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Chapter

Coupled Mathieu Equations:
γ-Hamiltonian and μ-Symplectic
Miguel Ramírez Barrios, Joaquín Collado and Fadi Dohnal

Abstract

Several theoretical studies deal with the stability transition curves of coupled
and damped Mathieu equations utilizing numerical and asymptotic methods. In this
contribution, we exploit the fact that symplectic maps describe the dynamics of
Hamiltonian systems. Starting with a Hamiltonian system, a particular dissipation is
introduced, which allows the extension of Hamiltonian and symplectic matrices to
more general γ-Hamiltonian and μ-symplectic matrices. A proof is given that the
state transition matrix of any γ-Hamiltonian system is μ-symplectic. Combined with
Floquet theory, the symmetry of the Floquet multipliers with respect to a μ-circle,
which is different from the unit circle, is highlighted. An attempt is made for
generalizing the particular dissipation to a more general form. The methodology is
applied for calculation of the stability transition curves of an example system of two
coupled and damped Mathieu equations.

Keywords: Hamiltonian systems, periodic systems, Mathieu equation, parametric
excitation, parametric resonance, symplectic maps

1. Introduction

Dynamical systems represented by nonlinear or linear ordinary differential
equations with periodic coefficients occur in many engineer problems (see for
instance [1, 2]). The simplest example of such a system is the Mathieu equation.
Most investigations in literature deal with the corresponding stability transition
curves [3]. Some works analyze the stability of two coupled Mathieu equations
[4–6]. In general, an asymptotic or a numerical analysis method is required for
analyzing this class of systems. Perturbation techniques may lead to cumbersome
expression, at least for second-order perturbation [7], and a numerical analysis may
require considerable computation time. In this contribution, an extension of
the theory developed in [8] is exposed in which coupled Mathieu equations are
analyzed in the context of a Hamiltonian system.

The literature on Hamiltonian systems is vast. We focus on the two main
references [9, 10] that are relevant for the present work. The latter focuses on linear
periodic Hamiltonian systems. Although every periodic mechanical system pos-
sesses at least a small amount of dissipation, the main literature on linear Hamilto-
nian systems does not incorporate a dissipation. The dynamics of Hamiltonian
systems can be described by symplectic maps [11]. A key fact here is that a
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symplectic transformation preserves the Hamiltonian structure of the underlying
dynamic system. In this work we attempt to derive an appropriate formalism for
linear Hamiltonian systems incorporating a very particular dissipation. For this
purpose we redefine and develop the properties of the so-called γ-Hamiltonian and
μ-symplectic matrices. With the last definitions, we prove that the state transition
matrix of any γ-Hamiltonian system is μ-symplectic. The relevance of the
symplectic matrices or symplectic maps lies on their symmetry which allows sim-
plifying many computations and analysis [12]. The formalism is benchmarked for
two coupled and damped Mathieu equations highlighting its advantages. Due to
the symmetry of the symplectic matrices, the parametric resonance zones are
characterized, which allows faster computations, and with higher accuracy, of
the stability transition curves. This work is an extension of the contribution
presented in [8, 13].

2. Preliminaries on matrices

2.1 Symplectic matrices

Definition 1 The matrix A∈R
2n�2n is called symplectic if it satisfies

ATJA ¼ J, (1)

with

J ¼
0 In

�In 0

� �

(2)

and In is the n� n identity matrix.

Note that for J the following relations hold: JT ¼ �J, J�1 ¼ JT, J2 ¼ �I2n, and
det Jð Þ ¼ 1. The determinant of a symplectic matrix is 1 ([9]), and I2n and J are
symplectic matrices themselves. If A and B are of the same dimensions and

symplectic, then AB is also symplectic because ABð ÞTJ ABð Þ ¼ BTATJAB ¼ BTJB ¼ J.
Finally and importantly, the inverse of a symplectic matrix always exists and is also
symplectic:

A�1 ¼ J�1ATJ : J�1ATJ
� �T

J J�1ATJ
� �

¼ JTAJATJ ¼ J: (3)

The set of the symplectic matrices of dimension 2n� 2n forms a group. The

corresponding characteristic polynomial of a symplectic matrix A∈R
2n�2n

PA λð Þ ¼ det λI2n � Að Þ ¼ λ2n þ a2n�1λ
2n�1 þ…þ a1λþ 1

is a reciprocal polynomial:

PA λð Þ ¼ λ2nPA
1

λ

� �

(4)

This is equivalent to stating that the coefficients of PA λð Þ satisfy the relation
ak ¼ a2n�k or rewriting as a matrix product

2
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¼

0 0 ⋯ 0 ⋯ 0 1

0 0 ⋯ 0 ⋯ 1 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

0 1 ⋯ 0 ⋯ 0 0

1 0 ⋯ 0 ⋯ 0 0

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

a0

a1

⋮

a2n�1

a2n

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(5)

Since A is real, if λ is an eigenvalue of A, then so are λ�1, λ, and λ
�1
, where the

bar indicates the complex conjugate. Equivalently, the eigenvalues of a symplectic
matrix are reciprocal pairs. This property is called reflexivity [11]. Consequently,
the eigenvalues are symmetric with respect to the unit circle, namely, if there is an
eigenvalue inside of the unit circle, then there must be a corresponding eigenvalue
outside of the unit circle. As a result of the coefficient symmetry of a symplectic
matrix A, the following transformation is proposed in [12]:

δ ¼ λþ 1

λ
, (6)

where λ∈ σ Að Þ. This transforms the characteristic polynomial PA λð Þ of degree 2n
to an auxiliary polynomial QA δð Þ of degree n, while keeping all pertinent informa-
tion of the original polynomial [12].

2.2 Hamiltonian matrices

Definition 2 The matrix A∈R
2n�2n (A∈C

2n�2n) is said to be Hamiltonian if and
only if

ATJ þ JA ¼ 0: (7)

Let PA sð Þ be the characteristic polynomial of A, then PA sð Þ is an even polynomial,
and it only has even powers. Thus, the eigenvalues of A are symmetric with respect
to the imaginary axis, i.e., if s is an eigenvalue of A, then �s is an eigenvalue, too.
Furthermore, if the matrix A is real, s and �s are eigenvalues as well. Then the
eigenvalues of the Hamiltonian matrix are located symmetrically with respect to
both real and imaginary axis. The eigenvalues appear in real pairs, purely imaginary
pairs, or complex quadruples [9, 14].

2.3 μ-symplectic matrices

The next definitions and properties attempt to generalize the classical definitions
above.

Definition 3 M∈R
2n�2n is called μ-symplectic matrix if

MTJM ¼ μJ (8)

is satisfied for μ∈ 0; 1ð �.
Lemma 4 The determinant of a μ-symplectic matrix M∈R

2n�2n is μn.
To see the proof of the last lemma, see Appendix A. If M is a μ-symplectic

matrix, M2 is a μ2-symplectic matrix, and the set of μ-symplectic matrix matrices
does not form a group.
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Lemma 5 The characteristic polynomial of a μ-symplectic matrix M∈R
2n�2n satisfies

PM
μ

λ

� 	

¼ μn

λ2n
P λð Þ: (9)

Proof 6 PM λð Þ ¼ det λI2n �MT
� �

¼ det λI2n � μJM�1J�1
� �

¼ det Jð Þdet λI2n � μM�1
� �

det J�1
� �

¼ det
λ

μ
M� I2n

� �

det μM�1
� �

¼ μndet � λ

μ

� �
μ

λ
I2n �M

� 	� �

¼ μn � λ
μ

� 	2n
det

λ

μ
I2n �M

� �

¼ λ2n

μn
PM

μ

λ

� 	

Corollary 7 The eigenvalues of a μ-symplectic matrix M satisfy the symmetry

λ∈ σ Mð Þ ) μ

λ

� 	

∈ σ Mð Þ: (10)

The product of each pair of eigenvalues contributes with μ to det Mð Þ, and there are n
of these pairs; therefore, det Mð Þ ¼ μn. If all eigenvalues have the same magnitude, i.e.,

λi ¼ r exp θið Þ, then
Q2n

i¼1 λj j ¼
Q2n

i¼1 reθi








 ¼ r2n ¼ det Mð Þ ¼ μn. From this we find that

r ¼ ffiffiffi
μ

p
, independent of n. This may be interpreted as a “symmetry” with respect to a

circle of radius r ¼ ffiffiffi
μ

p
. Since M is real if λ is an eigenvalue of M, then λ, μ

λ
, and μ

λ
are also

eigenvalues of M. Moreover, the eigenvalues are symmetric with respect to the μ-circle: if
there is an eigenvalue inside of the μ-circle, then there must be another eigenvalue outside
(see Figure 1a for a visualization).

Remark 8 Due to Eq. (9), the characteristic polynomial

PM λð Þ ¼ m2nλ
2n þ…m1λþm0 of the μ-symplectic matrix M satisfies the following

relations:

m0 ¼ m2nμ
n

m1 ¼ m2n�1μ
n�1

⋮

mn ¼ mn

⋮

m2n�1 ¼ m1μ
1�n

m2n ¼ 1 ¼ m0μ
�n

(11)

rewritten as a product of matrices yields

m0

m1

⋮

m2n�1

m2n

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

0 0 ⋯ 0 ⋯ 0 μ�n

0 0 ⋯ 0 ⋯ μ�nþ1 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

0 μn�1 ⋯ 0 ⋯ 0 0

μn 0 ⋯ 0 ⋯ 0 0

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

m0

m1

⋮

m2n�1

m2n

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(12)

For μ ¼ 1, the relations in Eq. (12) reduce to Eq. (5).
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Remark 9 By applying the transformation

δ ¼ λþ μ

λ
(13)

the characteristic polynomial PM λð Þ of degree 2n, associated to a μ-symplectic
matrix, is reduced to an auxiliary polynomial QM δð Þ of degree n. For instance,

n ¼ 2
PM λð Þ ¼ λ4 þm3λ

3 þm2λ
2 þm3μλþ μ2

QM δð Þ ¼ δ2 þm3δþm2 � 2μ

8

<

:

n ¼ 3
PM λð Þ ¼ λ6 þm5λ

5 þm4λ
4 þm3λ

3 þ μm4λ
2 þ μ2m5λþ μ3

QM δð Þ ¼ δ3 þm2
5δþ m4 � 3μð Þδþm3 � 2m5μ

8

<

:

n ¼ 4

PM λð Þ ¼ λ8 þm7λ
7 þm6λ

6 þm5λ
5 þm4λ

4 þ μm5λ
3

þ  μ2m6λ
2 þ μ3m7λþ μ4

QM δð Þ ¼ δ4 þm3
7δþ m6 � 4μð Þδ2 þ m5 � 3m7μð Þδþm4

� 2m6μþ 2μ2

8

>>>>>>><

>>>>>>>:

n ¼ 5

PM λð Þ ¼ λ10 þm9λ
9 þm8λ

8 þm7λ
7 þm6λ

6 þm5λ
5

þ μm6λ
4 þ μ2m7λ

3 þ μ3m8λ
2 þ μ4m9λþ μ5

QM δð Þ ¼ δ5 þm9δ
4 þ m8 � 5μð Þδ3 þ m7 � 4m9μð Þδ2

þ m6 � 3m8μþ 5μ2ð Þδþm5 � 2μm7 þ 2m9μ
2

8

>>>>>>><

>>>>>>>:

Note that the property of the characteristic polynomial of a μ-symplectic
matrix in Eq. (9) reduces to Eq. (4) at μ ¼ 1. Then Eq. (12) represents the
“symmetry” of the characteristic polynomial for all μ∈ 0; 1ð �. Although the
definition of μ-symplectic matrices appears in [9], no further properties were
developed within this reference. In the next section, we reveal their relationship as
a generalized definition of Hamiltonian matrices, the so-called γ-Hamiltonian
matrices.

Figure 1.
Symmetries in the spectra in the complex plane: (a) μ-symplectic matrix and (b) γ-Hamiltonian matrix.
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2.4 γ-Hamiltonian matrices

Definition 10 A matrix A∈R
2n�2n (A∈C

2n�2n) is called γ-Hamiltonian matrix if
for some γ ≥0,

ATJ þ JA ¼ �2γJ (14)

Lemma 11 A is γ-Hamiltonian if and only if Aþ γI2n is Hamiltonian.

Proof 12 If A is γ-Hamiltonian, then ATJ þ JA ¼ �2γJ which can be rewritten as

Aþ γI2n½ �TJ þ J Aþ γI2n½ � ¼ 0. Hence, Aþ γI2n½ � is Hamiltonian.
Lemma 13 If A is γ-Hamiltonian and if sþ γ ∈ σ Að Þ, then �sþ γ ∈ σ Að Þ.
Proof 14 Recall that if σ Rð Þ ¼ r1;…r2nf g, then σ Rþ γI2nð Þ ¼ r1 þ γ;…; r2n þ γf g.

Then if sþ γ ∈ σ Að Þ, then s∈ σ Aþ γI2nð Þ, since Aþ γI2n½ � is Hamiltonian and conse-
quently �s∈ σ Aþ γI2nð Þ which is equivalent to �sþ γ ∈ σ Að Þ.

Remark 15 If in the last lemma all the eigenvalues of the Hamiltonian matrix
Aþ γI2n have zero real parts, then the real parts of the eigenvalues of the γ-Hamiltonian
matrix A are identical to �γ. Thus, the eigenvalues of the γ-Hamiltonian matrix A are
symmetric with respect to the vertical line �γ in the complex plane (see Figure 1b for a
visualization).

Notice that real Hamiltonian matrices have their spectrum symmetric with
respect to the real and imaginary axes, whereas the spectrum of real γ-Hamiltonian
matrices is symmetric with respect to the real axis and a vertical line at Re sð Þ ¼ �γ.
Then the eigenvalues of a real γ-Hamiltonian matrix are placed: (i) in quadruples
symmetrically with respect the real axis and the line Re sð Þ ¼ �γ, (ii) pairs on the
line Re sð Þ ¼ �γ and symmetric with the real axis, and (iii) real pairs symmetric
with the line Re sð Þ ¼ �γ. All cases are shown in Figure 1b.

By the last lemma, the characteristic polynomial of the γ-Hamiltonian A satisfies

PA sþ γð Þ ¼ PA γ � sð Þ

with

PA γ � sð Þ ¼ γ � sð Þ2n þ a2n�1 γ � sð Þ2n�1 þ…þ a1 γ � sð Þ þ a0

PA sþ γð Þ ¼ sþ γð Þ2n þ a2n�1 sþ γð Þ2n�1 þ…þ a1 sþ γð Þ þ a0

Thus, PA sð Þ depends only on n coefficients. For instance, for n ¼ 1,

sþ γð Þ2 þ a1 sþ γð Þ þ a0 ¼ γ � sð Þ2 þ a1 γ � sð Þ þ a0. Equating the coefficients
leads to a1 ¼ �2γ, a0 ¼ a0, and finally to

PA sð Þ ¼ s2 � 2γsþ a0:

Similarly, the polynomials for the lowest values of n read

n ¼ 2 :

PA sð Þ ¼ s4 � 4γs3 þ a2s
2 þ 8γ3 � 2γa2

� �
þ a0

n ¼ 3 :

PA sð Þ ¼ s6 � 6γs5 þ a4s
4 þ 40γ3 � 4γa4

� �
s3 þ a2s

2 þ �96γ5 þ 8γ3a4 � 2γa2
� �

þ a0

n ¼ 4 :

PA sð Þ ¼ s8 � 8γs7 þ a6s
6 þ 112γ3 � 6γa6

� �
s5 þ a4s

4 þ �896γ5 þ 40γ3a6 � 4γa4
� �

s3

þ a2s
2 þ 2176γ7 � 96γ5a6 þ 8γ3a4 � 2γa2

� �
þ a0:

6
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Furthermore, by applying the transformation

ϕ ¼ s� γ, (15)

the polynomial PA sð Þ can be written as an auxiliary polynomial QA ϕð Þ which
only has even coefficients, namely,

PA sð Þ ¼ s2n þ a2n�1s
2n�1 þ a2n�2s

2n�2 þ…þ a2s
2 þ a1sþ a0

QA ϕð Þ ¼ ϕ2n þ q2n�2ϕ
2n�2 þ…þ q2ϕ

2 þ q0

For instance,

n ¼ 1 :

QA ϕð Þ ¼ ϕ2 þ a0 � γ2

n ¼ 2 :

QA ϕð Þ ¼ ϕ4 þ a2 � 6γ2
� �

ϕ2 þ 5γ4 � a2γ
2 þ a0

Figure 2.
All configurations of multiplier positions with respect to the unit (in solid line) and μ-circle (dashed line).
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n ¼ 3 :

QA ϕð Þ ¼ ϕ6 þ a4 � 15γ2
� �

ϕ4 þ a2 � 6a4γ
2 þ 75γ4

� �
ϕ2 � 61γ6 þ 5a4γ

4 � a2γ
2 þ a0

n ¼ 4 :

QA ϕð Þ ¼ ϕ8 þ a6 � 28γ2
� �

ϕ6 þ a4 � 15a6γ
2 þ 350γ4

� �
ϕ4

þ a2 � 6a4γ
2 þ 75a6γ

4 � 1708γ6
� �

ϕ2 þ 1385γ8 � 61a6γ
6 þ 5a4γ

4 � a2γ
2 þ a0:

3. Linear γ-Hamiltonian systems

Definition 16 If there is a differentiable function called Hamiltonian function
(energy) H t; x; yð Þ, H : R� R

n � R
n
↦R, which satisfies

_x ¼ ∂H

∂y

� �T

and _y ¼ � ∂H

∂y

� �

,

then it is called a Hamiltonian system. If H t; x; yð Þ is a quadratic function with
respect to x and y, then the system is a linear Hamiltonian system.

It is easy to prove that if H does not depend on t, H x; yð Þ is a first integral.
However, this is no longer true in the time-periodic case. In the time-periodic case,
even for n ¼ 1, the integration of the equations is not possible. Any linear Hamilto-
nian system can be written as

_z ¼ JH tð Þz (16)

where HT tð Þ ¼ H tð Þ is a symmetric matrix (Hermitian in the complex case).

Herein, the variables used in the definition satisfy z ¼ xT ; yT
� 
T

. Therefore, the

dimension of real Hamiltonian systems is always even. Finally, note that the prod-
uct JH satisfies the condition for a Hamiltonian matrix. The fundamental property
of any linear Hamiltonian system is that the state transition matrix of the system in
Eq. (16) is a symplectic matrix (see [9] for more details).

If A is γ-Hamiltonian matrix, or equivalently, Aþ γI2n is a Hamiltonian matrix
for some γ.0; then it follows from Eq. (16) that

_x ¼ Aþ I2n½ �x ¼ JHx

for some matrix H ¼ HT. From the last equation Aþ I2n½ � ¼ JH, we obtain

A ¼ J H þ γI2n½ �: (17)

Any γ-Hamiltonian matrix A may be written as in Eq. (17), which motivates the
next definition.

Definition 17 Any linear system that can be written as

_x ¼ A tð Þx ¼ J H tð Þ þ γJ½ �x (18)

with x∈R
2n, HT tð Þ ¼ H tð Þ, and γ ≥0 is called a linear γ-Hamiltonian system.

Lemma 18 The state transition matrix of a linear γ-Hamiltonian system in Eq. (18)

is μ-symplectic with μ ¼ e�2γt.
Proof 19 Let be N tð Þ ¼ Φ t;0ð Þ be the state transition of Eq. (17), and then

_N tð Þ ¼ A tð ÞN tð Þ:

8
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Differentiating the product NTJN gives

d

dt
NTJN ¼ _NTJN þNTJ _N ¼ ANð ÞTJN þNTJ ANð Þ

¼ NT ATJ þ JA
� �

N ¼ NT J H þ γJð Þð ÞTJ þ J J H þ γJð Þð Þ
� 	

N

¼ � 2γNTJN

(19)

Since NT 0ð ÞJN 0ð Þ ¼ J, we get1

NT tð ÞJN tð Þ ¼ e�2γtJ ¼ μJ:

Therefore, N is μ-symplectic.
Lemma 20 Consider the transformation

x ¼ S tð Þz (20)

with S tð Þ a symplectic matrix for all t. Then the transformation in Eq. (20) pre-
serves the γ-Hamiltonian form of the system, Eq.(18).

Proof 21 From the definition STJS ¼ 0 ! _STJSþ STJ _S ¼ 0, thus _STJS ¼ �STJ _S,
and from Eq.(20)

_x ¼ S _z þ _Sz ! S�1
_x ¼ _z þ S�1 _Sz

then applying the transformation Eq.(20) into Eq.(18) it is obtained as

_z þ S�1 _Sz ¼ S�1J H þ γJð ÞSz; then from the symplectic definition matrix

S�1 ¼ J�1STJ,

_z ¼ S�1J H þ γJð ÞSz� S�1 _Sz ¼ J�1STJ
� �

JHSz� γIz� J�1STJ
� �

_Sz

¼ JSTHSz� γIzþ JSTJ _Sz ¼ J STHSþ STJ _S þ γJ
� �

z ¼ J ~H þ γJÞz
�

where ~H ¼ STHSþ STJ _S, but STJ _S
� �T ¼ _STJTS ¼ � _STJS ¼ � �STJ _S

� �
¼ STJ _S;

therefore ~H ¼ ~HT ■.

3.1 Mechanical, linear γ-Hamiltonian system

Consider any mechanical system described by the equation

~M€y þ ~D _y þ ~K tð Þy ¼ 0 (21)

where y tð Þ∈R
n, ~K tð Þ ¼ ~KT tð Þ∈R

n�n, and the constant matrices ~M and ~D ∈R
n�n

such that ~M ¼ ~MT
.0 and ~D ¼ ~DT. Then there always exists a linear transforma-

tion T such that

TT ~MT ¼ In

TT ~DT ¼ D ¼ diag d1; d2;…; dnf g

σ ~M�1 ~D
� �

¼ d1; d2;…; dnf g

1 The matrix product d
dtN

TJN
� �

NTJN ¼ NTJN d
dtN

TJN
� �

is commutative.

9
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(e.g., see [15]). Therefore, applying the transformation y ¼ Tz yields

€z þD _z þ K tð Þz ¼ 0, (22)

where K tð Þ ¼ TT ~K tð ÞT. Eq. (22) can be rewritten as a first-order system by

introducing the state vector x ¼ zT ; _zT
� 
T

:

_x ¼
0n�n In

�K tð Þ �D

� �

x (23)

where x∈R
2n�2n. Let

Q ¼ 1
ffiffiffi

2
p In In

�In In

� �

(24)

be an orthogonal matrix satisfying QQT ¼ QTQ ¼ I2n, and also JQ ¼ Q J, one

can introduce the transformation w ¼ QTx, and Eq. (23) gives

_w ¼ QT 0n�n In

�K tð Þ �D

� �

Qw ¼ 1

2

K tð Þ � In �D K tð Þ þ In þD

�K tð Þ þD� In �K tð Þ þ In �D

� �

w,

or equivalently,

_w ¼ J
1

2

K tð Þ þ In �D K tð Þ � In

K tð Þ � In K tð Þ þ In þD

� �

þ 1

2

D 0n�n

0n�n D

� �

J

� �

w: (25)

Since D ¼ diag d1; d2;…; dnf g and K ¼ KT, the matrix

H tð Þ ¼ 1

2

K tð Þ þ In �D K tð Þ � In

K tð Þ � In K tð Þ þ In þD

� �

is also symmetric H tð Þ ¼ H tð ÞT . Therefore, Eq. (25) can be cast into the
γ-Hamiltonian linear system form _w ¼ J H þ γJð Þw if γ is approximated as
γ ≈ 1

2n

Pn
i¼1 di. In the special case d ¼ d1 ¼ d2 ¼ ⋯ ¼ dn, γ is given exactly given by

γ ¼ d
2.

3.2 Periodic linear systems

This section summarizes themain results on periodic linear systems. The proofs and
details are omitted and can be found in [16, 17]. Consider the linear periodic system:

_x ¼ B tð Þx with B tð Þ ¼ B tþ Ωð Þ (26)

where x∈R
n, B∈R

n�n, and Ω are the fundamental periods.
Theorem 22 (Floquet) The state transition matrix Φ t; t0ð Þ of the system in Eq. (26)

may be factorized as

Φ t; t0ð Þ ¼ P�1 tð ÞeR t�t0ð ÞP t0ð Þ (27)

where

P�1 tð Þ ¼ Φ t;0ð Þe�Rt: (28)

10
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In addition P�1 tð Þ ¼ P�1 tþ Ωð Þ is a periodic matrix of the same period Ω, and R is
in general a complex constant matrix [18].

Definition 23 We define the monodromy matrix M associated to the Eq. (26) as

M ¼ Φ Ω;0ð Þ: (29)

The monodromy matrix may be defined as Mt0 ¼ Φ Ω;Ωþ t0ð Þ, but we use only
the spectrum of the monodromy matrix, σ Mð Þ. From.

Φ t; t0ð Þ ¼ P�1 tð ÞeR t�t0ð ÞP t0ð Þ




t¼t0þΩ

¼ Φ Ω;Ωþ t0ð Þ ¼ P�1 t0 þ Ωð ÞeRWP t0ð Þ
¼ P�1 t0ð ÞeRWP t0ð Þ, because P and P�1 are Ω-periodic. This last relation shows that
M and Mt0 are similar matrices and possess the same spectrum. Moreover, if t0 ¼ 0

in the Floquet theorem, then Φ t;0ð Þ ¼ Q tð ÞeRt based on Q tð Þ ¼ Q tþ Ωð Þ and
Q 0ð Þ ¼ In; we have

M ¼ Φ Ω;0ð Þ ¼ Q Ωð ÞeRΩ ¼ Q 0ð ÞeRΩ ¼ eRΩ: (30)

Definition 24 The eigenvalues λi of the monodromy matrix are called characteristic

multipliers or multipliers. The numbers ρi, not unique, defined as λi ¼ eρiΩ, are called
characteristic exponents or Floquet exponents.

Corollary 25 (Lyapunov-Floquet Transformation) If we define the change of
coordinates

z tð Þ ¼ P tð Þx tð Þ (31)

where P fulfills Eq. (28), then the periodic linear system in Eq. (26) can be
transformed into a linear time-invariant system

_z tð Þ ¼ Rz tð Þ (32)

where R is a constant matrix as introduced in the Floquet theorem.
The transformation in Eq. (31) is a Lyapunov transformationwhich means that

the stability properties of the linear system in Eq. (26) are preserved. Therefore any
periodic system as in Eq. (26) is reducible to a system in Eq. (32) with constant
coefficients2 ([16]). However, the matrix R is not always real (e.g., see [10, 20]). In
the present discussion, we only use its spectrum σ Rð Þ.

For analyzing x tð Þ as t ! ∞, we assume that the initial conditions are given at
t0 ¼ 0. Then for any t.0, t may be expressed as t ¼ kΩþ τ, where k∈Zþ and
τ∈ ½0,ΩÞ. Applying the well-known properties of the state transition matrix, the
solution can be written as

x tð Þ ¼ Φ t;0ð Þx0 ¼ Φ kΩþ τ;0ð Þx0
¼ Φ kΩþ τ; kΩð ÞΦ kΩ; k� 1ð ÞΩð ÞΦ k� 1ð ÞΩ; k� 2ð ÞΩð Þ…Φ Ω;0ð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k�terms

x0

¼ Φ τ;0ð Þ Φ Ω;0ð Þ½ �kx0 ¼ Φ τ;0ð ÞMkx0

Analyzing the last expression, the terms Φ τ;0ð Þ and x0 are bounded; the follow-
ing three cases can be distinguished:

2 For applying the transformation in Eq. (31), the analytical solution of Eq. (26) is only available for

special cases [19], and in general a numerical solution needs to be calculated.
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x tð Þ ! 0⇔ lim
k!∞

Mk ¼ 0⇔ σ Mð Þ⊂ D ¼ z∈C : zj j, 1f g:

1.the solution x tð Þ is bounded ⇔ lim k!∞ Mk ¼ 0 is bounded⇔ σ Mð Þ⊂ D ¼
z∈C : zj j≤ 1f g, and if λ∈ σ Mð Þ and λj j ¼ 1, λ is a simple root of the minimal
polynomial of M.

2. x tð Þk k ! ∞⇔∃ λ∈ σ Mð Þ : λj j. 1 or ∃ λ∈ σ Mð Þ : λj j ¼ 1 and λ is a multiple root
of the minimum polynomial of M.

Theorem 26 (Lyapunov-Floquet) Considering the linear periodic system in
Eq. (26), then the system is (a) asymptotic stable if and only if Eq. (1) is satisfied,
(b) stable if and only if Eq. (2) is satisfied, and (c) Unstable if and only if Eq. (3) is satisfied.

Due to the Lyapunov-Floquet transformation in Eq. (31), the stability of the peri-
odic linear system in Eq. (26) can be determined by analyzing the system in Eq. (32).

Corollary 27 The system in Eq. (26) is:

i.Asymptotically stable ⇔ σ Rð Þ⊂ Z ¼ z∈C : Re zð Þ,0f g.

ii. Stable ⇔ σ Rð Þ⊂ Z ¼ z∈C : Re zð Þ≤0f g, if Re zið Þ ¼ 0 are simple roots of the
minimum polynomial of R.

iii.Unstable ⇔∃ ρi ∈ σ Rð Þ : Re zð Þ.0 or σ Rð Þ⊂ Z & ∃ Re zið Þ ¼ 0 which is a
multiple root of minimum polynomial of R.

4. Periodic γ-Hamiltonian systems

Once the linear Hamiltonian systems become periodic, i.e., the matrix H tð Þ of
the system in Eq. (18) possesses a periodically time-varying H tð Þ ¼ H tþ Ωð Þ, the
underlying monodromy matrix becomes μ-symplectic and γ-Hamiltonian.

Definition 28 Any linear periodic system that can be written as

_x ¼ J H tð Þ þ γJ½ �x (33)

with H tð Þ ¼ H tþΩð Þ will be named linear periodic γ-Hamiltonian system,

where x∈R
2n and HT tð Þ ¼ H tð Þ are a 2n� 2n matrix and γ ≥0.

Remark 29 According to Lemma 18, the state transition matrixΦ t; t0ð Þ of Eq. (33) is
μ-symplectic, in particular, the state transition matrix evaluated over one period Ω.

Corollary 30 The monodromy matrix M ¼ eRΩ and the matrix R of the periodic
system in Eq. (33) are μ-symplectic and γ-Hamiltonian matrices, respectively, with
μ ¼ e�2γΩ.

Proof 31 From the definition of a μ-symplectic matrix MTJM ¼ eRΩ
� �T

J eRΩ
� �

¼ μJ,

we obtain eR
TΩ ¼ μJe�RΩJ�1 ¼ μJ I2n � RΩþ RRΩ2

2 � RRRΩ3

3! þ…þ RkΩ4

k! þ…

n o

J�1

¼ μe�JRJ�1Ω ¼ e�2γΩe�JRJ�1Ω thus eR
TΩ ¼ e�2γΩ�JRJ�1Ω ) RTJ þ JR ¼ �2γJ.

This corollary states the main relation in our analysis. The symmetry of the
μ-symplectic matrix will be utilized for obtaining the stability conditions of the
system in Eq. (33). Furthermore, by applying the Lyapunov transformation

z tð Þ ¼ P tð Þx tð Þ (34)
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we conclude that any linear periodic γ-Hamiltonian system can be reduced to a
linear time-invariant γ-Hamiltonian system

_z tð Þ ¼ Rz tð Þ: (35)

The next two subsections are based on [12] and are adapted for characteristic
polynomials of μ-symplectic matrices.

4.1 Stability of a system with one degree of freedom

For n ¼ 1, the characteristic polynomial of the monodromy matrix M associated

with the system in Eq. (33) becomes PM λð Þ ¼ λ2 þ aλþ μ with a ¼ �tr Mð Þ.
According to the Lemma 18, M is μ-symplectic. Then, there are two multipliers
symmetric to the circle of radius r and the real axis. Therefore, the multipliers only
can leave the unit circle at the coordinates 1;0ð Þ or �1;0ð Þ (see Figure 2). Note that
the term �a is equal to the transformation in Eq. (13):

δ ¼ λþ μ

λ
¼ tr Mð Þ ¼ �a

Theorem 32 For n ¼ 1, the system in Eq. (33) is asymptotically stable if and only if
the inequality

aj j, 1þ μð Þ

is satisfied.
Proof 33 Since the multipliers only leave the unit circle on the points λ ¼ 1 or λ ¼ �1,

the stability boundaries are given by

PM 1ð Þ ¼ 1ð Þ2 þ a 1ð Þ þ μ ¼ aþ μþ 1ð Þ

PM �1ð Þ ¼ �1ð Þ2 þ a �1ð Þ þ μ ¼ �aþ μþ 1ð Þ
:

This means that aþ μþ 1ð Þ.0 and �aþ μþ 1ð Þ.0 must be fulfilled; thus,
aj j, 1þ μð Þ.

4.2 Stability of a system with two degrees of freedom

For n ¼ 2, the characteristic polynomial of the monodromy matrix M associated
with the system in Eq. (33) reads

PM λð Þ ¼ λ4 þ aλ3 þ bλ2 þ aμλþ μ2 (36)

where a ¼ �tr Mð Þ and 2b ¼ tr Mð Þð Þ2 � tr M2
� �

. There are four multipliers, and
due to the symmetry with respect to the μ-circle, they can be categorized in the
position configurations depicted in Figure 2.

Respecting that the characteristic polynomial is associated with a μ-symplectic
matrix, we can use the transformation

δ ¼ λþ μ

λ
(37)

to obtain the auxiliary polynomial
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QM δð Þ ¼ δ2 þ aδþ b� 2μ: (38)

The symmetry of the eigenvalues yield

a ¼ �tr Mð Þ ¼ λ1 þ
μ

λ1
þ λ3 þ

μ

λ3
¼ δ1 þ δ2:

The transition boundaries are characterized by having at least one eigenvalue at
λj j ¼ 1. The simplest cases are if λ ¼ 1 (δ ¼ 1þ μ) or λ ¼ �1 (δ ¼ �1� μ). These
points overlay if a real-valued multiplier leaves the unit circle at the point 1;0ð Þ or
0;�1ð Þ (see the cases c, d, e, f, or g in Figure 2). Substituting these two values into
Eq. (36) gives

b ¼ �a 1þ μð Þ � 1þ μ2
� �

(39)

and

b ¼ a 1þ μð Þ � 1þ μ2
� �

: (40)

Considering the case λ∈C, we search the transition boundary line when two
complex multipliers leave the unit circle at points different to 1;0ð Þ and 0;�1ð Þ (see
cases a or b in Figure 2). Then the transition boundary line can be obtained by
considering the symmetry of the multipliers with respect to the real axis and the
circle of the radius r ¼ ffiffiffi

μ
p

. Here, λ1 ¼ xþ iy, λ2 ¼ μ

λ1
, λ3 ¼ x� iy, and λ4 ¼ μ

λ3
. At

λj j ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

¼ 1
� �

, it follows that

λ1 ¼ xþ iy, λ2 ¼ μ x� iyð Þ, λ3 ¼ y� iy, λ4 ¼ μ xþ iyð Þ:

Hence, the transformation in Eq. (13) follows:

δ1 ¼ λ1 þ
μ

λ1
¼ x 1þ μð Þ þ iy 1� μð Þ

δ2 ¼ λ3 þ
μ

λ3
¼ x 1þ μð Þ � iy 1� μð Þ

Adding δ1 and δ2 gives

δ1 þ δ2 ¼ 2x 1þ μð Þ: (41)

From Eq. (38) we obtain

δ1,2 ¼
�a

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 8μ� 4b
p

2
: (42)

Note that for δ1 and δ2 to become complex, the inequality

4b. a2 þ 8μ

must be fulfilled. Adding δ1 and δ2, one obtains

δ1 þ δ2 ¼ �a (43)

Equating Eqs. (41) and (43) yields

2x 1þ μð Þ ¼ �a: (44)
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The real part x of the eigenvalues results from Eq. (37)

λ2 � λδþ μ ¼ 0

and

λ ¼ δ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 � 4μ
p

2
: (45)

Substituting Eq. (42) into Eq. (45) and choosing only the positive signs gives

λ1 ¼
1

4
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w� 4μ� 2bþ a2
p� 	

þ i

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wþ 4μþ 2b� a2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� a2 þ 8μð Þ þ 4b
p� 	

with the abbreviation w ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4a2μþ bþ 2μð Þ2
q

. Consequently, the real part

of λ is

x ¼ 1

4
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w� 4μ� 2bþ a2
p� 	

,

and substituting into Eq. (44) results in

1

2
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w� 4μ� 2bþ a2
p� 	

1þ μð Þ ¼ �a

which can be solved for b to obtain the transition boundary curve

b ¼ μ4 þ 2μ3 þ 2μ2 þ 2μþ a2μþ 1

1þ μð Þ2
: (46)

Two intersection points exist on each line in Eqs. (39) and (40) with the curve
defined by Eq. (46). These points are

b ¼ 1

μ
μ4 þ μ3 þ 2μ2 þ μþ 1
� �

(47)

b ¼ μ2 þ 4μþ 1 (48)

and are highlighted in Figure 3. The line in Eq. (47), dashed line in the figure, is
a necessary condition for stability.

Theorem 34 The Eq. (33) when n ¼ 2 is asymptotically stable if and only if the
inequalities are fulfilled:

b ≥ � a 1þ μð Þ � 1þ μ2
� �

, (49)

b ≥ a 1þ μð Þ � 1þ μ2
� �

, (50)

b ≤
μ4 þ 2μ3 þ 2μ2 þ a2μþ 2μþ 1

1þ μð Þ2
: (51)

From this analysis, the multipliers position in relation to the unit circle and μ-
circle are defined by inequalities. These split the complex plane into four regions as
it is shown in the Figure 3.
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5. Coupled Mathieu equations

Consider two coupled and damped Mathieu equations of the following form:

€z1

€z2

� �

þ
Θ11 Θ12

Θ21 Θ22

� �
_z1

_z2

� �

þ ω2
1 0

0 ω2
2

" #

þ β
Q11 Q12

Q21 Q22

� �
z1

z2

� �

cos νtð Þ
 !

z1

z2

� �

¼ 0:

(52)

Following the procedure presented in Section 3.1, the system in Eq. (52) can be
cast into the γ-Hamiltonian form in Eq. (33) if Θ12 ¼ Θ21 and Q12 ¼ Q21, i.e., the
coefficient matrices Θ and Q are symmetric. In this case, the coupled Mathieu
equations present all the properties of the periodic γ-Hamiltonian system defined in
Eq. (33) for n ¼ 2 and Ω ¼ 2π=ν. Hence, all the above analysis on Hamiltonian
systems can be applied. The monodromy matrix is computed by numerical
methods, and the stability chart is obtained by applying the Theorem 34.

The following numerical values are chosen for the analysis of a specific system
ω2
1 ¼ 8, ω2

2 ¼ 26, Q11 ¼ Q22 ¼ 2, Q12 ¼ Q21 ¼ �2. Figure 4a depicts the multiplier
chart similar to Figure 3. The unstable regions are colored and the stable regions are
kept white. Each color depicts a specific configuration of the multiplier positions
within the unit circle and the μ-circle according to the inequalities stated in Theo-
rem 34 and visualized in Figures 3 and 4a. The description of each color is relevant
because each color describes the parametric resonance phenomenon. Thus, yellow,
magenta, and cyan colors refer to the configuration of four real-valued multipliers,
two of them inside and two outside of the unit circle. These multipliers are either all
negative (magenta region), all positive (yellow region), or two positive and two
negative (cyan region). The blue and red regions indicate two complex conjugate
multipliers on the μ-circle, while the other two are real with λj j. 1. The two real
multipliers are either positive (blue) or negative (red). Then, all four multipliers are
complex conjugate within the green region. In this case, two multipliers lie inside
and two outside of the unit circle.

Figure 3.
Multiplier map in the case of n ¼ 2: Horizontal and vertical axes are the coefficients a and b of the
characteristic polynomial of the monodromy matrix M in Eq. (36). The solid lines represent the borders of the
inequalities in Theorem 34, Eqs. (49), (50), and (51). The dots indicate the position of multipliers and the
unit circle, in solid line, associated with the system in Eq. (33) in the case of n ¼ 2. The dashed circle depicts the
μ-circle.
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Figure 4.
Multiplier map and stability charts, for example, systems in Eq. (52). Multiplier map corresponds to Figure 3
but now with colored regions for the different unstable multiplier configurations. Stability charts are given for
different values of damping. (a) Multiplier map: a and b are the coefficients of the corresponding characteristic
polynomial of the monodromy matrix. All colored zones correspond to unstable positions multipliers
configurations. (b) Stability chart of coupled Mathieu equations, Eq. (52), with small damping: Θ12 ¼ Θ21 ¼ 0
and Θ11 ¼ Θ22 ¼ 0:1: Each color code is according to the position of the multipliers as in Figure 4a. (c) Stability
chart of coupled Mathieu equations, Eq. (52), with damping: Θ12 ¼ Θ21 ¼ 0 and Θ11 ¼ Θ22 ¼ 0:3.
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Additionally, parametric primary resonances occur at parametric excitation
frequencies ν ¼ 2ωi=k, with k∈ℕ

þ, and parametric combination resonances of sum-
mation type occur at ν ¼ ω1 þ ω2ð Þ=k [7, 10]. These frequencies are also observed for
the example system in Figure 4. The green regions mark parametric combination
resonances. The blue and red regions correspond to parametric primary resonances.
The presented calculation technique can be categorized as a semi-analytical method.
After rewriting the original system into the form in Eq. (33), the monodromy matrix
is constructed by integrating the equations of motion using numerical methods.

Subsequently, the coefficients of the characteristic polynomial of the

monodromy matrix can be computed as a ¼ �tr Mð Þ and 2b ¼ tr Mð Þð Þ2 � tr M2
� �

.
This technique avoids the computation of the eigenvalues itself. This has the
main advantage that numerical problems on the computation of the eigenvalues are
avoided, e.g., numerical sensitivity of multipliers [21].

The definitions of μ-symplectic and γ-Hamiltonian matrices allow the analysis of
a linear periodic Hamiltonian system with a particular dissipation. The main result
of the proposed theory lies in Corollary 30 which states that the state transition
matrix of any γ-Hamiltonian system is μ-symplectic. The symmetry properties of
the eigenvalues of μ-symplectic matrices lead to an efficient calculation of the
stability boundaries of this type of system. The general framework is applied for the
example analysis of two damped and coupled Mathieu equations confirming the
faster and robust computation of the stability chart. The procedure can be extended
to a higher number of coupled Mathieu equations as outlined above.
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Appendix

Proof 35 In [22], Rim proposed an elementary proof that real symplectic matrices
have determinant one; following the same procedure, we prove that the symplectic
matrices have determinant μn. From the definition

det MTJM
� �

¼ det MT
� �

det Jð Þdet Mð Þ ¼ det μJð Þ ¼ μ2n ! det Mð Þ ¼ �μn, therefore it

is necessary to prove that det M½ � ¼ �μ2n is false. Considering the matrix

S ¼ MTMþ μI2n since M
TM≥0 and μ∈ 0; 1ð �, the matrix S has real and greater than μ

eigenvalues:

det Sð Þ ¼ det MTMþ μI2n
� �

. μ: (53)

Now from the definition M�T ¼ μ�1JMJ�1 and rewriting S,

S ¼ MTMþ μI2n ¼ MT Mþ μM�T
� �

¼ MT Mþ JMJ�1
� �

denotes the subblocks of M as follows:

M ¼ M11 M12

M21 M21

� �
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with M11,M12,M21,M21 ∈R
n�n; thus Mþ JMJ�1 ¼ M11 þM22 M12 �M21

M21 �M12 M11 þM22

� �

if

A ¼ M11 þM22 and B ¼ M12 �M21; then

Mþ JMJ�1 ¼ A B

�B A

� �

: (54)

We rewrite (54) with the unitary transformation T:

T ¼ 1
ffiffiffi

2
p In In

iIn �iIn

� �

⇔T�1 ¼ 1
ffiffiffi

2
p In �iIn

In iIn

� �

Mþ JMJ�1 ¼
A B

�B A

� �

¼ 1
ffiffiffi

2
p In In

iIn �iIn

� �
Aþ iB 0

0 A� iB

� �
1
ffiffiffi

2
p In �iIn

In iIn

� �

therefore

det Sð Þ ¼ det MT Mþ JMJ�1
� �� �

¼ det MT
� �

det Mþ JMJ�1
� �

¼ det Mð Þdet Aþ iBð Þdet A� iBð Þ ¼ det Mð Þdet Aþ iBð Þdet Aþ iB
� �

since A, B are real, the complex conjugation commute with the determinant,
and then

det Sð Þ ¼ det Mð Þdet Aþ iBð Þdet A� iBð Þ ¼ det Mð Þ det Aþ iBð Þj j2

and from Eq. (53)

0, μ,det Sð Þ ¼ det Mð Þ det Aþ iBð Þj j2

then det Aþ iBð Þj j2.0 and det Mð Þ.0; therefore det Mð Þ ¼ μn. ■

19

Coupled Mathieu Equations: γ-Hamiltonian and μ-Symplectic
DOI: http://dx.doi.org/10.5772/intechopen.88635



Author details

Miguel Ramírez Barrios1*, Joaquín Collado2 and Fadi Dohnal3

1 Professional Interdisciplinary Unit of Biotechnology, National Polytechnic
Institute, Mexico

2 Automatic Control Department, Cinvestav, Mexico City, Mexico

3 Division for Mechatronics Lienz, UMIT, Lienz, Austria

*Address all correspondence to: mramirez@ctrl.cinvestav.mx
and fadi.dohnal@umit.at

© 2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

20

Dynamical Systems Theory



References

[1] Sinha SC, Butcher E, Dávid A.
Construction of dynamically equivalent
time-invariant forms for time-periodic
systems. Nonlinear Dynamics. 1998;16
(3):203-221. DOI: 10.1023/A:1008072
713385

[2] Butcher E, Sinha SC. Normal forms
and the structure of resonance sets in
nonlinear time-periodic systems.
Nonlinear Dynamics. 2000;23(1):35-55.
DOI: 10.1023/A:1008312424551

[3]Ng L, Rand R. Bifurcations in a
Mathieu equation with cubic
nonlinearities. Chaos, Solitons &
Fractals. 2002;14(2):173-181. DOI:
10.1016/S0960-0779(01)00226-0

[4] Cartmell M. Introduction to Linear,
Parametric and Nonlinear Vibrations.
London: Chapman and Hall; 1990

[5] Biswas S, Bhattacharjee J. On the
properties of a class of higher-order
Mathieu equations originating from a
parametric quantum oscillator.
Nonlinear Dynamics. 2009;96(1):737-
750. DOI: 10.1007/s11071-019-04818-9

[6]Hansen L. Stability diagrams for
coupled Mathieu-equations. Archive of
Applied Mechanics. 1985;55(6):463-473.
DOI: 10.1007/BF00537654

[7]Dohnal F, Verhulst F. Averaging in
vibration suppression by parametric
stiffness excitation. Nonlinear
Dynamics. 2008;54(3):231-248. DOI:
10.1007/s11071-007-9325-z

[8] Collado J. Hill equation from 1 to 2
degrees of freedom. In: New
Perspectives and Applications of
Modern Control Theory. Switzerland:
Springer Nature; 2018. pp. 43-71. DOI:
10.1007/9783319624648_3

[9]Meyer KR, Hall GR, Offin D.
Introduction to Hamiltonian Dynamical
Systems and the N-Body Problem.

New York: Springer; 2009. DOI:
10.1007/978-3-319-53691-0

[10] Yakubovich VA, Starzhinskii VM.
Linear Differential Equations With
Periodic Coefficients. New York:
John Wiley and Sons; 1975

[11]Dragt A. Lie methods for nonlinear
dynamics with applications to
accelerator physics. Physics Department
Report. University of Maryland; 2011

[12]Howard JE, MacKay RS. Linear
stability of symplectic maps. Journal of
Mathematical Physics. 1987;28(5):1036-
1051. DOI: 10.1063/1.527544

[13] Ramírez M, Collado J, Dohnal F.
Stability of coupled and damped
Mathieu equations utilizing symplectic
properties. In: Nonlinear Dynamics of
Structures, Systems and Devices of the
Proceedings of the First International
Nonlinear Dynamics Conference
(NODYCON2019)

[14] Seyranian AP, Mailybaev AA.
Multiparameter Stability, Theory with
Applications. USA:World Scientific;
2003. DOI: 10.1142/5305

[15]Horn RA, Johnson CR. Topics in
Matrix Analysis. New York: Cambridge
University Press; 1991. DOI: 10.1017/
CBO9780511840371

[16] Adrianova LY. Introduction to
linear systems of differential equations.
In: Translations of Mathematical
Monographs. Vol. 146. Providence,
Rhode Island: American Mathematical
Society; 1995

[17] Awrejcewicz J. Ordinary
Differential Equations and Mechanical
Systems. Switzerland: Springer
International Publishing; 2014. DOI:
10.1007/978-3-319-07659-1

[18] Sinha SC, Pandiyan RR, Bibb JS.
Liapunov-Floquet transformation:

21

Coupled Mathieu Equations: γ-Hamiltonian and μ-Symplectic
DOI: http://dx.doi.org/10.5772/intechopen.88635



Computation and applications to
periodic systems. ASME. Journal of
Vibration and Acoustics. 1996;118(2):
209-219. DOI: 10.1115/1.2889651

[19] Richards JA. Analysis of Periodically
Time-Varying Systems. Berlin:
Springer-Verlag; 1983. DOI: 10.1007/
978-3-642-81873-8

[20] Yakubovich VA. A remark on the
Floquet-Lyapunov theorem. Vestnik
Leningrad University. 1970;25(1):88-92

[21] Ramírez M, Collado J. Calculation of
the stability zones of Hill’s equation with
a GPU on Matlab. In: International
Conference on Supercomputing;
Springer; 2015. pp. 225-239. DOI:
10.1007/978-3-319-32243-8_16

[22] Rim D. An elementary proof that
symplectic matrices have determinant
one. Advances in Dynamical Systems
and Applications (ADSA). 2017;12(1):
15-20. arXiv:1505.04240

22

Dynamical Systems Theory


