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Chapter

New Variations of the Online
k-Canadian Traveler Problem:
Uncertain Costs at Known
Locations
Davood Shiri and F. Sibel Salman

Abstract

In this chapter, we study new variations of the online k-Canadian Traveler
Problem (k-CTP) in which there is an input graph with a given source node O and a
destination node D. For a specified set consisting of k edges, the edge costs are
unknown (we call these uncertain edges). Costs of the remaining edges are known
and given. The objective is to find an online strategy such that the traveling agent
finds a route from O to D with minimum total travel cost. The agent learns the cost
of an uncertain edge, when she arrives at one of its end-nodes and decides on her
travel path based on the discovered cost. We call this problem the online
k-Canadian Traveler Problem with uncertain edges. We analyze both the single-
agent and the multi-agent versions of the problem. We propose a tight lower bound
on the competitive ratio of deterministic online strategies together with an optimal
online strategy for the single-agent version. We consider the multi-agent version
with two different objectives. We suggest lower bounds on the competitive ratio
of deterministic online strategies to these two problems.

Keywords: multi-agent k-CTP, online strategies, deterministic strategies,
competitive ratio, undirected graphs

1. Introduction

The online k-Canadian Traveler Problem (k-CTP) is a well-known navigation
problem within the field of combinatorial optimization. In the online k-CTP, the
objective is to reach a destination in a network within minimum travel time under
uncertainty of some information. Uncertain information is revealed, while one or
more travelers (agents) discover the information during their travels. In the k-CTP
and its variants studied in the literature, uncertainty is on the locations of blocked
edges in the input graph. That is, it is known that there are at most k blocked edges,
but their locations are not known. In this study, we consider new variations of the k-
CTP where a known set of edges have unknown (uncertain) travel times (costs). To
the best of our knowledge, this variant of the k-CTP with given locations of edges
that have unknown traveling costs has not been studied yet in the literature.

Uncertainty in travel times arises in various situations, such as following a disaster
or in daily urban traffic systems. After a disaster, uncertainty in travel times arises
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due to both damage on road segments and traffic congestion on some parts of the
road network. We typically know which roads are likely to have damage and to be
congested, but the actual travel times can be estimated more accurately when we
observe the situation right on the spot. Regarding urban traffic systems, problematic
road segments can be detected beforehand since in most current traffic management
systems, data indicating locations with high accident frequency are available, but it is
difficult to predict the time of occurrence or the intensity of the accident accurately.
Also, we usually know where there is a high likelihood of heavy traffic, but travel
times show variability. Moreover, nowadays navigation applications indicate which
locations have heavy traffic, but the travel times are still not known with certainty,
and the situation evolves dynamically as we reach the locations themselves.

In many real-world emergency operations, including response to disasters and
daily medical or fire emergencies, operations managers must give dispatching deci-
sions urgently under uncertain travel times. Therefore, it is useful to develop online
strategies beforehand. For example, for effective disaster response, these strategies
can be adopted before the disaster so that they can be implemented in the shortest
time after the disaster. Likewise, when traveling in traffic, in order to reach the
desired destination in the shortest time, we need a strategy defined on a network
which answers the following questions: when to arrive at the end-node of an uncer-
tain edge to learn its travel cost and when to avoid visiting it; when the travel time of
an uncertain edge is learned, whether to take it or change the travel route; and if there
exists a route to the destination without any uncertain edges, whether to take it or
not. In this chapter, we focus on both developing effective online strategies that
answer these questions and analyzing their performances theoretically to reveal their
worst-case behavior. We next define our problem and its variants formally.

1.1 The online k-CTP with uncertain edges

Let G ¼ V;E; kð Þ denote an undirected graph with O as the source and D as the
destination in which the costs of k edges with given locations in the graph are
unknown and a traveling agent can only discover their costs when she reaches an
end-node of them. The costs of the remaining edges are known and deterministic. We
call the edges with unknown costs uncertain edges and the edges with known costs
deterministic edges. The objective is to provide an online strategy such that the travel-
ing agent who is located at O initially receives G ¼ V;E; kð Þ and the known costs as
input and targets to reach D with minimum total travel cost under uncertainty. Since
the problem is a new variation of the k-CTP, we call this problem the single-agent k-
CTP with uncertain edges, in short the S-k-CTP-U. We also study the multi-agent
version of this problem where there are L agents, who are initially located at O. We
assume that the agents have the capability to transmit their location and edge cost
information to the other agents in real time. We consider the multi-agent version of
the problem with two different objectives, where the traveling agents follow an
online strategy to ensure that the time when (1) the first agent and (2) the last agent
arrive at D is minimum. We call these problems the M-k-CTP-U-f and the M-k-CTP-
U-l, respectively. In real-life applications mentioned before, e.g., disaster response,
the objective of the M-k-CTP-U-f is applicable when search-and-rescue teams try to
reach a target in the shortest time, whereas the objective of the M-k-CTP-U-l is
applicable when a convoy of k vehicles delivers aid to a point of distribution.

1.2 Competitive analysis

The key concept in analyzing an online strategy is to compare a solution pro-
duced by the online strategy with the best possible solution under complete
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information, which is called the offline optimum solution. An offline strategy is to
solve the same problem as an online strategy, except that all information about the
problem inputs is revealed to an offline strategy from the beginning. An optimal
offline strategy is the optimal strategy in the presence of complete input informa-
tion which produces the offline optimum solution. To analyze the performance of
online strategies, competitive ratio has been introduced in [1] and used by many
researchers. The competitive ratio is the maximum ratio of the cost of the online
strategy to the cost of the offline strategy over all instances of the problem. In our
problems, the costs of the uncertain edges are known in the offline counterparts.
Hence, the offline problems reduce to the shortest path problem.

Next, we discuss related work in the literature. Then, we state our contributions
to the defined problems later on in this section.

1.3 Previous studies

We focus on studies on the k-CTP which are conducted from the online optimi-
zation and the competitive analysis perspective, since these are the most related
works to our survey. First, we review the literature for the single-agent variants.
Next, we discuss the relevant studies on the multi-agent versions.

1.3.1 Single-agent k-CTP and variants

The CTP was defined first in [2]. Papadimitriou and Yannakakis [2] proved that
devising an online strategy with a bounded competitive ratio is PSPACE-complete
for the CTP. Bar-Noy and Schieber [3] also considered the CTP and its variants.
They introduced the k-CTP, where an upper bound k on the number of blocked
edges is given as input. They showed that for arbitrary k, the problem of designing
an online strategy that guarantees the minimum travel cost is PSPACE-complete.

Westphal [4] considered the k-CTP from the competitive ratio perspective. He
showed the lower bounds of 2kþ 1 and kþ 1 on the competitive ratio of determin-
istic and randomized online strategies, respectively. He also presented an optimal
deterministic online strategy for the k-CTP which is called the backtrack strategy.
Xu et al. [5] also considered the k-CTP and presented two online strategies, the

greedy and the comparison strategy, and proved competitive ratios of 2kþ1 � 1 and
2kþ 1, respectively, for these strategies. Bender and Westphal [6] presented a
randomized online strategy for the k-CTP which meets the lower bound of kþ 1 in
special cases. Shiri and Salman [7] modified the strategy given in [7] and proposed
an optimal randomized online strategy for the k-CTP on O-D edge-disjoint graphs.

1.3.2 Multi-agent k-CTP and variants

A generalization of the k-CTP with multiple agents was first considered by
Zhang et al. in [8]. They analyzed the multi-agent k-CTP in two scenarios, with

limited and complete communication. They proposed lower bounds of 2 k�1
L1

j k

þ 1

and 2 k
L

� �

þ 1 on the competitive ratio of deterministic online strategies for the cases
with limited and complete communication, respectively. Note that in the proposed
lower bounds L denotes the total number of agents and L1 denotes the number of
agents who benefit from complete communication. They also proposed an optimal
deterministic online strategy when there are two agents in the graph. Shiri and
Salman [9] also investigated the multi-agent k-CTP. They provided an updated
lower bound on the competitive ratio of deterministic online strategies for the case
with limited communication. They also presented a deterministic online strategy

3

New Variations of the Online k-Canadian Traveler Problem: Uncertain Costs at Known Locations
DOI: http://dx.doi.org/10.5772/intechopen.88741



which is optimal in both cases with complete and limited communication on O-D
edge-disjoint graphs. Randomized online strategies for the multi-agent k-CTP are
investigated in [10], where lower bounds on the expected competitive ratio
together with optimal randomized online strategies on O-D edge-disjoint graphs are
proposed for the cases with limited and complete communication.

Xu and Zhang [11] focused on a real-time rescue routing problem from a source
node to an emergency spot in the presence of online blockages. They analyzed the
problem with the objective to make all the rescuers arrive at the emergency spot
with minimum total cost. They studied the problem in two scenarios, without
communication and with complete communication. They investigated both of the
scenarios on the grid networks and general networks, respectively. They showed
that the consideration of both the grid network and the rescuers’ communication
can significantly improve the rescue efficiency.

1.4 Our contributions

In the literature, the common unknown information in the k-CTP variants is the
locations of the blocked edges in the graph. In fact, in all of the versions of the
online k-CTP, all of the edges are equally likely to be blocked, and the agents have to
explore the blockages in the graph to identify a route from the source node to the
destination node with minimum total travel cost. However, in many real-world
instances, assuming that all of the edges are equally likely to be congested or
blocked ignores valuable information. In other words, there might exist many edges
in the graph in which the agent is assured that they are not blocked before she starts
her travel. Hence, considering all of the edges to be blocked with equal chance is not
a realistic assumption in some of the real-world applications of the k-CTP.

As discussed at the beginning of this section, it is possible to identify the poten-
tial locations of the blocked edges in the graph in many real-world instances, such as
in the urban traffic and post-disaster response. We introduce a new variation of the
k-CTP with at most k number of uncertain edges with given locations and unknown
traveling costs. We call this new problem the online k-Canadian Traveler Problem
with uncertain edges. We consider both single-agent and multi-agent versions of
this problem. In the multi-agent version of the problem, we analyze the problem
with two different objectives, where the agents aim to ensure the first and the last
arrival of the agents at D with minimum travel cost, respectively. The main contri-
butions of our study are detailed below:

1.We introduce new variations of the online k-CTP which find applications in
real-world problems, namely, the S-k-CTP-U, the M-k-CTP-U-f, and the M-
k-CTP-U-l.

2.We provide a tight lower bound on the competitive ratio of deterministic
online strategies for the S-k-CTP-U and introduce an optimal deterministic
online strategy.

3.We derive lower bounds on the competitive ratio of deterministic online
strategies for the M-k-CTP-U-f and the M-k-CTP-U-l.

The rest of this chapter is organized as follows. In Section 2, we describe the
assumptions and give preliminaries. In Section 3, we analyze the single-agent ver-
sion of the problem and provide a tight lower bound and an optimal strategy to this
problem. In Section 4, we suggest lower bounds on the competitive ratio for the
multi-agent versions of the problem. Finally, we conclude in Section 5.
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2. Preliminaries

We consider the single-agent and the multi-agent problems defined in Section
1.1 with the following assumptions [1]:

1.The agent(s) are initially located at O. We call this stage the initial stage of the
problem.

2.If any k edges are removed from the graph, there still exists a path between the
source and the destination node. This is a standard assumption in the
literature.

3.The cost of the uncertain edges can take any value between 0 and M. An
uncertain edge with explored cost equal toMwould be considered as a blocked
edge.

4.Once the cost of an uncertain edge is learned, it remains the same whenever
the traveler visits that edge. In other words the cost is not assumed to be time-
dependent.

5.We call the time periods in which the cost of a new uncertain edge is
identified, stages of the problem. That is, there are k stages in the problem, i.e.,
stage 1 corresponds to the time period starting at the initial stage and ending at
the moment before the cost of the first uncertain edge is learned.

We apply the following symbols and definitions to describe our results. We call
the O-D paths which contain uncertain edges uncertain paths and which do not have
uncertain edges deterministic paths. Let Di denote the shortest deterministic path at
the ith stage and di i ¼ 1; 2;…; kð Þ denote its corresponding cost. If there are more
than one shortest deterministic path at the ith stage, one of them can be selected as
Di arbitrarily. Note that at any stage of the problem there exists at least one deter-
ministic O-D path based on Assumption 2.

We define the optimistic cost of the O-D path as the cost of the O-D path after
setting the costs of the unvisited uncertain edges on it equal to 0. The optimistic
shortest O-D path at the ith stage of the problem is denoted by πi, which corresponds
to the shortest O-D path after setting the costs of the remaining uncertain edges
equal to 0. We denote its corresponding cost by pi i ¼ 1; 2;…; kð Þ. That is, π1 is the
optimistic shortest O-D path at the initial stage of the problem. We denote the
shortest path after the status of all of the uncertain edges is explored by πkþ1, i.e.,
πkþ1 is the offline optimum and pkþ1 is its corresponding cost.

3. Single-agent k-CTP with uncertain edges

In this section, we analyze the single-agent problem, namely, the S-k-CTP-U.
We present a lower bound to this problem and prove its tightness by introducing a
simple strategy. To suggest a lower bound on the competitive ratio of deterministic
strategies, we need to analyze the performance of all of deterministic strategies on a
special instance. Below, we propose our lower bound on the S-k-CTP-U, by analyz-
ing an instance of O-D edge-disjoint graphs. Note that an O-D edge-disjoint graph is
an undirected graph G with a given source node O and a destination node D, such
that any two distinct O-D paths in G are edge-disjoint, that is, they do not have a
common edge.
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Theorem 1.1 For the S-k-CTP-U, there is no deterministic online strategy with
competitive ratio less than min d1=p1; 2k� 1

� �

.
Proof. Consider the special graph in Figure 1. For each of deterministic strate-

gies, we consider the instance when the cost of all of the first k� 1 visited uncertain
edges equals M and the cost of the last visited uncertain edge equals 0. Hence, the
cost of the offline shortest path equals p1. For a strategy, we call this instance the
adverse instance. In the special graph in Figure 1, any deterministic strategy corre-
sponds to a permutation which specifies in which order the uncertain paths and D1

(not necessarily all of them) are going to be selected. For each of these strategies,
consider the adverse instance. We define α as a binary coefficient which equals 1, if
the agent takes D1, and equals 0, if the agent does not take D1 in the strategy.
Suppose that the agent has taken i number of uncertain paths before takingD1 when
α equals 1. In this case, the competitive ratio of deterministic strategies on the

special graph shown in Figure 1 can be formulated as
2i p1ð Þþα d1ð Þþ 1�αð Þp1

p1

(i ¼ 0; 1; 2,…, k� 1). Note that in the adverse instance, the agent has to incur a cost
equal to 2p1 in her first k� 1 trials at the uncertain paths, since she has to come back
to O after finding the uncertain edges blocked. However, since the cost of the kth
visited uncertain edge equals 0, the agent incurs p1 in her kth trial at the uncertain
paths and reaches D. Now, we present our proof by considering two cases.

• Case 1. d1p1
≤ 2k� 1. We consider this case for α ¼ 0 and α ¼ 1 separately.

◦ α ¼ 1. In this case the competitive ratio of the corresponding strategies can

be formulated as
2i p1ð Þþd1

p1
(i ¼ 0, 1,…, k� 1). The minimum competitive

ratio equals d1
p1
, when i ¼ 0, which matches the proposed lower bound of the

problem.

◦ α ¼ 0. In this case the minimum competitive ratio of the corresponding
strategies equals 2k� 1, which is greater than or equal to the lower bound of
the problem.

Figure 1.
A special graph.
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• Case 2. d1p1
>2k� 1. We also consider this case for α ¼ 0 and α ¼ 1 separately.

◦ α ¼ 1. In this case the competitive ratio of the corresponding strategies can

be formulated as
2i p1ð Þþd1

p1
(i ¼ 0, 1,…, k� 1). The minimum competitive

ratio equals d1
p1
, when i ¼ 0, which is greater than the proposed lower bound

of the problem.

◦ α ¼ 0. In this case the minimum competitive ratio of the corresponding
strategies equals 2k� 1, which matches the lower bound of the problem.

Since we proved that the competitive ratios of all of the deterministic strategies
for this special instance are greater than or equal to min d1=p1; 2k� 1

� �

, the proof is

complete.
Now, we introduce a new deterministic strategy which meets the presented

lower bound. We call this strategy the pessimistic strategy since the agent avoids to
explore more than one uncertain edge at each iteration.

3.1 Pessimistic strategy

• Initialization. Put i ¼ 0, where i denotes the iteration number. At each
iteration the agent starts her travel from O and explores the cost of one
uncertain edge or will reach D without visiting any unvisited uncertain edge. If
the agent reaches D, then the strategy ends. Otherwise, she backtracks to O or
reaches D without visiting any other unvisited uncertain edge. In the latter case
when the agent reaches D, the strategy ends. Note that each iteration
corresponds to one of the stages of the problem, because at each iteration the
cost of one of the uncertain edges is learned. That is, the first iteration
corresponds to stage 1 of the problem. Also note that pi is nondecreasing in i,
where pi is the cost of the optimistic shortest O-D path at the beginning of the
ith iteration. Let ci denote the cost of the uncertain edge which is learned at the
ith iteration. Note that piþ1 is computable immediately after the agent observes

ci. Let S denote the set of the uncertain edges in the graph.

• Step 1. Compute d1, p1, and min d1=p1; 2k� 1
� �

. If the minimum is d1=p1, take
D1, otherwise go to step 2.

• Step 2. If (i ¼ k� 1), then go to step 3; otherwise, put i ¼ iþ 1 and find πi. If it
does not contain uncertain edges, the agent takes it to reach D. Otherwise, take
πi to reach the ith visited uncertain edge, observe ci, set the value of the newly
visited uncertain edge equal to ci, and remove it from S. That is, it is not
considered as an uncertain edge hereafter. Next, check the following
conditions.

• Condition 1. Check if

2
Pi�1

j¼1 pj

� �

þ pi þ ci

piþ1

< 2k� 1 (1)

and there exists no uncertain edge in the selected path, and proceed to reach D.
Otherwise, check condition 2.
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• Condition 2. Note that immediately after the agent observes ci, Diþ1 and diþ1

are computable. Check if

2
Pi

i¼1 pi

� �

þ diþ1

piþ1

< 2k� 1, (2)

and then go back to O and take Diþ1. Otherwise, return to O and go to the
beginning of step 2.

• Step 3. Take πk and observe ck. Then compare

A ¼
2

Pk
i¼1 pi

� �

þ pkþ1

pkþ1

(3)

and

B ¼
2

Pk�1
i¼1 pi

� �

þ pk þ ck

pkþ1

: (4)

If A<B return to O and take the shortest path πkþ1ð Þ; otherwise, travel through
the uncertain edge in the kth uncertain path and reach D.

Below we show that our strategy is optimal by using the inequalities which are
presented in different steps of the pessimistic strategy.

Theorem 1.2 The pessimistic strategy is optimal for the S-k-CTP-U.
Proof. Note that if the strategy ends in either step 1 or 2, the competitive ratio

would be less than or equal to the lower bound. Hence, we just need to analyze the
cases where the strategy ends in step 3. Note that the competitive ratio of the
strategy would not exceed min A;Bf g in step 3. Thus, it is enough to show that
either A or B does not exceed the proposed lower bound of the problem, if the
strategy ends in step 3. We consider three different scenarios for πkþ1 to show the
optimality of the pessimistic strategy, if the strategy ends in step 3.

• Scenario 1. πkþ1 contains the uncertain edge which is visited in the kth
iteration. In this case, we show that B meets the proposed lower bound of the
problem. Since both πkþ1 and πk (i.e., πkþ1 ≥ πk) contain the kth visited
uncertain edge, pk þ ck equals pkþ1. Hence we can replace pk þ ck by pkþ1 in the

numerator of B. We can also replace pi values for i ¼ 1; 2;…; k� 1ð Þ by pkþ1 in

the numerator of B, since pi is nondecreasing in i. In this case, B would be at
most 2k� 1 which equals the lower bound of the problem.

Here, we note that πkþ1 does not contain the kth visited uncertain edge in the
next two scenarios.

• Scenario 2. πkþ1 contains the uncertain edge which is visited in the k� 1ð Þth
iteration. Note that k≥ 2 in this scenario, since πkþ1 does not contain the kth
visited uncertain edge and contains the k� 1ð Þth visited uncertain edge. In this
case, we show that A meets the proposed lower bound of the problem.
Consider condition 1 in step 2 at the k� 1ð Þth iteration. Since we have assumed
that the strategy ends in step 3, we have

2
Pk�2

i¼1 pi

� �

þ pk�1 þ ck�1

pk
>2k� 1: (5)
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Since, both πkþ1 and πk�1 (i.e., πkþ1 ≥ πk�1) contain the k� 1ð Þth visited
uncertain edge, pk�1 þ ck�1 is less than or equal to pkþ1. Hence, we can replace

pk�1 þ ck�1 by pkþ1 in the numerator above. We can also replace pi values for

i ¼ 1; 2;…; k� 2ð Þ by pk in the numerator since pi is nondecreasing in i. We obtain
2k� 4ð Þpk þ pkþ1> 2k� 1ð Þpk; hence, pkþ1>3pk.

Now, we replace pi values for i ¼ 1; 2;…; kð Þ by pk in the numerator of A. We
obtain

A ¼
2k pk
� 	

þ pkþ1

pkþ1

: (6)

Now, we can replace 2k pk
� 	

by 2k
3 pkþ1

� 	

in the numerator of A. In this case, A

would be at most 2k
3 þ 1 which is less than or equal to the lower bound for k≥ 2

since we are comparing 2k
3 þ 1 and min d1=p1; 2k� 1

� �

for k≥ 2. Note that since the

strategy ends in step 3, min d1=p1; 2k� 1
� �

equals 2k� 1.

• Scenario 3. πkþ1 does not contain the uncertain edges which are visited in
the k� 1ð Þth and the kth iterations. In this case, we show that A meets the
proposed lower bound of the problem. Note that when k≤ 2, πkþ1 ¼ D1 in this
scenario. Thus, the strategy ends in step 1 when k≤ 2. For k≥ 3, consider
condition 2 in step 2 at the k� 2ð Þth iteration. We have

2
Pk�2

i¼1 pi

� �

þ dk�1

pk�1

>2k� 1: (7)

Since πkþ1 does not contain the uncertain edges which are visited in the k� 1ð Þth
and the kth iterations, πkþ1 is equivalent to Dk�1. Hence we can replace dk�1 by pkþ1

in the numerator above. We can also replace pi values for i ¼ 1; 2;…; k� 2ð Þ by pk�1

in the numerator since pi is nondecreasing in i. We obtain
2k� 4ð Þpk�1 þ pkþ1> 2k� 1ð Þpk�1. Thus, pkþ1>3pk�1. Now, we replace pi values for

i ¼ 1; 2;…; k� 1ð Þ by pk�1 in the numerator of A. We obtain

A ¼
2k� 2ð Þpk�1 þ 2pk þ pkþ1

pkþ1

: (8)

Now, we can replace 2k� 2ð Þpk�1 by
2k�2
3 pkþ1

� 	

in the numerator of A. We also

replace pk by pkþ1, since pi is nondecreasing in i. In this case, A would be at most
2k�2
3 þ 3, which is less than or equal to the lower bound for k≥ 3.

Since we showed that the competitive ratio of the pessimistic strategy is less than
or equal to the lower bound, the proof is complete.

As an illustrative example for the pessimistic strategy, consider the instance
given in Figure 2 which represents a part of the Gulf Coast area of the United
States. In Figure 2, the nodes represent the cities, and the numbers on the edges
denote the edge travel times (per hour) in a post-disaster scenario. The edges
(2,6) and (5,6) are the uncertain edges whose costs are not known at the
beginning. The traveling agent is initially at node 1 and node 6 is the destination
node. Path 1-3-6 is the shortest deterministic path (D1), and path 1-2-6 is the
shortest optimistic path (π1) at the initial stage, i.e., d1 ¼ 11 and p1 ¼ 3. When

step 1 of the pessimistic strategy is implemented, the agent compares d1
p1
¼ 11

3 with
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2k� 1 ¼ 3. Since 11
3 >3, the strategy enters step 2. Next, the agent takes the

shortest optimistic path π1 and arrives at node 2 after traversing edge (1,2).
We assume that the costs of the uncertain edges (2,6) and (5,6) are 3 and 2,
respectively. When the agent arrives at node 2, she learns the traveling time of edge

(2,6), i.e., c1 ¼ 3. Then she checks if
p1þc1
p2

< 2k� 1. Since 6
6 < 3, the agent takes edge

(2,6) to arrive at node 6 and the strategy ends. Note that the cost of the offline
optimum is 6. Therefore, the competitive ratio of the pessimistic strategy is one in
the described scenario.

4. Multi-agent k-CTP with uncertain edges

In this section, we study the M-k-CTP-U-f and the M-k-CTP-U-l. Note that L
denotes the number of agents in the graph in these problems. We assume that there
is no distinction between the L agents and all of the agents benefit from complete
communication in the sense that they can transmit their locations and explored
uncertain edges’ cost information to the other agents in real time. By considering
an instance of O-D edge-disjoint graphs, we derive lower bounds on the
competitive ratio of deterministic online strategies to the M-k-CTP-U-f and the
M-k-CTP-U-l.

Theorem 1.3 For the M-k-CTP-U-f and the M-k-CTP-U-l, there is no determin-

istic online strategy with competitive ratio less than min d1=p1; 2
k
L

� �� 	

þ 1
� �

and

min d1=p1; 2
k
L


 �� 	

þ 1
� �

, respectively.

Proof. We again consider the special graph in Figure 1. In this case, any
deterministic strategy corresponds to a permutation which describes in which
order the uncertain paths and D1 (not necessarily all of them) are going to be
selected by the agents. For all of these strategies, consider the adverse instance
which is defined in the proof of Theorem 1.1. Note that the agents will not
reach D via uncertain paths unless the costs of all of the uncertain edges are
specified. Before we present the rest of our proof, we need to propose the
following lemma.

Lemma 1.4 In the adverse instance, the competitive ratio of the strategies in

which the arrivals of the agents at D is via the uncertain paths is at least 2 k
L

� �

þ 1 and

2 k
L


 �

þ 1, for the M-k-CTP-U-f and the M-k-CTP-U-l, respectively.
Proof. Note that the agents will not reach D via the uncertain paths unless the

costs of all of the uncertain edges are specified since we are considering the adverse
instance. Now we present our proof for each claim separately.

Figure 2.
A scenario from the Gulf Coast area of the United States network with Atlanta as the source node and
Wilmington as the destination node.
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• M-k-CTP-U-f. In this problem, the agents have to incur a cost of at least

2 k
L

� �� 	

p1 to discover the costs of L k
L

� �� 	

number of uncertain edges and
backtrack to O. The agents have to incur p1 to learn the costs of the remaining
uncertain edges and deliver at least one of the agents to D. Since the cost of the
shortest path is at least p1 in the adverse instance, the competitive ratio of
deterministic strategies when none of the agents take D1 would be at least
2 k

Lb cð Þp1þp1
p1

, which is equal to 2 k
L

� �

þ 1.

• M-k-CTP-U-l. In this problem, it takes a cost of at least 2 k
L


 �� 	

p1 to explore the
costs of all of the k uncertain edges and backtrack the agents to O. It takes at
least p1 for all of the agents to take the shortest path and arrive at D. Since the
cost of the shortest path is p1 in the adverse instance, the competitive ratio of
deterministic strategies when none of the agents take D1 would be at least
2 k

Ld eð Þp1þp1
p1

, which is equal to 2 k
L


 �

þ 1.

Note that since we are considering the arrivals of the agents at D via the uncer-
tain paths, the performance of the strategies will not be improved if one or more
agents take D1. The proof is complete.

Now, we present the rest of our proof for each problem separately:

• M-k-CTP-U-f. We present our proof by considering two cases:

◦ Case 1. d1p1
≥ 2 k

L

� �

þ 1. In this case, the competitive ratio of the strategies in

which the first arrival of the agents at D is via D1 is at least
d1
p1
, which is

greater than or equal to min d1=p1; 2
k
L

� �� 	

þ 1
� �

. The competitive ratio of
deterministic strategies in which the first arrival of the agents at D is via the

uncertain paths would be at least 2 k
L

� �

þ 1, which matches the proposed
lower bound of the problem.

◦ Case 2. d1p1
< 2 k

L

� �

þ 1. In this case, the competitive ratio of deterministic

strategies in which the first arrival of the agents at D is via the uncertain

paths would be at least 2 k
L

� �

þ 1, which is greater than the proposed lower

bound of min d1=p1; 2
k
L

� �� 	

þ 1
� �

. The competitive ratio of the strategies in

which the first arrival of the agents at D is via D1 is at least
d1
p1
, which

matches the proposed lower bound of the problem.

• M-k-CTP-U-l. We present our proof by considering two cases:

◦ Case 1. d1p1
≥ 2 k

L


 �

þ 1. In this case, the competitive ratio of the strategies in

which the last arrival of the agents at D is via D1 is at least
d1
p1
which is greater

than or equal to min d1=p1; 2
k
L


 �� 	

þ 1
� �

. The competitive ratio of
deterministic strategies in which the last arrival of the agents at D is via the

uncertain edges would be at least 2 k
L


 �

þ 1, which matches the proposed
lower bound of the problem.

◦ Case 2. d1p1
< 2 k

L


 �

þ 1. In this case, the competitive ratio of deterministic

strategies in which the last arrival of the agents at D is via the uncertain
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paths would be at least 2 k
L


 �

þ 1 which is greater than the proposed lower

bound of min d1=p1; 2
k
L


 �� 	

þ 1
� �

. The competitive ratio of the strategies in

which the last arrival of the agents at D is via D1 is at least
d1
p1
which matches

the proposed lower bound of the problem.

We just proved that the competitive ratio of deterministic strategies in the

adverse instance is not better than min d1=p1; 2
k
L

� �� 	

þ 1
� �

and

min d1=p1; 2
k
L


 �� 	

þ 1
� �

, for the M-k-CTP-U-f and the M-k-CTP-U-l, respectively.
Hence, we conclude that the competitive ratio of the problems cannot be better
than the proposed lower bounds.

5. Conclusions

We introduced new variants of the online k-CTP which find various important
real-life applications. In these variants, the locations of the uncertain edges are
known, where the traveling costs of these edges are unknown. We investigated both
the single-agent and the multi-agent versions of the problem. We proposed a tight
lower bound on the competitive ratio of deterministic online strategies and an
optimal strategy for the single-agent problem that we call the S-k-CTP-U. We
derived lower bounds on the competitive ratio of deterministic online strategies for
the multi-agent problems called as the M-k-CTP-U-f and the M-k-CTP-U-l. Provid-
ing optimal strategies for the M-k-CTP-U-f and the M-k-CTP-U-l which match the
proposed lower bounds can be considered as a future research direction. Analyzing
the problem on special networks such as grid networks is another future research
direction for these new variations.
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