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Chapter

Introductory Chapter: Path to Net 
Zero Energy Buildings
Getu Hailu

1. Overview

Energy demand and usage is expected to change significantly with changing 
weather patterns, affecting heating/cooling demands and electricity demands. 
Energy supplies will face changing conditions, such as reduced efficiency of 
thermal plants, cooling constraints on thermal plants, and increased pressure 
on transmission and distribution systems. International Energy Agency (IEA) 
estimates 1°C of temperature increase can reduce the available summer electricity 
generation capacity up to 16% by 2040 in the United States alone [1]. Sea level rise, 
permafrost melting, intense and more frequent extreme weather events, increased 
wind speeds, and ocean storms will all negatively impact energy infrastructure. For 
example, large numbers of overhead power lines over extended distances could eas-
ily be brought down. Consequently, it is likely that the building sector will be highly 
impacted by climate change and associated weather patterns. It is also true that the 
building sector is well positioned and has the potential to mitigate such effects to a 
great extent.

According to the American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) Research Strategic Plan 2010–2015, even 
limited deployment of net zero energy (NZE) buildings within this timeframe will 
have a beneficial effect by reducing the pressure for additional energy and power 
supply and the reduction of greenhouse gas (GHG) emissions [2]. The implementa-
tion of NZE buildings requires use of multiple innovative technologies and control 
strategies for space heating and cooling and water heating. Hybrid photovoltaic-
thermal (PV/T) systems, building-integrated photovoltaics (BIPV), and thermal 
energy storages have been identified by the US Department of Energy (DOE) as 
technologies that could make substantial contributions toward that goal [3].

2. Current state of the art

Attempts have been made in using distributed energy systems (DRE) to meet 
electricity and thermal energy demand of a building. For example, photovoltaic/
thermal (PV/T) systems, which produce electricity and heat, have been applied 
effectively to building roofs and facades to offset or eliminate fossil fuel demand in 
buildings. But they are treated as separate and distinct systems from each other and 
from the building envelope. This lack of system integration represents a lost oppor-
tunity to simplify and derive additional gains in efficiency. To address this PV/T 
system integration into the building structure has been the next step in research 
and development. Arrays of photovoltaic modules with heat recovery capabil-
ity, which are integrated into the building envelope so that the assembly replaces 
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elements of the facade and/or the roof, thereby reducing overall cost, are known as 
building-integrated photovoltaic/thermal (BIPV/T) systems. It has been reported 
that BIPV/T systems have the advantages of (1) reducing the temperature of the PV 
panels and increasing electrical efficiency, (2) extending the life of the system by 
reducing the tendency of the modules to delaminate, and (3) recovering thermal 
energy for spacing heating and domestic hot water heating purposes. BIPV/T 
systems have the potential to meet all building envelope requirements, such as 
mechanical resistance and thermal insulation [4–7]. Heat recovery is accomplished 
by fluid circulation behind the array of photovoltaic modules, which heat up when 
exposed to sunlight. This thermal energy either can be directly used for space and/
or domestic water heating or can be delivered to an air source heat pump (ASHP) to 
enhance its performance [6–10]. This is particularly important where the coefficient 
of performance (COP) of the ASHP decreases because of colder outdoor tempera-
tures. It has been reported that ASHPs offer low initial cost compared to ground 
source heat pumps (GSHP), with 40% reduction in installation cost [4], but their 
COP decreases in colder outdoor temperatures [11]. Coupling ASHPs with BIPV/T 
systems has been reported to have the potential to further reduce building heating 
and cooling costs and dependence on nonrenewable heating fuels. For example, it 
has been reported that the energy consumption of the ÉcoTerra (Montreal) house 
was only 26.8% of a typical Canadian home when a BIPV/T system was coupled 
with a GSHP [12]. As mentioned earlier, with a 40% reduction in installation 
cost [4], and with a “pre-treatment” of the outdoor air by a BIPV/T system, ASHPs 
coupled to a BIPV/T system are an attractive alternative to GHSPs coupled to 
BIPV/T systems and have great potential to increase building energy efficiency.

Another technology that has been shown to improve the thermal performance 
of buildings significantly is thermal energy storage (TES) system [13–17]. This is 
especially attractive in regions with extended period of freezing, such as Alaska, 
where the performance of ASHPs is poor during cold weather. Concrete is the most 
common and effective building material used as thermal mass [18]. Concrete slabs 
can be utilized as effective TES systems [19–21]. It has been suggested that since the 
BIPV/T system is an air-based system, the collected thermal energy can be released 
to concrete slab TES during daytime. During the night, when the outdoor tempera-
ture is cold, the stored thermal energy can be released to the air source heat pump, 
leading to the enhancement of the overall coefficient of performance of the ASHP.

Renewable energy sources often are not available when needed or do not meet 
the fluctuating demand for heating. For example, in summer, a thermal solar 
heater’s output is large compared to winter time. In such cases, seasonal thermal 
storage systems are employed. In fact, energy storage is a key to facilitating the 
widespread use of many renewable energy resources. Large heating and cooling 
loads can be addressed through seasonal solar thermal energy storage—SSTES [22]. 
Thermal energy storage is also a key element in building mechanical systems. It 
allows covering heating and cooling needs in an efficient and economical way, 
particularly domestic hot water—DHW [23]. Sensible heat storage, using readily 
available simple materials such as rocks, is one of the most widely used techniques 
for thermal energy storage. It is simple and least expensive [24, 25]. In addi-
tion, sensible heat storage systems have the advantage of reversible charging and 
discharging capabilities for unlimited number of cycles, i.e., over the life span of 
the storage, unlike, for example, phase change materials [26]. The use of simple 
materials, such as rocks and sand which are readily available in many areas, makes 
sensible heat storage long lasting, safe and relatively easy to install, and applicable 
for remote areas [25]. Sensible heat storage systems have applications in residen-
tial, industrial, and commercial settings. For example, the Drake Landing Solar 
Community uses a combination of seasonal ground-based thermal storage with 
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short-term liquid storage tanks [27]. Large-scale seasonal storage systems have been 
constructed in Switzerland, Denmark, Finland, France, the Netherlands, the United 
States, Turkey, Korea, Germany, and Canada.

Another thermal storage technology, latent heat storage (LHS) systems, involves 
the storage of energy in phase change materials (PCMs). Thermal energy is stored 
and released with changes in the material’s phase. LHS has the advantage of being 
compact, i.e., for a given amount of heat storage, the volume of PCMs is signifi-
cantly less than the volume of sensible heat storage. This allows for less insulation 
material and applicability in places where space is limited. Another advantage of 
PCM is that they can be applied where there is a strict working temperature, as the 
storage can work under isothermal conditions. Phase-transition enthalpy of PCMs 
is usually much higher (100–200 times) than sensible heat. Consequently, latent 
heat storages have much higher storage density than sensible heat storages [28]. 
Current PCM research is mainly focused on technologies that deal with materials 
(i.e., storage media for different temperature ranges), containers, and thermal 
insulation development. There is still a need for basic and applied research and 
development of design methods, research and development to improve perfor-
mance analysis; reduce operation cost of installed systems; assure their long-term, 
smooth operation; and improve their efficiency. More research is also required in 
understanding system integration and process parameters as well as improving 
reacting materials [29].

Another technology that stores thermal energy from the sun is in the form of 
chemical energy. The process is known as solar thermochemical energy storage 
(TCES). Through a reversible endothermic chemical reaction, energy is stored as 
a chemical potential using the solar thermal energy. TCES does not yet show clear 
advantages for building applications, despite the potentially high energy density. 
Currently, there is no available material for thermochemical energy storage that 
satisfies all the requirements for building operations. Besides, thermochemical solu-
tions require different tanks and heat exchangers that should be carefully addressed 
for small-scale applications. Also, additional research efforts are needed to optimize 
operation conditions, efficiency, costs, and system designs.

In conclusion, the path to zero and net zero energy buildings requires multiple 
technologies working together. Currently, these systems are treated as separate and 
distinct systems from each other and from the building envelope. There is a need 
for system integration and development of effective control strategies to simplify 
and derive additional gains in building energy efficiency. Buildings with integrated 
distributed energy systems are resilient to catastrophic weather events.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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