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Chapter

Damage Identification and
Assessment Using Lamb Wave
Propagation Parameters and
Material Damping in FRP
Composite Laminates
Beera Satish Ben and Beera Avinash Ben

Abstract

A methodology for identify damage in the fiber reinforced polymer (FRP)
composite has been proposed in this article. The Lamb wave dispersion theory was
used to find the fitted peak frequency and loss less finite element model was used to
find the modal frequencies in the composite laminates. The change in modal
parameters with respect to undamaged and damaged specimen has been considered
for the structural diagnosis. The combined finite element and Lamb wave method
has been used to obtain damping parameters. The damping capacity was calculated
at higher frequency and smaller amplitudes by using hybrid method. The Lamb
waves were generated using ultrasonic pulse generator setup. The proposed method
was implemented on FRP laminates (CFRP and GFRP) and the results were
compared with bandwidth method.

Keywords: carbon fibers, Lamb wave, glass fibers, vibration, damping,
acoustic emission

1. Introduction

Composite materials with advanced properties like, high specific strength and
fatigue resistance are being used for many components of aircraft structures in
recent era. However, they have high chances of failure when they are subjected to
low velocity-impact, which could lead to barely visible impact damage (BVID).
BVID are considered to be internal defects which can lead to catastrophic accidents
in service. Damage is defined as the changes introduced into a system that leads to
affect adversely to its current or future performance. Damage assessment tech-
niques in the structural dynamics have been divided into three categories such as
linear, non-linear and transient vibrational measurements. The change in modal
parameters such as natural frequencies and material damping can be considered as
the prevalent damage detection methods in structural assessment procedure. The
existing damage in a structure, leads to the reduction in stiffness and consequently
decreasing of the natural frequencies of the system.
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According to Doebling et al. [1] damage detection by using vibration
measurement in elastomers has been first reported by Lifshitz and Rotem [2]. They
used the changes in the dynamic moduli and change in the natural frequencies to
detect damage.

Many researchers identified crack depth and location from the dependency of
the first two structural Eigen frequencies and presented contour graph. The super-
posed contour of the frequencies variations between the undamaged and damaged
structures is used to identification the damage. The intersection point of superposed
contour allows identifying both the crack depth and location [3].

According to Gillich and Praisach [4] the change in damping and the friction
between crack surfaces lead to dissipative effects. The advantages of using changes
in damping is that the cracks allows changes in natural frequencies due to
uncertainties and cause important changes in the damping factor allowing
damage detection.

Kyriazoglou and Guild [5] predicted damping parameters of GFRP and CFRP
laminates by using finite element model. Most of the damping related calculations
and experiments were carried out by Berthelot and Sefrani [6–8] for various com-
posites using Ritz Method. They have performed damping analysis of composite
plate and structures by using this method [9–11].

Chen and Gibson [12] have studied damping mechanisms in composites which
involves a variety of energy dissipation mechanisms. The vibrational parameters
such as frequency and amplitude in fiber-reinforced polymers that depend on
energy dissipation mechanisms are studied with nondestructive evaluation.

Many researchers have used nondestructive evaluation (NDE) techniques to
characterize the fiber-reinforced composites [13, 14]. Energy dissipation theory has
been used for measuring damping capacity based on vibration damping method.

Damping measurement techniques often deal with natural frequency or reso-
nant frequency of a system. The experimental setup to find the vibration is catego-
rized as free vibration (or free decay) and forced vibration. Free-free beam
technique and the piezoelectric ultrasonic composite oscillator technique (PUCOT)
are forced vibration techniques. Dynamic mechanical analysis (DMA) uses these
techniques to find damping characteristics of the material. However, the instru-
ment is relatively expensive and it cannot be operated at higher frequency and low
amplitudes where more information from the tested materials can be obtained [15].

Guan and Gibson [16] have developed micromechanical models for damping in
woven fabric-reinforced polymer matrix composites. Where as many other
researchers has published results for continuous FRP composites that show
damping characteristics of composite material come from microplastic or viscoelas-
tic phenomena associated with the matrix and slippage at the interface between the
matrix and the reinforcement [17, 18].

The article presents the methodology to find viscous damping, which is the
dominant mechanism in FRP composites vibrating at small amplitudes. A hybrid
method employing combined finite element and frequency response has been
developed to measure the damping properties of composite material.

2. Experimental setup

2.1 Ultrasonic pulse generator

In this work the specimens are carbon fiber/epoxy (CFRP) and glass fiber/epoxy
(GFRP) laminates. The laminate contains woven fiber with 12 plays with average
epoxy layer thickness of 0.2 mm. Figure 1 shows the specimen with the dimensions
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250 � 50 � 2 mm in damaged state where a cut (30 � 2 � 2 mm) at a distance
120 mm away from free end has been introduced.

Figure 2 shows an experimental setup to develop Lamb waves using ultrasonic
equipment NDT™ EPOCH 4PLUS. The specimen is supported as cantilever;
pitch-catch radio frequency (RF) test method was used. Dual-element transducers
(DIC-0408) where one element transmits and the other element receives the burst
of acoustic waves generated in the specimen. 1 kHz to 4 MHz frequency range
transducers was used and they were placed 80 mm apart from each other. Honey
glycerine couplant made by Panametrics has been used to couple the two sensors on
to the test specimen. The couplant helps to transmit a normal incident shear wave to
propagate across the test piece between the transducer tips. Scanview plus™ soft-
ware was used to acquire and process the data obtained from the test specimens
[19, 20].

2.2 Generation of optimal Lamb wave

Acoustic impedance of the material plays important role in deciding the selec-
tion of transducer frequency, low impedance require lower frequency transducers.
The materials such as carbon fiber or glass fiber have low impedance thus low
frequency transducers will be used to generate Lamb waves. Whereas metal skin
layers have high impedance therefore higher frequencies transducers are used for
thinner and metallic layers.

Figure 1.
Damaged specimen: (a) GFRP and (b) CFRP.

Figure 2.
Experimental setup.
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The Panametrics-NDT™ EPOCH 4 PLUS is used to generate acoustic waves and
the device is equipped with four channels. Optimal Lamb wave propagation
parameters were arrived through calibration of the device using editable parameters
as shown in Table 1.

The parameters have been varied one by one and arrived to a conclusion of
optimal driving frequency for different specimens. Figure 3 shows the optimal
driving frequency of different materials calibrated through ultrasonic pulse gener-
ator test setup. With the help fitted peak value and percentage amplitude at con-
stant gain 55 (db) Lamb waves generation frequency is identified for different
materials. Figure 4 shows the histogram representation of % amplitude of the
waveform with a bin range of 0–820 kHz of pulser [21, 22]. The most effective
range of frequencies to generate Lamb waves is 140–420 kHz. The frequency range
to generate Lamb waves for GFRP is 170–190 kHz where as it is 260–280 kHz for
CFRP and for Aluminum (Al) it is 360–380 kHz.

2.3 Material properties

The Young’s modulus for the specimens is calculated from Eq. 1, the calibrated
experimental setup is used to generate Acoustic Emission (AE) on to the test
specimen. AE velocities travelling in the material are determining from the
instrument EPOCH 4 PLUS [22, 23].

Editable parameters

Pulser Mode

Energy

Wave Type

Frequency

Receiver Gain

Broad band

Low pass

High pass

By pass

Device Unit

Angle

Thickness

Waveform Rang

Rectification

Offset

Table 1.
EPOCH 4 PLUS parameters.

Figure 3.
Optimal driving frequency selection for different materials.
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E1 ¼
V2

T ρ 1þ ν12ð Þ 1� 2ν12ð Þ
1� ν12

E2 ¼
V2

L ρ 1þ ν21ð Þ 1� 2ν21ð Þ
1� ν21

(1)

where VL is longitudinal velocity of AE and VT is transverse velocity of AE
traveling in the material respectively, ρ is material density and υ12 is Poisson’s ratio.
The material properties of specimens arrived from the experimental setup is
presented in Table 2.

3. Methodology

In this work a hybrid method has been proposed for identify change in damping
capacity of a material using combined finite element and Lamb wave method. The
process diagram of the hybrid method for the dynamic mechanical analysis is
shown in Figure 5.

The group velocity (cgn), modal frequency (fn) are determined from Lamb wave

model and loss less finite element model respectively.

3.1 Lamb wave model for laminated composite plate

Lamb waves can be of two groups, symmetric and anti-symmetric, these waves
propagate independently of the other and boundary conditions of the wave equa-
tion are being satisfied by both of them for this problem. Actuating frequency
relating the velocity of Lamb wave propagation has been derived in the following
section. Dispersion curves of Lamb wave in a particular material, which plot the

Table 2.
Material properties arrived from experimental setup.

Figure 4.
Histogram representation of % amplitude of waveform at constant gain.
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phase and group velocities versus the excitation frequency given by Dalton et al.
[24]. The anti-symmetric Lamb wave solution formulated as seen in Eq. 2:

tan qhð Þ
tan phð Þ ¼

k2 þ q2
� �2

4k2qp
(2)

where p2 ¼ ω2

c2
l

� k2, q2 ¼ ω2

c2t
� k2, and k ¼ ω

cphase

individual laminate stress-strain relationship is given by

σ1

σ2

τ6

2

6

4

3

7

5
¼

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2

6

4

3

7

5

ε1

ε2

γ6

2

6

4

3

7

5
(3)

where σ is normal stress, τ represent shear stress, ε is normal strain and ϒ

represent the shear strain. Reduced stiffness components Qij are defined in terms of
the engineering constants as

Figure 5.
Methodology chart for dynamic mechanical analysis by hybrid method.
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Q11 ¼ E1= 1� υ12υ21ð Þ
Q22 ¼ E2= 1� υ12υ21ð Þ

Q12 ¼ υ12E1= 1� υ12υ21ð Þ
(4)

where E1 Young’s moduli in the longitudinal and E2 Young’s moduli in the
transverse directions. The major and minor Poisson’s ratios represented by ν12 and
ν21 respectively. The relation between Poisson’s ratios in Eq. (4) is given by:

υ21 ¼
E2

E1
υ12 (5)

A11 and A22, are in-plane stiffnesses of plate and these are obtained by integrat-
ing the Qij across the thickness of the plate [21]. These stiffness values are given as:

Aij ¼
ðh=2

�h=2
Q 0

ij

� �

k
dz, i, j ¼ 1, 2, (6)

where plate thickness is represented by “h” and “k” represents each individual
lamina. The transformed stiffness coefficients Q 0

ij are defined as

Q 0
11 ¼ m4Q11 þ n4Q22 þ 2m2n2Q12 þ 4m2n2Q66

Q 0
22 ¼ n4Q11 þm4Q22 þ 2m2n2Q12 þ 4m2n2Q66

Q 0
12 ¼ m2n2Q11 þm2n2Q22 þ m4 þ n4ð ÞQ12 � 4m2n2Q66

(7)

where m = cos(θ) and n = sin(θ), the angle θ is taken positive for counterclock-
wise rotation and it is considered from the primed (laminate) axes to the unprimed
(individual lamina) axes. Q 0

ij for the 0° and 90° laminas are given by

Q 0
11

� �

0 deg
¼ Q11 Q 0

11

� �

90 deg
¼ Q22

Q 0
22

� �

0 deg
¼ Q22 Q 0

22

� �

90 deg
¼ Q11

Q 0
12

� �

0 deg
¼ Q12 Q 0

12

� �

90 deg
¼ Q12

(8)

The extensional plate mode velocity is related to the in-plane stiffness of a
composite [14]. A11 and A22 are the stiffnesses propagating in the 0° and 90°
directions respectively. The relation between extensional plate mode velocity and
stiffness is given by:

for 0°direction ct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A11=ρh
p

(9)

for 90°direction cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A22=ρh
p

(10)

The inplane stiffnesses A11 and A22 are calculated using Eqs. (4)–(8) by
substituting engineering stiffnesses of the composite. The extensional plate mode
velocities are substituted into Eq. (2) and it is solved numerically for phase velocity
in MathematicaTH. Phase velocity (cphase) is the dependent variable being solved for
the independent variable being iteratively supplied is the frequency-thickness
product, where ω is the driving frequency in radians. Group velocity dispersion
curve, which are derived from the phase velocity curve using Eq. (11):

cgroup ¼ cphase þ
∂cphase
∂k

k ¼ cphase

1� f
cphase

:
∂cphase
∂f

(11)

where f is the frequency in Hz.
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3.2 Finite element model for free vibration of a laminated composite plate

Natural frequency is the phenomenon that occurs with oscillatory motion at
certain frequencies known as characteristic values, and it follows well defined
deformation pattern known as mode shapes or characteristic modes. The study
free vibration is important in finding the dynamic response of elastic structures. It

is assumed that the external force vector P
!
to be zero and the harmonic

displacement as:

Q
!

¼ Q
!

:eiωt (12)

and the free vibration is given by:

k½ � � ω2 M½ �
� �

Q
!
¼O

!
(13)

where Q
!

is displacement amplitude, Q
!

eigen vector and ω denotes the natural

frequency of vibration. Eq. (12) is a linear algebraic eigenvalue problem where

neither [k] nor [M] is a function of the circular frequency ωð Þ,Q
!

is nonzero solution

therefore the determinant of coefficient matrix k½ � � ω2 M½ � is zero, i.e.,

k½ � � ω2 M½ � ¼ 0 (14)

where [k] is stiffness matrix and [M] is mass matrix, which are derived through
finite element formulation.

Figure 6 shows the plate bending formulation where x, y, and z describes the
global coordinate of the plate whereas u, v, and w are the displacements, h repre-
sents plate thickness. The xy plane is parallel to the midsurface plane prior to
deflection. The displacements in the plate at any point is expressed as

u ¼ u x; y; zð Þ (15)

v ¼ v x; y; zð Þ (16)

w ¼ w x; y; zð Þ (17)

The plane displacement u and v vary through the plate thickness as well as with
in the xy-plane while the transverse displacement w remains constant through the
plate thickness.

Figure 6.
Plate element with displacement degrees of freedom.

8

Composite and Nanocomposite Materials - From Knowledge to Industrial Applications



In order to develop shape functions two different interpolations are used one
interpolation within the xy-plane and the other in the z-axis. For the xy-plane
interpolation, shape function Ni(x,y) are used where subscript i varies depending
on the number of nodes on the xy-plane. Shape function Hj(z) is used for interpo-
lation along the z-axis, where subscript j varies depending on the number of nodes
along the plate thickness. Since two inplane displacement are functions of x, y, and
z, both shape functions are used while the shape functions Ni(x,y) was used for
transverse displacement. The mapping of ξ, η-plane onto xy-plane and ζ-axis to z-
axis, was done using isoparametric element and the three displacements are
expressed as

u ¼
X

N1

i¼1

X

N2

j¼1

Ni ξ; ηð ÞHj ζð Þuij (18)

v ¼
X

N1

i¼1

X

N2

j¼1

Ni ξ; ηð ÞHj ζð Þvij (19)

w ¼
X

N1

i¼1

Ni ξ; ηð Þwi (20)

where N1 represents the number of nodes in xy-plane (ξ, η-plane) and N2 repre-
sents the number of nodes in z-axis (ζ-axis). The first subscript for u and v denotes
the node numbering in terms of xy-plane (ξ, η-plane) and the second subscript
indicates the node numbering in terms of z-axis (ζ-axis). Four-node quadrilateral
shape function is considered for the xy-plane (ξ, η-plane) interpolation, i.e., N1 = 4
and N2 = 2 that is linear shape function which is considered for the z-axis (ζ-axis)
interpolation. Nodal displacement ui1 and vi1 are displacement on the bottom sur-
face of the plate element and ui2 and vi2 are displacement on the top surface. As seen
in Eqs. (18)–(20), there is no rotational degree of freedom for the present plate
bending element were as both bending strain energy and transverse shear strain
energy are included.

The relation between bending strains and transverse shear strain with respect to
displacements is given by:

εbf g ¼
εx

εy

γxy

8

>

<

>

:

9

>

=

>

;

¼

∂

∂x
0 0

0
∂

∂y
0

∂

∂y

∂

∂x
0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

u

v

w

8

>

<

>

:

9

>

=

>

;

(21)

εsf g ¼
γy z

γx z

	 


¼

∂

∂z
0

∂

∂x

0
∂

∂z

∂

∂y

2

6

6

4

3

7

7

5

u

v

w

8

>

<

>

:

9

>

=

>

;

(22)

where εbf g and εsf g are the bending strain and transverse shear strain respec-
tively. The normal strain along the plate thickness εz is not considered.

Substitution of Eqs. (18)–(20), into the Eqs. (25) and (26), with N1 = 4 and
N2 = 2 gives:

εsf g ¼ Bb½ � def g (23)
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where

Bb½ � ¼ Bb1½ � Bb2½ � Bb3½ � Bb4½ �½ � (24)

Bb½ � ¼

H1
∂Ni

∂x
0 H2

∂Ni

∂x
0 0

0 H1
∂Ni

∂y
0 H2

∂Ni

∂y
0

H1
∂Ni

∂y
H1

∂Ni

∂x
H2

∂Ni

∂y
H2

∂Ni

∂x
0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(25)

def g ¼ de1
� �

de2
� �

de1
� �

de2
� �� �T

(26)

dei
� �

¼ ui1 vi1 ui2 vi2 wif g (27)

εsf g ¼ Bs½ � def g (28)

where

Bs½ � ¼ Bs1½ � Bs2½ � Bs3½ � Bs4½ �½ � (29)

Bsi½ � ¼
Ni

∂H1

∂z
0 Ni

∂H2

∂z
0

∂Ni

∂x

0 Ni
∂H1

∂z
0 Ni

∂H2

∂z

∂H2

∂y

2

6

6

4

3

7

7

5

(30)

The constitutive equation is

σbf g ¼ Db½ � εbf g (31)

σbf g ¼ σx σy τxy
� �T

(32)

Db½ � ¼ E

1� υ2

1 υ 0

υ 1 0

0 0
1� υ

2

2

6

6

4

3

7

7

5

(33)

For the bending components

σsf g ¼ Ds½ � εsf g (34)

where

σsf g ¼ τy z τx z
� �T

(35)

Ds½ � ¼ E

2 1þ υð Þ
1 0

0 1

 �

(36)

where Eq. (33) is for the plane stress condition for the plate bending theory and
for a FRP composite, is given by

Db½ � ¼
D11 D12 0

D12 D22 0

0 0 D33

2

6

4

3

7

5
(37)
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In which

D11 ¼
E1

1� υ12υ21
(38)

D12 ¼
E1υ21

1� υ12υ21
(39)

D22 ¼
E2

1� ν12ν21
(40)

D33 ¼ G12 (41)

And

Ds½ � ¼
G13 0

0 G12

 �

(42)

Here, the longitudinal direction is represented with 1 and transverse direction is
represented with 2 for the FRP composite. Further Ei and Gij are the elastic modulus
and shear modulus respectively, whereas υij is Poisson’s ratio for strain in the j-
direction. Five independent material properties will be considered for Eqs. (37)–
(42) because of the reciprocal relation

υ12

E1
¼ υ21

E2
(43)

The stiffness matrix of the element k eð Þ
h i

is expressed as:

k eð Þ
h i

¼
ð

Ωe
Bb½ �T Db½ � Bb½ �∂Ωþ

ð

Ωe
Bs½ �T Ds½ � Bs½ �∂Ω (44)

where Ω represents the plate domain.
Similarly the mass matrix is given by

M eð Þ
h i

¼ ρAt

9

4 2 1 2

2 4 2 1

1 2 4 2

2 1 2 4

2

6

6

6

4

3

7

7

7

5

(45)

where A is area of the element, t is the element thickness and ρ density of
material. Natural frequencies are arrived for composite plates from the lossless
finite element formulation. The MathematicaTH software has been used to compute
the Eigen values using the inputs taken from the experimental data discussed in the
previous sections. The analytical model developed was correlated ANSYS model.
Block Lancozs method was used to carry out modal analysis in ANSYS. The analysis
was done for 30 subsets and shell-190 has been used as meshing element. Figures 7
and 8 shows the first and twentieth mode of natural frequency of the undamaged
specimen, i.e., GFRP and CFRP respectively and similarly Figures 9 and 10 shows
for damaged specimen.

3.3 Bandwidth method

The damping parameters in FRP composites are based on the energy dissipation
mechanism. Vibrational parameters such as frequency and amplitude are used to
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determine the dynamic characteristics of a system. The best practice to study
vibrational parameters is with nondestructive evaluation. Damping characteristics
of a system can be determined by the maximum response, i.e., the response at the
resonance frequency as indicated by the maximum value of Rv. Figure 11 illustrates
the Bandwidth method of damping measurement where, damping in a system is
indicated by the sharpness or width of the response curve in the vicinity of a
resonance frequency ωr, designating the width as a frequency increment (i.e.,

∆ω=∆ω2–ω1) measured at the “half-power point” (i.e., at a value (R=
ffiffiffi

2
p

)) and the
damping ratio ζ can be estimated by using band width in the relation given by

Figure 8.
Undamaged CFRP specimen’s first and twentieth mode of natural frequency.

Figure 9.
Damaged GFRP specimen’s first and twentieth mode of natural frequency.

Figure 7.
Undamaged GFRP specimen’s first and twentieth mode of natural frequency.
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ζ ¼ Δω

2ωr
(46)

for ith mode damping ratio is given by

ζi ¼
1

2

∆ωi

ωi
(47)

The equation of motion of a system with viscous damping, when the excitation
is a force F ¼ Fo sinωt applied to the system, is given by

mx:: þ cx: þ kx ¼ Fo sinωt (48)

Eq. (48) represents the forced vibration of a damped system and the resulting
motion occurs at the forcing frequency ω. The damping coefficient c is greater than
zero, leads to change in the phase between the force and resulting motion. The
phase change is termed as phase angle δ which is a function of the frequency ratio
ω/ωr and for several values of the fraction of critical damping ζ, given by [25].

δ ¼ tan
�1 2ζ ω=ωrð Þ3

1� ω2=ω2
r

� �

þ 2ζω=ωrð Þ2
(49)

Figure 10.
Damaged CFRP specimen’s first and twentieth mode of natural frequency.

Figure 11.
Response curve showing bandwidth at half-power point.
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4. Results and discussion

The phenomenon of change in modal parameters has been used to identify the
damage in the specimens. The damage in the specimen is identified by change in
damping capacity with respect to undamaged specimen. The first order Lamb wave
equation is used to determine the storage modulus. Lamb wave propagating is quite
complex to understand, i.e., an increase in modulus slightly speeds the wave veloc-
ity. An increase in the density would have the opposite effect slowing wave velocity,
as it appears in all the same terms as the modulus but on the reciprocal side of the
divisor.

The AE velocities of the specimens were arrived experimentally using ultrasonic
pulse generator test setup and the engineering constants, Young’s modulus and
poison’s ratio were calculated. The engineering constants are substituted in Lamb
wave model discussed in previous sections for finding dispersion characteristics
shown in Figure 12. The same material properties are used for finite element model
to determine natural frequencies.

The group velocity (cgn) at natural frequency (f n) and thickness (h) is

substituted in Eq. (50) to determine the phase shift and thus finding material
damping capacity Tan δð ). Dynamic mechanical analysis can be carried out using
the same procedure by getting the Eo value from group velocity dispersion at
iteratively supplied frequencies.

δ ¼ 2πf nh=cgn (50)

Eo ¼ c2gn :ρ (51)

Damping is the term used in vibration and noise analysis to describe any mech-
anism whereby mechanical energy in the system is dissipated. The damping prop-
erties of so-called damping materials, such as elastomeric materials, are usually
temperature and frequency dependent, so the experimental determination of
damping material properties requires a long and repeating process.

In dynamic mechanical analysis damping measurements is done in temperature
sweep mode whereas in this work frequency sweep mode is used. In the present
work damping measurements were carried out using combined finite element and
Lamb wave method and the results were compared with bandwidth method.

The modal analysis was carried out using developed finite element model and it
was correlated with ANSYS. The waveform from the instrument is processed
through virtual controlling software and the continuous waveform is subjected to

Figure 12.
Lamb wave dispersion curves of CFRP and GFRP.
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fast Fourier transform (FFT) which yield a single peak from the calibrated optimal
driving frequency, however for a few finite cycles, the FFT appears as a Gaussian
curve. The response curve of the undamaged and damaged specimens being tested
for damping capacity using bandwidth method is shown in Figure 13.

The Lamb wave dispersion curves have been obtained from the iterative supply
of the frequency using MathematicaTH code. The group velocity dispersion curve of
the specimens used in this research is shown in Figure 12. The group velocities and
the natural frequencies obtained from modal analysis are used to determine
damping capacity at various mode of interest.

Table 3 shows the damping capacities of the undamaged specimen in compari-
son at critical modes similarly for damaged specimen it has been reported in
Table 4. It is observed that the natural frequencies of the damaged specimen fell
down and the damping capacities have increased slightly with respect to
undamaged specimens. Figure 14 shows the damping capacities and dynamic

Figure 13.
Response curve of GFRP and CFRP showing bandwidth.

Table 3.
Damping capacity of undamaged test specimens.

Table 4.
Damping capacity of damaged test specimens.

15

Damage Identification and Assessment Using LambWave Propagation Parameters and Material…
DOI: http://dx.doi.org/10.5772/intechopen.86134



storage modulus of the tested specimens with respect to their natural frequencies.
The material GFRP and CFRP exhibits similar damping property to a certain range
of frequency, and in between 2 and 8 kHz GFRP has better damping property
among the two and at higher range of frequencies CFRP is found to be good in
damping characteristics.

5. Conclusions

Dynamic mechanical analysis is a technique used to study and characterize
damping behavior of materials. It is most useful for studying the viscoelastic
behavior of polymers. The tests were conducted on polymer composites CFRP and
GFRP laminates in their undamaged and damaged state. A hybrid method has been
explored in this work and the materials have been characterized for damping
parameters at their mode frequencies. The change in the modal parameters (i.e.,
natural frequencies and damping capacity) can be used to identify and assesses the
health of the structures. It is very advantageous method to obtain damping charac-
teristics of the materials at higher frequency and at relatively low amplitudes.

Figure 14.
Damping capacity and dynamic storage modulus for CFRP and GFRP.
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