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Introductory Chapter: Metallic 
Glasses
Dragica M. Minić and Milica M. Vasić

1. Introduction

Fast-growing technological development imposes a need for new functional 
materials with improved physical and mechanical properties. Since their first 
synthesis in 1960 [1], amorphous alloys, also known as metallic glasses, have been 
a focus of numerous investigations due to their advanced mechanical, electrical, 
magnetic, and anti-corrosion properties, related to their isotropic structure and 
short-range atomic arrangement [2–6].

Generally speaking, metallic glasses are multi-component systems involving 
different metals (MI-MII) or metal and non-metal, i.e., metalloid (M-NM) compo-
nents [7–9]. For the MI-MII systems, the metals belong to the groups of transition, 
rare-earth or alkaline metals, or are uranium, neptunium, or plutonium [2, 10, 11]. 
The M-NM systems can be represented by the general formula M75–85NM15–25 (at.%), 
where M is one or more metal elements, usually the transition or noble one, and NM 
is one or more metalloid or non-metal elements, most commonly B, Si, Ge, C, or P.

The metallic glasses are solid materials without structural translational periodic-
ity, characteristic for a crystalline structure. From the atomic aspect, the structure 
of metallic glasses is analogous to the structure of liquids, characterized by mac-
roscopic isotropy, nonexistence of the long-range atomic ordering, but existence 
of a short-range ordering at the atomic level. The short-range ordering of the 
atoms means that each atom is surrounded by the same atoms positioned at similar 
distances, where the lines drawn between the atom centers form similar angles, as a 
consequence of chemical bonds keeping the atoms together in solid state. Variation 
in inter-atomic distances and angles means the variation in the strength of chemical 
bonds, causing the softening of material in defined temperature interval instead of 
melting at defined temperature [12].

The ability of a liquid alloy to transform into the metallic glass is called the 
glass-forming ability (GFA). The GFA is determined by structural, thermodynamic, 
and kinetic parameters characterizing the system, i.e., chemical composition, geo-
metrical arrangement of atoms, bonding and atomic size effects, cooling rate, and 
crystallization kinetics [5]. So far, many empirical criteria were proposed with the 
aim of predicting and explaining the GFA [5, 13–15]. The empirical criteria for easier 
glass formation can be expressed in five points as follows:

1. alloy is multi-component containing at least three elements, two of which are 
metals;

2. atomic radii difference among the three constituent elements should be at 
least 12%;

3. heats of mixing among the main three elements should be negative;
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4. total content of non-metals (metalloids) amounts to around 20 at.%; and

5. heteronucleants (oxide crystal inclusions) must be removed.

Generally speaking, the metallic glasses are solid materials exhibiting all the 
important features of the solid state. However, the short-range ordered glassy struc-
ture is manifested by broad halo peaks in XRD patterns. Due to the macroscopic 
isotropy of amorphous materials, for the description of their atomic structure, 
radial distribution function can be used. It represents the average number density of 
atoms as a function of the distance from the chosen atom.

In order to explain the amorphous structure of metallic glasses, different models 
were proposed [16–20]. Bernal introduced the model of dense random packing of 
hard spheres (DRPHS) [16, 17], which includes the presence of only metal atoms in 
the structure. The Polk’s modification of the Bernal’s model positioned the metal-
loid atoms at the larger holes of the DRPHS structure, but gave satisfactory results 
only for B and C as non-metallic components [18]. On the other hand, according to 
Gaskell’s model [19], the alloy structure is built from the ordered structural units 
composed of 200–400 atoms, identified as trigonal prisms, tetrahedra, or octahe-
dra, forming random long-range structures. In spite of a relatively large number of 
the proposed models and their modifications, many details related to the structure 
of amorphous alloys still remain unclear.

The term “metallic glasses” denotes those amorphous alloys obtained by rapid 
quenching techniques. During fabrication of a glassy alloy, the crystallization, 
including the steps of nucleation and growth of the formed nuclei, must be avoided. 
This can be achieved in different ways, involving very fast cooling of an alloy melt, 
often at a rate of 106 K min−1. The most frequently used amorphization procedures 
aimed at preparation of amorphous alloys include rapid quenching of a melt of 
appropriate chemical composition, most commonly on a cold rotating metal 
disc [21]. Cooling rate necessary for amorphization is determined by the chemical 
composition, i.e., by the nature of the components forming a melt [8, 14]. Other 
methods used to obtained amorphous alloys include vapor deposition [22], spray 
deposition [23], ion implantation [24], laser processing [25], chemical reduc-
tion [26], electrodeposition [27], mechanical alloying [28], etc.

Glassy state is structurally and thermodynamically metastable and prone to 
transformations under the conditions of elevated pressure or temperature, or 
even during prolonged usage at moderate temperature. They could occur through 
the processes of relaxation, partial or complete crystallization, and recrystalliza-
tion, changing the microstructure of a material, providing a simple procedure for 
production of polycrystalline and composite materials with targeted properties. 
Crystallization process can be [6, 12]:

• polymorphous crystallization (amorphous phase transforms into a single 
crystalline phase without a change in composition);

• primary crystallization (composition of the first crystalline phase formed 
from the glass differs from that of the amorphous matrix, and then the crystals 
of the phase formed primarily serve as the sites of secondary and tertiary 
crystallization);

• eutectic crystallization (two different phases crystallize simultaneously, in a 
coupled fashion, and their overall composition does not differ from that of the 
glassy matrix).
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The microstructural transformations show a significant impact on physical 
properties of the materials changing their functionality. Structural relaxation 
process preceding the crystallization, characteristic of metallic glasses, includes 
rearrangement of individual species on the atom level and decrease in free volume, 
changing the short-range order and influencing primarily their electrical and mag-
netic properties. Additionally, as a result of relaxation, density, elastic modulus, 
Curie temperature, and viscosity grow, while thermal resistivity, diffusivity, and 
fracture toughness decrease [12]. The relaxation process can be achieved by low-
temperature annealing at temperatures below the crystallization temperature.

Partial crystallization of metallic glasses leads to the formation of nanostruc-
tured or composite materials, involving nanocrystals embedded in amorphous 
matrix, with specific physical properties. All these together make the metallic 
glasses extraordinary precursors for the production of materials with targeted func-
tionality. Properties of metallic glasses and nanocrystalline alloys obtained from the 
amorphous precursors are determined by both, the alloy chemical composition and 
microstructure.

Almost all the glassy alloys with favorable magnetic properties contain a high 
percentage of transition metals or rare earth elements. In this sense, iron, cobalt, 
and nickel-based metallic glasses are soft magnetic materials. Their excellent 
combination of magnetic properties including low coercivity, relatively high satura-
tion magnetization, zero magnetostriction as well as their relatively high electrical 
resistivity allows their application in transformer cores, magnetic sensors, magnetic 
shielding, amplifiers, information handling technologies [6, 29, 30], etc. On the 
other hand, addition of Nd and Pr provides their hard magnetic properties [31].

Metallic glasses are considered, from a mechanical point of view, very hard 
and strong materials, with high wear resistance [2, 6]. The high strength of these 
materials is a consequence of the fact that they do not contain defects characteristic 
for crystalline structure. Advantageous mechanical properties are exhibited by the 
multi-component alloys based on Ti, Zr, Al, Mg, Fe, Co, or Ni [5, 32–40]. However, 
these materials are characterized by limited plastic strain in tension, while the inho-
mogeneous deformation occurs through the formation of shear bands [6]. Fracture 
toughness of metallic glasses is somewhat lower than that of crystalline materials, 
but two orders of magnitude higher than in the case of oxide glasses [12]. Metallic 
glasses based on Al and Mg possess high specific strength, due to their low density 
and mass [39, 40]. As a result of their favorable mechanical properties, including 
high strength and large elastic elongation limit, metallic glasses are used in reinforc-
ing composites, for sporting goods, microgears, aircraft parts, brazing foils [6, 12, 
41, 42], etc.

Good corrosion resistance, observed for the metallic glasses containing Cr, Zr, 
Ni, Nb, Mo, or V, is a particularly important characteristic of these materials from 
the aspect of their applicability in modern technology [43–46]. Some metallic 
glasses are suitable for being used as biomedical materials (such as the TiZrCuPdSn 
alloys [47]), while some other glassy alloys show superconducting properties (such 
as the TiNb-based ones [48]).

From a technological point of view, nanocrystalline alloys obtained by partial 
crystallization of the glassy alloys represent a particularly interesting class of func-
tional materials. The iron-based nanocrystalline alloys with the composition Fe-R-B 
(where R is rare earth element, B is boron) possess hard magnetic properties [49]. 
However, the soft magnetic materials in this class are nanocrystalline materials 
with the composition Fe-Si-B-Nb-Cu (FINEMET), Fe-M-B-Cu (M is Zr, Hb or F)  
(NANOPERM), Fe-Co-M-B-Cu (M is Zr, Hb or F) (HITPERM) [50], etc. To 
maintain favorable functional properties, in this case the soft magnetic ones, crystal 
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size of the α-Fe or α-Fe(Si) in FINEMET or NANOPERM alloys must not exceed 
15 nm [51]. To obtain nanocrystalline structure from the amorphous one, controlled 
fast nucleation and slow crystal growth are required. This can be achieved by an 
appropriate choice of the alloy composition and by thermal treatment as in the 
FINEMET-type alloys, where Cu is added to facilitate nucleation, while the Nb 
decreases the crystal growth rate [51–53].

In order to provide and maintain an amorphous or nanocrystalline structure of 
targeted functionality, thermal stability, thermodynamics, and kinetics of phase 
transformations thermally induced of amorphous and nanocrystalline materials 
should be known [8, 54–75]. This requires determination of the temperatures of 
all of the phase transformations as well as the kinetic triplets of these processes, 
consisting of Arrhenius parameters, activation energy, and pre-exponential factor, 
as well as kinetic model (conversion function). By determining the crystallization 
kinetic model, information about crystallization mechanism, including nucleation, 
crystal growth, and impingement effects can be obtained. In this way, the lifetime 
of specific microstructure, important for reliable applicability of materials, can be 
predicted.

Solid-state transformations are often complex processes, consisting of several 
concurrent or consecutive steps, manifested experimentally by compounded curve 
forms. In order to discuss all these steps and propose the most probable mecha-
nisms, during the analysis, deconvolution of the compounded peaks (DSC, TG, or 
even XRD) by using different mathematical tools is required [76–84].

In view of the foregoing, metallic glasses have still been intriguing although 
studied for more than 50 years now, offering a wide range of practical applica-
tions either in the glassy or derivative form, and promising further technological 
improvement and development.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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