
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter

Spatial Coordinate
Transformations with Noisy Data
Christopher Kotsakis

Abstract

The parametric transformation of spatial coordinates between different refer-
ence frames is traditionally dealt with a stepwise approach which imposes a
suboptimal treatment in the presence of noisy data. The chapter explains briefly the
drawbacks of this approach and then presents an alternative scheme for spatial
coordinate transformations that improves the classic stepwise solution when using
noisy coordinates of known stochastic structure. The proposed methodology is
simple in principle, although its numerical implementation with nonlinear para-
metric models is a bit more involved and it relies on the joint least squares adjust-
ment of the observed coordinates using their full stochastic model over all points of
interest. The mathematical framework and the related properties of this “stacking”
approach are presented in detail, along with a numerical example that demonstrates
its feasibility for practical problems in geospatial applications.

Keywords: spatial adjustment, coordinate transformation, reference frames,
nonlinear least squares, stacked Gauss-Helmert model, noise filtering

1. Introduction

Spatial coordinate-based positions often need to be transformed from their own
reference frame to another reference frame by an analytic parametric model. This is
a standard problem in several fields of geosciences and engineering, including
geodesy [11, 18, 19, 30, 33], land surveying and cadastral planning [2, 8, 16, 32],
cartography and digital mapping [1, 5, 28, 38], photogrammetry and remote sensing
[22, 25, 39], robotics and computer vision [7, 13, 31], among others.

Spatial coordinate transformations (SCTs) are utilized in practice either explic-
itly for determining the unknown coordinates of scattered points in a desired frame
from their observed coordinates in a different frame or implicitly in the context of
more composite procedures such as the self-calibration of terrestrial laser scanners
[20, 23, 26], the conflation of digital maps and geographical databases [2, 4, 6, 27],
the reconstruction of 3D models from multi-sensor data [9, 29, 35], and the inte-
gration of aerial or satellite images in ground-based systems of geographic coordi-
nates [14, 15, 21]. Various technical terms have actually been used with regard to
SCTs in practical problems, for instance, spatial adjustment, image registration,
absolute orientation, geo-referencing, and frame transformation, to name a few. Despite
their linkage to different application fields, all these terms refer, more or less, to the
same archetypical problem, that is, the optimal fusion of partially overlapping
configurations of spatial points using their coordinate-based representations in
separate frames and an application-specific model to describe their systematic
differences. Although this general viewpoint includes also cases with raster-type
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and/or vector-type data in multiple frames, the present chapter is confined to the
vectorized version of SCT problems between two different frames.

2. Problem statement and research motivation

The transformation of spatial coordinates between different reference frames
using a parametric model is traditionally resolved via a two-step procedure. Firstly,
the parameters of the adopted model are estimated by least squares adjustment
(LSA) techniques on the basis of control points with known coordinates in both
frames of interest. The estimated parameters are then used to transform any set of
known coordinates from the original frame (also called source or initial frame) to
the desired target frame. The second step is applied not only to control points but
also to additional points whose spatial coordinates are originally known only in the
initial frame. Their transformed coordinates are often the primary objective in
many practical applications, whereas the post-fit residuals at control points are
commonly used as quality metrics of the transformation process.

Despite its rational character, the stepwise methodology imposes a suboptimal
treatment in the presence of noisy data. The reason is that the accuracy of the
original coordinates in the initial frame is ignored during their transformation to the
target frame. Indeed, the second step entails only the forward implementation of
the parametric model without attempting to minimize or, at least, reduce the
propagated random errors of the original coordinates. As shown in [18], the
stepwise procedure may actually enhance the data noise into the final results, in
the sense that the transformed coordinates in the target frame could become less
accurate than the original coordinates in the initial frame.

An additional weakness of the traditional stepwise procedure is that the control and
non-control points (abbreviated hereafter as CPs and NPs) are handled independently
throughout the transformation process. Yet, the initial coordinates of these points are
usually acquired from the same pre-analysis phase or observational procedure (e.g.,
geodetic network adjustment, map digitization, etc.), and therefore they are affected
by common error sources. Due to their separate treatment, the cross-correlated part of
the initial coordinate errors at CPs and NPs is always ignored, a fact that may weaken
the accuracy of the transformed coordinates in the target frame.

The focus of the present research is the formulation of a single-stage
estimation scheme that can improve the classic stepwise solution in SCT problems.
The proposed scheme is based on a properly weighted least squares adjustment of all
observed coordinates, using their known variances and covariances (CV) in
the entire group of transformation points. This stacking approach permits the rigor-
ous treatment of intra-frame error correlations among CPs and NPs, and it generally
leads to higher-accuracy results for the transformed coordinates. Our contribution
provides easy-to-use optimal estimators for the transformed coordinates under any
parametric model, regardless of the structure of the error covariance matrices of the
input data. A numerical example is also given at the end of the chapter to demon-
strate the feasibility of the proposed methodology for practical applications.

3. The stepwise approach in spatial coordinate transformations

3.1 Preamble

The mathematical setting is based on the general case of nonlinear transforma-
tion models, in accordance to the vectorized expression:
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X ¼ f X0
; θð Þ (1)

where X0 and X contain the Cartesian coordinates for the same group of physical
points (or homologous groups of points) in different reference frames. The spatial
dimensionality does not need to be specified here, and it can refer to any case that
occurs in practice. The vector θ represents the parameters of the transformation model
which enable the coordinate mapping from the initial frame to the target frame.

In the following, Eq. (1) is considered as an exact formula for noise-free coordi-
nates and provides the general framework for the LSA of observed coordinates in
the involved frames. Simpler types of transformation models with joint or marginal
linearity in X0 and θ (e.g., errors-in-variables models, differential or close-to-iden-
tity models) can be also analyzed under the previous setting.

For the purpose of this contribution, the user’s data shall consist of:

a. the observed coordinates for CPs and NPs in the initial frame (denoted by X0

and Z0, respectively);

b. the observed coordinates for CPs in the target frame (denoted by X); and

c. the error CV matrices of the previous vectors (denoted by ΣX0 , ΣZ0 , ΣX).

An additional matrix of special importance is the cross-CV matrix ΣX0Z0 which
reflects the intra-frame error correlation between CPs and NPs, and it is totally
ignored in the traditional stepwise procedure.

3.2 Estimation of transformation parameters

The first step refers to the estimation of the transformation parameters using a
sufficient number of known CPs. Following a statistical estimation perspective, the
optimal parameter values are obtained by solving the nonlinear LSA problem

min
θ

vTXΣ
�1
X vX þ vTX0Σ

�1
X0 vX0

� �
(2)

subject to

X þ vX ¼ f X0 þ vX0 ; θð Þ (3)

where the vectors vX and vX0 represent the zero-mean random errors in the
observed coordinates. After appropriate linearization, the above problem can be
reduced to a linear LSA problem for the so-called Gauss-Helmert (GH) model
[12, 17], and it leads to an iterative solution via successive refinements of the
preliminary estimate:

θ̂ ¼ θo þ JT
θ
WJθ

� ��1
JT
θ
W X � f X0

; θoð Þð Þ (4)

W ¼ ΣX þ JX0ΣX0JTX0

� ��1
(5)

where θo contains approximate values for the transformation parameters. The
recursive updating of the previous solution is performed by the Newton-Gauss
iteration algorithm in accordance to a more complex expression that will be
presented later in this chapter. The matrices JX0 and Jθ are the Jacobians with respect
to the initial frame coordinates and the transformation parameters, that is,
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JX0 ¼
∂f X0

; θð Þ

∂X0 , Jθ ¼
∂f X0

; θð Þ

∂θ
(6)

and they need to be re-evaluated at each iteration step using the adjusted values
from the previous step. For more details on nonlinear least squares adjustment and
iterative computational algorithms, the reader should consult the excellent treatise
in [24] (see also [3, 10, 34]).

3.3 Determination of transformed coordinates

After estimating the transformation parameters, an additional step is required to
complete the solution of the problem at hand, that is, the computation of the
transformed coordinates in the target frame. This is performed by a simple forward
evaluation of the transformation model at the CPs and NPs, using the respective
nonlinear formulae:

X̂ ¼ f X0
; θ̂

� �

(7)

Ẑ ¼ f Z0
; θ̂

� �

: (8)

Note that θ̂ corresponds to the estimated parameters from the first step, whereas
X0 and Z0 refer to the observed coordinates in the initial frame. The following
Jacobian matrices are also defined here (to be used later on):

JZ0 ¼
∂f Z0

; θð Þ

∂Z0 , ~J
θ
¼

∂f Z0
; θð Þ

∂θ
(9)

which differ from their previous counterparts in Eq. (6) as they refer to a
separate group of points (NPs).

3.4 Deficiency of the stepwise approach

A number of drawbacks exist in the stepwise approach for SCT problems with
noisy data. More specifically, (a) the noise of the original coordinates remains
unfiltered during their transformation to the target frame, (b) the correlated
errors in the original coordinates between CPs and NPs are not taken into account,
and (c) the accuracy of the transformed coordinates is not optimized under any
statistical principle. All these drawbacks relate to the same modeling deficiency that
is summarized as follows: the observed coordinates in the initial frame are contam-
inated by random errors which remain uncontrolled during the second step of the
transformation process, and they are fully absorbed by the transformed coordinates
of CPs and NPs.

The aforesaid deficiency is irrelevant for practical applications only in two cases:

• if the sole objective is to determine a set of transformation parameters between
different frames, without the need to perform any coordinate transformation
at specific points; or

• if spatial objects (e.g., point cloud, network, digitized map) need to be
transferred from an initial frame to another frame, without any “quality
improvement” of their transformed coordinates.

4

Geospatial Analyses of Earth Observation (EO) Data



However, if the user’s goal is the optimal referencing of spatial objects with
respect to a target frame, then the unfiltered data noise becomes a critical error
source for SCT problems. This does not mean that the stepwise approach leads
to wrong results, but it signifies that the composite estimators in Eqs. (7) and (8)
do not provide an optimal solution of maximum accuracy for the transformed
coordinates.

It is worth noting that the stepwise approach is not compelled to reproduce the

prior reference coordinates of CPs in the target frame, that is, X̂ 6¼ X, even if these
coordinates are perfectly known without any errors!

3.5 Best-fitting transformation solutions

In some cases, the estimation of transformation parameters is performed via the
alternative nonlinear least squares principle [36, 37]:

min
θ

X � f X0
; θð Þk k

2
(10)

where �k k denotes the standard form of the Euclidean vector norm. The rationale
of the above principle is to bring in the best alignment two different coordinate sets
over a group of CPs, and it does not lead to the same parameter estimates as the
statistical least squares formulation of Section 3.2. Their formal equivalency occurs
if the known coordinates in the initial frame are treated as noiseless quantities and
the respective coordinates in the target frame are affected by uncorrelated random
errors of equal variance. Nevertheless, Eq. (10) has a strong geometrical signifi-
cance, and it is often used in practice regardless of the noise characteristics of the
available data.

If the transformation parameters are obtained by the alternative principle of
Eq. (10), then it obviously holds that

X � X̂
�
�

�
�
2
! min (11)

which implies that the transformed coordinates of CPs will be optimally
fitted, in a least squares sense, to their prior known values in the target frame.
This best-fitting property does not enforce statistical optimality to the accuracy of
the transformed coordinates—the latter will still absorb the entire observation
noise according to Eqs. (7) and (8). Therefore, the point to be stressed here is that a
high-quality transformation solution should not just rely on the fitting performance
at CPs, but it has to exploit in an optimal sense the stochastic error model of the
observed coordinates over all points of interest.

4. The stacking approach in spatial coordinate transformations

4.1 Theoretical aspects

A unified optimal solution for SCT problems can be obtained in a single stage
through the rigorous combination of all available data. This requires the joint LSA of
the nonlinear transformation equations:

X ¼ f X0
; θð Þ (12)

Z ¼ f Z0
; θð Þ (13)
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which should be performed in a linearized context via the Newton-Gauss
iteration method [3, 24, 34]. The algebraic setup of this stacking adjustment and the
basic properties of the resulting estimators for the transformed coordinates are
presented in this section.

4.1.1 Linearization

At first, we need to approximate the nonlinear Eqs. (12) and (13) by the trun-
cated multivariate Taylor’s series expansions:

X ¼ f X0
o; θo

� �
þ JX0 X0 �X0

o

� �
þ Jθ θ� θoð Þ (14)

Z ¼ f Z0
o; θo

� �
þ JZ0 Z0 � Z0

o

� �
þ ~J

θ
θ� θoð Þ (15)

where θo is a vector of approximate values for the transformation parameters and
X0

o, Z
0
o are vectors of approximate coordinates for the respective points in the initial

frame. Taking into account that the observables correspond to the coordinate vec-
tors X, X0, and Z0, the previous formulae should be further augmented as follows:

X þ vX ¼ f X0
o; θo

� �
þ JX0 X0 þ vX0 �X0

o

� �
þ Jθ θ� θoð Þ (16)

Z ¼ f Z0
o; θo

� �
þ JZ0 Z0 þ vZ0 � Z0

o

� �
þ ~J

θ
θ� θoð Þ (17)

where the added vectors vX, vX0 , vZ0 denote the zero-mean random errors of the
observed coordinates. The linearized expressions (16) and (17) can be equivalently
written in the block-matrix form:

�Jθ 0

�~Jθ I

� �
θ� θo

Z

� �

þ
I �JX0 0

0 0 �JZ0

� � vX

vX0

vZ0

2

6
4

3

7
5þ

X � f X0
o; θo

� �
� JX0 X0 �X0

o

� �

�f Z0
o; θo

� �
� JZ0 Z0 � Z0

o

� �

" #

¼
0

0

� �

(18)

which conforms to the usual structure of Gauss-Helmert linear models of statis-
tical estimation theory [12, 17, 24]. Our objective here is to invert the above stacked
system of the general form Ax þ Bv þ w = 0 using the general least squares
principle vTP v ¼ min, in conjunction with the data weight matrix:

P ¼ Σ
�1 ¼

ΣX 0 0

0 ΣX0 ΣX0Z0

0 ΣZ0X0 ΣZ0

2

6
4

3

7
5

�1

(19)

which reflects the total statistical accuracy of the observables. Note that the
inter-frame correlations of the observed coordinates are assumed to be zero,
whereas the intra-frame correlations between CPs and NPs are taken into account

by the cross-CV matrix ΣZ0X0 ¼ Σ
T
X0Z0

� �
.

If applied under a proper iterative setting, the LSA of Eq. (18) leads to the
sought optimal solution of the problem at hand. Specifically, the transformation
parameters and the coordinates of NPs in the target frame are both contained into
the “parameter vector” of the stacked GH-type model, and they can be directly
obtained via the respective least squares estimator (see next section). On the other
hand, the estimated coordinates of CPs in the target frame shall be deduced in an
implicit way by correcting the observed values X for the effect of their random
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errors (vX) which are also estimable from the iterative least squares inversion
of Eq. (18).

4.1.2 Optimal least squares estimators

By applying the general LSA solution of linear GH models (see [12, 17]) to the
stacked system of Eq. (18) and after some extra lengthy derivations using analytic
inversions of 2 � 2 block matrices, we obtain the explicit estimators for the trans-
formation parameters:

θ̂ ¼ θo þ JT
θ
WJθ

� ��1
JT
θ
W X � f X0

o; θo

� �
� JX0 X0 �X0

o

� �� �
(20)

and for the coordinates of NPs in the target frame

Ẑ ¼ f Z0
o; θo

� �
þ JZ0 Z0 � Z0

o

� �
þ ~J

θ
θ̂ � θo

� �

þ JZ0ΣZ0X0JTX0 W X � f X0
o; θo

� �
� JX0 X0 �X0

o

� �
� Jθ θ̂ � θo

� �� � (21)

whereas the estimated errors for each subset of observed coordinates are given
by the equation

v̂X

v̂X0

v̂Z0

2

6
4

3

7
5 ¼

�ΣX

ΣX0JTX0

ΣZ0X0JTX0

2

6
4

3

7
5 W X � f X0

o; θo

� �
� JX0 X0 �X0

o

� �
� Jθ θ̂ � θo

� �� �

(22)

The auxiliary matrix W that appears in the previous equations was defined
earlier in Section 3.2. Finally, if we combine the first error component from Eq. (22)

with the basic formula X̂ ¼ X þ v̂X, we get the estimated coordinates of CPs in the
target frame:

X̂ ¼ f X0
o; θo

� �
þ JX0 X0 �X0

o

� �
þ Jθ θ̂ � θo

� �

þ JX0ΣX0JTX0 W X � f X0
o; θo

� �
� JX0 X0 �X0

o

� �
� Jθ θ̂ � θo

� �� � (23)

To facilitate a comprehensive analysis of the stacking approach, it is useful to
rewrite Eqs. (21) and (23) in the combined Kalman-like form:

X̂

Ẑ

" #

¼
X
_

Z
_

" #

þ
JX0ΣX0JTX0

JZ0ΣZ0X0JTX0

" #

ΣX þ JX0ΣX0JTX0

� ��1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

W

X� X
_

� �

(24)

where the auxiliary terms X
_

and Z
_

are strictly given by the expressions

X
_

Z
_

" #

¼
f X0

o; θo

� �
þ JX0 X0 �X0

o

� �
þ Jθ θ̂ � θo

� �

f Z0
o; θo

� �
þ JZ0 Z0 � Z0

o

� �
þ ~J

θ
θ̂ � θo

� �

2

6
4

3

7
5 (25)

which, to a first-order approximation, mimic the result of the traditional step-
wise approach, that is,
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X
_

Z
_

" #

≃

f X0
; θ̂

� �

f Z0
; θ̂

� �

2

6
4

3

7
5 (26)

All previous estimators refer to a single execution of the weighted LSA in the
linearized system of Eq. (18). Their use in practical applications with nonlinear
transformation models requires a recursive algorithm, as explained in more detail in
Section 4.2.

4.1.3 Basic features of the stacking approach

Compared to the traditional stepwise methodology, the stacking approach
leads to the same least squares estimate for the transformation parameters but to
different values for the estimated coordinates in the target frame. This partial
equivalency is expected since the inclusion of NPs into the adjustment procedure
does not contribute additional information for the transformation parameters. On
the other hand, the estimated coordinates contain extra corrections which are

derived from stochastic filtering of the coordinate residuals X� X
_

and kriging-like
prediction over all points of interest [see Eq. (24)]. Loosely speaking, the effect of
those corrections resembles a rubber-sheeting process in the sense of “stretching”
the classic stepwise solution to counteract the propagated data noise in the entire set
of transformed coordinates.

The stacking approach permits also the exact fit over all CPs regardless of the
noise level in the initial frame. This essential property is easily verified by Eq. (24)
which implies that

ΣX ¼ 0 ! X̂ ¼ X (27)

or in a loosened version

ΣX ≪ JX0ΣX0JTX0 ! X̂ ≃X (28)

The first condition dictates that the transformed coordinates of CPs will match
their prior values, if the latter are assumed to be of perfect quality. The second
condition is also useful for practical applications, as it allows the users to improve
the fitting performance of the transformation results via a simple tuning of the CV
matrix ΣX. This last option is essentially equivalent to stochastic constraining of the
prior coordinates of CPs in the target frame.

As a final note, let us point out that both approaches give similar results in the
presence of noiseless data in the initial frame. In such case the least squares estima-
tors of the previous section admit the conditional behavior:

ΣX0 ¼ 0 ! v̂X0 ¼ 0 ! X̂ ¼X
_

≃ f X0
; θ̂

� �

(29)

ΣZ0X0 ¼ 0 ! v̂Z0 ¼ 0 ! Ẑ ¼Z
_

≃ f Z0
; θ̂

� �

: (30)

Interestingly, the CV matrix ΣZ0 does not play an active role within the stacking
approach, in contrast to the cross-CV matrix ΣZ0X0 which is of crucial importance
for the optimal transformation at the NPs [see Eq. (22)]. In Table 1 all relevant
cases that can appear in SCT problems are classified with regard to the stochastic
model of the observed coordinates in the respective frames.
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4.2 Computational aspects

The numerical computation of the stacking solution in nonlinear SCT problems
requires a recursive implementation of the least squares estimators given in Section
4.1.2. The Newton-Gauss iteration method is suitable for this purpose and entails
the updating of the approximate vectors X0

o, Z
0
o, θo at each step by their adjusted

values from the previous step until sufficient convergence is achieved in all esti-
mated quantities of interest [3, 24, 34].

The aforesaid procedure should be applied for computing both the transforma-
tion parameters and the coordinates of CPs/NPs in the target frame, based on the
following algorithm:

θ̂
kð Þ
¼ θ

kð Þ
o þ JT

θ
WJθ

� ��1
JT
θ
W X � f X0 kð Þ

o ; θ
kð Þ
o

� �

� JX0 X0 �X0 kð Þ
o

� �� �

(31)

X
_ kð Þ

Z
_ kð Þ

2

6
4

3

7
5 ¼

f X0 kð Þ
o ; θ

kð Þ
o

� �

þ JX0 X0 �X0 kð Þ
o

� �

þ Jθ θ̂
kð Þ
� θ

kð Þ
o

� �

f Z0 kð Þ
o ; θ

kð Þ
o

� �

þ JZ0 Z0 � Z0 kð Þ
o

� �

þ ~J
θ
θ̂

kð Þ
� θ

kð Þ
o

� �

2

6
6
4

3

7
7
5

(32)

v̂
kð Þ

X0

v̂
kð Þ

Z0

2

4

3

5 ¼
ΣX0JTX0

ΣZ0X0JTX0

" #

ΣX þ JX0ΣX0JTX0

� ��1
X �X

_ kð Þ

 �

(33)

X̂ kð Þ

Ẑ
kð Þ

" #

¼
X
_ kð Þ

Z
_ kð Þ

2

4

3

5þ
JX0 v̂

kð Þ

X0

JZ0 v̂
kð Þ

Z0

2

4

3

5 (34)

where the index k ¼ 1, 2,… denotes the LSA iteration step. All Jacobian matrices
shown in these equations should be re-evaluated at each step as follows:

JX0 ¼
∂f X0

; θð Þ

∂X0

�
�
�
�
θ

kð Þ
o ,X0 kð Þ

o

, JZ0 ¼
∂f Z0

; θð Þ

∂Z0

�
�
�
�
θ

kð Þ
o ,Z0 kð Þ

o

(35)

Jθ ¼
∂f X0

; θð Þ

∂θ

�
�
�
�
θ

kð Þ
o ,X0 kð Þ

o

, ~J
θ
¼

∂f Z0
; θð Þ

∂θ

�
�
�
�
θ

kð Þ
o ,Z0 kð Þ

o

: (36)

CV matrices of observed

coordinates

Does data noise filtering occur in the

transformation process ?

Initial frame Target

frame

Control points ΣX0 6¼ 0 ΣX 6¼ 0 Yes

ΣX0 6¼ 0 ΣX ¼ 0 Yes—perfect fit to prior values

ΣX0 ¼ 0 ΣX 6¼ 0 No

Non-control

points

ΣZ0 6¼ 0 ΣZ0X0 6¼ 0 Yes

ΣZ0 6¼ 0 ΣZ0X0 ¼ 0 No

ΣZ0 ¼ 0 ΣZ0X0 ¼ 0 No

Table 1.
Different cases in the stacking approach with regard to the stochastic model of the observed coordinates.
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Note that the auxiliary weight matrix W that appears in Eq. (31) depends on JX0

[see Eq. (5)] and it is also required to be updated at each step.
To initialize the Newton-Gauss iteration process, a simple choice is to set the

approximate coordinates equal to the observed values (X0
o ¼ X0, Z0

o ¼ Z0), while
the approximate transformation parameters are typically obtained via empirical

procedures. The initial computation of θ̂ is thus reduced to the simpler form given
already in Section 3.2, whereas for subsequent iterations the rigorous expression of
Eq. (31) should be used. The updating of all approximate vectors at each step should
be performed by the following equations:

θ
kð Þ
o ¼ θ̂

k�1ð Þ
(37)

X0 kð Þ
o ¼ X0 þ v̂

k�1ð Þ

X0 (38)

Z0 kð Þ
o ¼ Z0 þ v̂

k�1ð Þ

Z0 (39)

Special cases with noise-free coordinates in the initial frame (ΣX0 ¼ 0) and/or
uncorrelated coordinates between CPs and NPs (ΣZ0X0 ¼ 0) can be easily treated
under the previous framework, and they lead to identical results as the traditional
stepwise approach.

4.3 Statistical accuracy assessment in SCT solutions

The error CV matrices of θ̂, X̂, and Ẑ are the fundamental elements for the
formal quality assessment in SCT solutions. Their rigorous expressions are obtained
by covariance propagation to the respective estimators given in previous sections,
and they are presented here without their full mathematical proofs.

Both the stepwise and the stacking approach lead to the same optimal estimate
for the transformation parameters, whose error CV matrix is given by the formula:

Σ
θ̂
¼ JT

θ
ΣX þ JX0ΣX0JTX0

� ��1
Jθ

� ��1
: (40)

Regarding the accuracy assessment of the transformed coordinates by the
stepwise approach, the following expressions should be used:

ΣX̂ ¼ JθΣθ̂
JT
θ
þ JX0ΣX0JTX0 � JθΣθ̂

JT
θ

� �
ΣX þ JX0ΣX0JTX0

� ��1
JX0ΣX0JTX0

� �

� JX0ΣX0JTX0

� �
ΣX þ JX0ΣX0JTX0

� ��1
JθΣθ̂

JT
θ

� �
(41)

ΣẐ ¼ ~J
θ
Σ
θ̂
~J
T

θ
þ JZ0ΣZ0JTZ0 � ~J

θ
Σ
θ̂
JT
θ
Þ ΣX þ JX0ΣX0JTX0

� ��1
JX0ΣX0Z0JTZ0

� ��

� JZ0ΣZ0X0JTX0

� �
ΣX þ JX0ΣX0JTX0

� ��1
JθΣθ̂

~J
T

θ

� � (42)

which refer to the CPs and NPs, respectively. The overbar symbol is used to
distinguish the above error CV matrices from the respective expressions that apply
in the stacking approach. The latter are given by the general formulae:

ΣX̂ ¼ ΣX̂ � KΣeK
T (43)

ΣẐ ¼ ΣẐ �QΣeQ
T (44)
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where the auxiliary matrices K and Q are defined as

K ¼ JX0ΣX0JTX0

� �
ΣX þ JX0ΣX0JTX0

� ��1
(45)

Q ¼ JZ0ΣZ0X0JTX0

� �
ΣX þ JX0ΣX0JTX0

� ��1
(46)

and Σe is the CV matrix of the coordinate residuals X � f X0
; θ̂

� �

, that is,

Σe ¼ ΣX þ JX0ΣX0JTX0 � JθΣθ̂
JT
θ
: (47)

Equations (43) and (44) reveal the expected improvement of the statistical
accuracy in the SCT solution by the stacking approach. The diagonal elements
(i.e., coordinate error variances) of ΣX̂ and ΣẐ are always smaller than the respec-

tive elements of ΣX̂ and ΣẐ , a fact that is attributed to the noise filtering of the
observed coordinates during the transformation process.

5. Numerical example

To demonstrate the potential of the stacking approach in practical transforma-
tion problems, a simple example is given here for a simulated 2D network with
seven CPs and four NPs. The true coordinates of all network points are listed in
Table 2, and they are related by a second-order polynomial transformation:

xi ¼ ao þ a1 x
0
i þ a2 y

0
i þ a3 x

0
iy
0
i þ a4 x

02
i þ a5 y

02
i (48)

yi ¼ bo þ b1 x
0
i þ b2 y

0
i þ b3 x

0
iy
0
i þ b4 x

02
i þ b5 y

02
i (49)

whose associated parameters are provided in Table 3.
The observed coordinates for our experiments stem by adding simulated

Gaussian noise to the true values of Table 2. The known coordinates of NPs in

Initial frame Target frame

x0 (m) y0 (m) x (m) y (m)

CP1 100.000 250.000 146.000 287.000

CP2 200.000 423.205 210.768 467.597

CP3 286.602 373.205 239.979 435.802

CP4 157.735 150.000 181.119 177.203

CP5 125.000 200.000 159.250 231.438

CP6 225.000 250.000 222.875 294.188

CP7 250.000 400.000 226.250 452.750

NP1 200.000 300.000 209.250 342.500

NP2 159.000 230.000 184.574 264.665

NP3 220.000 340.000 217.850 386.660

NP4 170.000 270.000 192.750 308.030

Table 2.
True coordinates of CPs and NPs in the simulated test network with respect to the initial and target frame.
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the target frame are not included in the observables, but they were used only for
cross-validation of the transformation results. The generated random errors at the
CPs in the target frame are uncorrelated with a common standard deviation of 0.1 cm
for the x and y coordinates. On the other hand, the generated random errors at the
CPs/NPs in the initial frame are spatially correlated in terms of the simplified
Gaussian-type covariance model:

σx0
i
x0
k
¼ σy0

i
y0
k
¼ σ

2e�A x0i�x0
kð Þ

2
�B y0i�y0

kð Þ
2

(50)

σx0
i
y0
k
¼ ρ σ

2e�A x0i�x0
kð Þ

2
�B y0i�y0

kð Þ
2

(51)

ao a1 a2 a3 a4 a5

10.25 1.20 0.20 �0.0013 �0.0008 0.0001

bo b1 b2 b3 b4 b5

18.50 �0.25 1.20 �0.0002 0.0011 �0.0002

Table 3.
True parameter values of the second-order polynomial transformation model.

Figure 1.
Differences between the true and the transformed coordinates at two CPs over 1000 Monte Carlo sampling
experiments in the simulated network. The point error ellipses (99% confidence level) by each transformation
approach are also shown in red color. The scaling of the horizontal axes is in meters.
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where σ is the common error standard deviation for the x0 and y0 coordinates (set
equal to 5 cm) and ρ is their error correlation coefficient at each point (set equal to
�0.2). The values of the auxiliary parameters A and B were fixed to 6 � 10�7 and
7 � 10�6, respectively, which ensure the positive definiteness of the resulting CV
matrix for the observed coordinates in the initial frame.

Using a Monte Carlo sampling scheme and a Cholesky-based algorithm for the
stochastic simulation of correlated random vectors, a total of 1000 noisy ensembles
were produced for the triplet of coordinate vectors X, X0, and Z0. These synthetic
datasets were used with the stepwise and stacking approach to determine the
transformed coordinates and their associated accuracy, over all points of the simu-
lated network.

The differences between the true and the transformed coordinates in the
target frame, as obtained by all data ensembles under each approach, are shown in
Figures 1 and 2. The cloud plots in these figures refer only to a subset of the
CPs/NPs, yet similar results are acquired at all other network points. It is clear that
the stacking approach yields significantly better results than the traditional stepwise
approach, and it effectively filters the existing noise of the initial coordinates.
The accuracy improvement ranges from 88 to 92% at the CPs, while it is a bit lower
(63–78%) at the NPs (see detailed results in Table 4).

Figure 2.
Differences between the true and the transformed coordinates at two NPs over 1000 Monte Carlo sampling
experiments in the simulated network. The point error ellipses (99% confidence level) by each transformation
approach are also shown in red color. The scaling of the horizontal axes is in meters.
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It should be emphasized that the stochastic model of the observed coordinates
plays a key role in the performance of the stacking approach. This means that the
results shown here may exhibit different behavior—displaying either insignificant
or even more profound accuracy improvement for the transformed coordinates—
for varied choices of the CV matrices ΣX, ΣX0 , ΣZ0 , and ΣX0Z0 .
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Stepwise approach Stacking approach Accuracy improvement (%)

σx̂ σŷ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
2
x̂
þ σ

2
ŷ

q
σx̂ σŷ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
2
x̂
þ σ

2
ŷ

q

CP1 0.6 0.7 0.9 0.1 0.1 0.1 89

CP2 0.3 0.9 0.9 0.1 0.1 0.1 89

CP3 0.3 0.7 0.7 0.1 0.1 0.1 86

CP4 0.6 1.0 1.2 0.1 0.1 0.1 92

CP5 0.6 0.8 1.0 0.1 0.1 0.1 90

CP6 0.4 0.6 0.8 0.1 0.1 0.1 88

CP7 0.3 0.8 0.8 0.1 0.1 0.1 88

NP1 0.5 0.7 0.8 0.2 0.2 0.3 63

NP2 0.5 0.7 0.9 0.1 0.1 0.2 78

NP3 0.4 0.7 0.8 0.2 0.3 0.3 63

NP4 0.5 0.7 0.8 0.2 0.2 0.3 63

All values given in cm.

Table 4.
Standard deviations of the transformed coordinates in the simulated network by different approaches.
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