P.M. 21:00, thus returning to optimal path. The
process is stated as: Work (08:45 --17:45, 9), Home (19:15 --19:15, 29), Leisure (19:45 --20:45,
0), Shop (21:00 --22:00, 3), Home (22:30 --06:15, 29), Work (07:45 --17:15, 9)…

5. Conclusion and discussion

The methodology presented in this paper was able to allocate time and location information
to sequences that consist of activities and transport modes. To the best of our knowledge,
activity and location allocations have not yet been integrated and optimized in previous
research in order to achieve maximal rewards for a given activity-travel pattern. The
methodology was based on the reinforcement learning algorithm which has been used to
help the agent search the optimal path in the huge number of states of given environments.
During learning, the Q-learning agent tries some actions (i.e., output values) on its
environment. Then, it is reinforced by receiving a scalar evaluation (the reward) of its
actions. In a first implementation, it has been assumed that time allocation is dependent on
the type of activity, the starting time of the activity and the time already spent at that
activity. Also, the sequence of different activities determined the time allocation. Indeed,
two sequences that contain a similar activity which has the same starting time and the same
time spent at that activity, do not have to (and often will not) receive the same time
allocation for that particular activity, as a result of the different sequence order in which
other activities occur in both diaries. Technically, the agent will come up with another
optimal path, a different policy chart and as a result also a different time allocation for both
sequences. The location allocation problem was initially also solved in the assumption that

Reinforcement Learning: Theory and Applications 376

the allocation is dependent on the travel time between two locations and on the transport
mode that has been chosen to reach these locations. Also in this case, it is obvious that the
sequence information of activities and transport modes largely determines the allocation.
Then, in a final implementation, the idea to integrate time and location allocation
simultaneously, has been conceived. Dealing with both allocations simultaneously, leads to
some important advantages. The first advantage is that the reward is not only maximized in
either the time or the location facet, but the total reward in a day (i.e. the reward that arises
from determining optimal start and end times and the cost that arises from travelling
between locations) will be maximized by means of an integrated approach, which is
obviously more realistic. The second major advantage is that flexible travel times between
two locations can be incorporated. In the first time allocation implementation, it was
impossible to achieve this, due to the lack of location information.
The most important drawback of this integrated implementation, is that the magnitude of
the importance between the time and location relationship cannot be immediately observed
from the data. To this end, a simple conversion function has been proposed and tested in the
empirical section. Further research could for instance use other alternative techniques (for
instance stated preference) to better specify and understand this relationship. It was also
mentioned above that the reward tables used in the experiments can be derived from
frequency information that is present in the data. Alternatively, one may also use reward
functions or utility functions which include more parameters when determining the utility
of an action. As such, apart from the starting time and the duration of the activity, the
activity location, the position of the activity within the activity schedule and the activity
history are also incorporated in these utility functions. An initial approach has been shown
in van Bladel et al. (2006).
As mentioned before, the approach presented in this paper largely relies upon a fixed
sequence of activities and transport modes. Alternatively, one may also let the
reinforcement algorithm determine this activity-travel sequence autonomously. An initial
framework for this has been proposed in Vanhulsel et al. (Vanhulsel et al., 2006) in an
application where a key event (obtaining a driver’s license) is simulated. However, the
approach presented only some initial results and needs further investigation. In addition to
this, one may also want to investigate the use of currently unexplored relational
reinforcement learning approaches (Driessens, 2004a, 2004b; Dzeroski et al., 2001) in this
domain, which will employ a relational regression technique in cooperation with a
Qlearning algorithm to build a relational, generalized Q-function. As such, it combines
techniques from reinforcement learning with generalization techniques from inductive logic
programming.

6. Acknowledgement

Davy Janssens acknowledges support as a post-doctoral research fellow from the Research
Foundation - Flanders (F.W.O.-Vlaanderen).

7. References

Arentze, T.A. & Timmermans, H.J.P. (2003). Modelling learning and adaptation processes in
activity-travel choice: A framework and numerical experiment. Transportation, Vol.
30, 37 - 62.

The Allocation of Time and Location Information to
Activity-Travel Sequence Data by Means of Reinforcement Learning 377

Barto, A.G. & Sutton, R.S. (1981). Associative search network: a reinforcement learning
associative memory. Biological Cybernetics, Vol. 40, 201 - 211.

Charypar, D.; Graf, P. & Nagel, K. (2004). Q-learning for flexible learning of daily activity
plans, Electronic Proceedings of the Swiss Transport Research Conference (STRC), Monte
Verita, Czechoslovakia. See http://www.strc.ch

Charypar, D. & Nagel, K. (2005). Q-learning for flexible learning of daily activity plans,
Electronic Proceedings of the 84th Annual Meeting of the Transportation Research Board
(CD-ROM), Washington, D.C., USA.

Crites, R.H. & Barto, A.G. (1996). Improving elevator performance using reinforcement
learning, In: Advances in Neural Information Processing Systems, D.S. Touretzky, M.C.
Mozer, and M.E. Hasselmo, (Eds.), 1017 – 1023, The MIT Press.

Dijkstra, E. (1959). A note on two problems in connection with graphs. Numerical
Mathematics, Vol. 1, 269 - 271.

Driessens, K. (2004). Relational reinforcement learning, Ph.D. Thesis, Department of Computer
Science, K.U.Leuven, Leuven, Belgium.

Driessens, K. & Dzeroski, S. (2004). Integrating guidance into relational reinforcement
learning. Machine Learning, Vol. 57, 271-304

Dzeroski, S.; De Raedt, L. & Driessens, K. (2001). Relational reinforcement learning. Machine
Learning, Vol. 43, 7-52

Johnson, R.A. & Wichern, D.W. (1998). Applied Multivariate Statistical Analysis, Prentice Hall.
Kaelbling, L.P.; Littman M.L. & Moore, A. (1996). Reinforcement learning: a survey.
Journal of Artificial Intelligence Research, Vol. 4, 237 - 285.

Littman, M.L. (1994). Markov games as a framework for multi-agent reinforcement learning,
Proceedings of the Eleventh International Conference on Machine Learning, pp.157-163,
San Francisco, CA, USA.

Mahadevan, S. & Connell, J. (1992). Automatic programming of behavior-based robots using
reinforcement learning. Artificial Intelligence, Vol. 55, 311 - 365.

Mitchell, T. Machine Learning (1997). McGraw Hill, New York. Moriarty, D.a.L. P. (1998).
Learning cooperative lane selection strategies for highways, Proceedings of the
Fifteenth National Conference on Artificial Intelligence, pp. 684-691, Madison,
Wisconsin, USA.

Schaal, S.a.A. C. (1994). Robot juggling: an implementation of memory-based learning.
Control Systems Magazine, Vol. 14, 57 - 71.

Schneider, J.; Boyan, J. & Moore, A. (1998). Value function based production scheduling,
Proceedings of the Fifteenth International Conference on Machine Learning, pp.522-530,
Madison, Wisconsin, USA.

Sutton, R.S. & Barto, A.G. (1998). Reinforcement Learning: An Introduction, MIT Press,
Cambridge.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning, Vol. 8,
257 - 277.

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves
masterlevel play. Neural Computation, Vol. 6, 215 - 219.

Thrun, S. (1995). Learning to play the game of chess, In: Advances in Neural Information
Processing Systems, G. Tesauro, D. Touretzky, and T. Leen (Eds.), 1069 – 1076, The
MIT Press, Cambridge, MA.

Reinforcement Learning: Theory and Applications 378

Van Bladel, K., Bellemans, T., Wets, G., Arentze, T. & Timmermans, H.J.P. (2006). Fitting S-
Shaped Activity Utility Functions Based on Stated Preference Data. Electronic
Proceedings of the 11th International Conference on Travel Behavior Research (CD-ROM),
Kyoto, Japan.

Vanhulsel, M., Janssens, D. & Wets, G. (2006). Calibrating a New Reinforcement Learning
Mechanism for Modeling Dynamic Activity-Travel Behavior and Key Events,
Electronic Proceedings of the 85th Annual Meeting of the Transportation Research Board
(CD-ROM), Washington, D.C., USA

Watkins, C. (1989). Learning from Delayed Rewards, Ph.D. Thesis, Department of Psychology,
University of Cambridge, Cambridge, England.

Watkins, C. & Dayan, P. (1992). Technical note: Q-learning. Machine Learning, Vol. 8, 279 -
292.

Reinforcement Learning

Edited by Cornelius Weber, Mark Elshaw and Norbert Michael Mayer

ISBN 978-3-902613-14-1

Hard cover, 424 pages

Publisher I-Tech Education and Publishing

Published online 01, January, 2008

Published in print edition January, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices.

Brain-like computation is about processing and interpreting data or directly putting forward and performing

actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing

actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement

learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement

learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers.

As learning computers can deal with technical complexities, the tasks of human operators remain to specify

goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in

terms of theory and applications and it shall stimulate and encourage new research in this field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Wets Janssens (2008). The Allocation of Time and Location Information to Activity-Travel Sequence Data by

Means of Reinforcement Learning, Reinforcement Learning, Cornelius Weber, Mark Elshaw and Norbert

Michael Mayer (Ed.), ISBN: 978-3-902613-14-1, InTech, Available from:

http://www.intechopen.com/books/reinforcement_learning/the_allocation_of_time_and_location_information_to

_activity-travel_sequence_data_by_means_of_reinfor

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

