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Chapter

Folding on the Chaotic Graph
Operations and Their
Fundamental Group
Mohammed Abu Saleem

Abstract

Our aim in the present chapter is to introduce a new type of operations on the
chaotic graph, namely, chaotic connected edge graphs under the identification
topology. The concept of chaotic foldings on the chaotic edge graph will be
discussed from the viewpoint of algebra and geometry. The relation between the
chaotic homeomorphisms and chaotic foldings on the chaotic connected edge
graphs and their fundamental group is deduced. The fundamental group of the limit
chaotic chain of foldings on chaotic. Many types of chaotic foldings are achieved.
Theorems governing these relations are achieved. We also discuss some applications
in chemistry and biology.

Keywords: chaotic graph, edge graph, chaotic folding, limit folding fundamental
group
2010 Mathematics Subject Classification: 51H20, 57N10, 57M05, 14F35, 20F34

1. Introduction and definitions

During the past few decades, examinations of social, biological, and communi-
cation networks have taken on enhanced attention throughout these examinations;
graphical representations of those networks and systems have been evident to be
terribly helpful. Such representations are accustomed to confirm or demonstrate the
interconnections or relationships between parts of those networks [1, 2].

A graph is an ordered G = (V(G), E(G)) where V(G) 6¼ φ, E(G) is a set disjoint
from V(G), elements of V(G) are called the vertices of G, and elements of E(G) are
called the edges. The foundation stone of graph theory was laid by Euler in 1736 by
solving a puzzle called Königsberg seven-bridge problem as in Figure 1 [1, 3].

There are many graphs with which one can construct a new graph from a given
graph or set of graphs, such as the Cartesian product and the line graph. A graph G
is a finite non-empty set V of objects called vertices (the singular is vertex) together
with a set E of two-element subsets of V called edges. The number of vertices in a
graph G is the order of G, and the number of edges is the size of G. To indicate that a
graph G has vertex set V and edge set E, we sometimes write G = (V, E). To
emphasize that V is the vertex set of a graph G, we often write V as V(G). For the
same reason, we also write E as E(G). A graph H is said to be a subgraph of a graph
G if V(H) ⊆ V(G) and E(H) ⊆ E(G). The complete graph with n-vertices will be
denoted by Kn: A null graph is a graph containing no edges; the null graph with
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n-vertices is denoted by Nn: A cycle graph is a graph consisting of a single cycle, the
cycle graph with n-vertices is denoted by Cn: The path graph is a graph consisting of
a single path; the path graph with n-vertices is denoted by Pn [1–11]. Let G and H be
two graphs. A function φ : V Gð Þ ! V Hð Þ is a homomorphism from G to H if it
preserves edges, that is, if for every edge e∈E Gð Þ, f eð Þ∈E Hð Þ [12, 13]. A core is a
graph which does not retract to a proper subgraph. Any graph is homomorphically
equivalent to a unique core [7].

The folding is a continuous function f : G ! H such that for each
v∈V Gð Þ, f vð Þ∈V Hð Þ, and for each e∈E Gð Þ, f eð Þ∈E Hð Þ [14]. Let X be a space, and
let I be the unit interval [0,1] in R, a homotopy of paths in X is a family
gt : I ! X,0≤ t≤ 1such that (i) the endpoints gt 0ð Þ ¼ x0 and gt 1ð Þ ¼ x1 are inde-
pendent of t and (ii) the associated map G : I � I ! X defined by G(s,t) = gt(s) is
continuous [15]. Given spaces X and Y with chosen points x0 ∈X, and y0 ∈Y, the
wedge sum X∨Y is the quotient of the disjoint union X∪Y obtained identifying x0
and y0 to a single point [15]. Two spaces X and Y are of the “same homotopy type”
if there exist continuous maps f : X ! Y and g : Y ! X such that g ◦ f ffi IX :

X ! X and f ◦ g ffi IY : Y ! Y [16]. The fundamental group briefly consists of
equivalence classes of homotopic closed paths with the law of composition follow-
ing one path to another. However, the set of homotopy classes of loops based at the
point x0 with the product operation f½ � g½ � ¼ f � g½ � is called the fundamental group
and denoted by π1 X; x0ð Þ [4, 17–24]. Over many years, chaos has been shown to be
an interesting and even common phenomenon in nature. Chaos has been shown to
exist in a wide variety of settings: in fluid dynamics such as Raleigh-Bernard con-
vection, in chemistry such as the Belousov-Zhabotinsky reaction, in nonlinear
optics in certain lasers, in celestial mechanics, in electronics in the flutter of an
overdriven airplane wing, some models of population dynamics, and likely in
meteorology, physiological oscillations such as certain heart rhythms, as well as
brain patterns [17, 24–30]. AI algorithms related to adjacency matrices on the
operations of the graph are discussed in [31, 32].

Figure 1.
Königsberg seven-bridge problem.
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2. The main results

First, we will introduce the following:
Definition 1. The chaotic edge e is a geometric edge e1 that carries many other edges

e2; e3;…ð Þ, each one of them homotopic to the original one as in Figure 2. Also the chaotic
vertices of e are v ¼ v1; v2;…ð Þ and u ¼ u1; u2;…ð Þ. For chaotic edge e, we have two cases:

Case 1 (1) e1, e2, e3,… are of the same physical properties.
Case 2 (2) e1, e2, e3,… represent different physical properties; for example, e1 repre-

sents density, e2 represents hardness, e3 represents magnetic fields, and so on.

Definition 2. A chaotic graph G is a collection of finite non-empty set V of objects

called chaotic vertices together with a set E of two-element subsets of V called chaotic

edges. The number of chaotic edges is the size of G.

Definition 3. Given chaotic connected graphs G1 and G2 with given edges e1 ∈G1 and

e2 ∈G2, then the chaotic connected edge graph G1⊻ G2 is the quotient of disjoint union

G1 ∪G2 acquired by identifying two chaotic edges e1 and e2 to a single chaotic edge (up to
chaotic isomorphism) as in Figure 3.

Definition 4. A chaotic graph H is called a chaotic subgraph of a chaotic graph G if

V H
� �

⊆V G
� �

and E H
� �

⊆E G
� �

.

Definition 5. Let G and H be two chaotic graphs. A function φ : V G
� �

! V H
� �

is

chaotic homomorphism from G to H if it preserves chaotic edges, that is, if for any chaotic

edge u; v½ � of G, φ uð Þ;φ vð Þ½ � is a chaotic edge of H.

Definition 6. A chaotic folding of a graph G is a chaotic subgraph H of G such that

there exists a chaotic homomorphism f : G ! H, called chaotic folding with f xð Þ ¼ x for

every chaotic vertex x of H.
Definition 7. A chaotic core is a chaotic graph which does not chaotic retract to

chaotic proper subgraph.

Theorem 1. Let G1 and G2 be two chaotic connected graphs. Then

π1 G1 ⊻ G2

� �

¼ π1 G1

� �

∗ π1 G2

� �

.

Proof. Let G1 and G2 be two chaotic connected graphs. Since G1 ⊻ G2 and G1 ∨

G2 are of same chaotic homotopy type, it follows that

π1 G1 ⊻ G2

� �

≈ π1 G1

� �

∗ π1 G2

� �

: Hence, π1 G1 ⊻ G2

� �

¼ π1 G1

� �

∗ π1 G2

� �

.

Figure 2.
Chaotic edge.
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Theorem 2. The chaotic graphs G1 and G2are chaotic subgraphs of G1 ⊻ G2. Also, for

any chaotic tree G1 and G2, G1 ⊻ G2 is also chaotic tree and π1 G1 ⊻ G2

� �

¼ 0.
Proof. The proof of this theorem is clear.

Theorem 3. If G1, G2,…, Gn are connected graphs, and f 1; f 2;…; f n

D E

is a sequence

of chaotic topological foldings of ⊻ n
i¼1Gi into itself, then there is an induced sequence

f 1; f 2;…; f n

D E

of non-trivial chaotic topological folding f j : ∗ n
i¼1π1 Gii

� �

! ∗ n
i¼1π1 Gii

� �

,

j ¼ 1, 2,…, n such that f j ∗ n
i¼1π1 Gii

� �� �

reduces the rank of ∗ n
i¼1π1 Gii

� �

.

Proof. Consider the following sequence of topological foldings f 1; f 2;…; f n

D E

,

where f 1 : ⊻ n
i¼1Gi ! ⊻ n

i¼1Gi, is a topological folding from ∨n
i¼1Gi into itself such

that f 1 ⊻ n
i¼1Gi

� �

¼ G1 ⊻ G2 ⊻ …⊻ f 1 Gs

� �

⊻ …⊻ Gn for s ¼ 1, 2,…n:

Since size f 1 Gs

� �

� �

≤ size Gs

� �

and f 1 π1 Gi

� �� �

¼ π1 f 1 Gi

� �

� �

, it follows that

rank f 1 π1 Gs

� �� �

� �

¼ rank π1 f 1 Gs

� �

� �� �

≤ rank π1 Gs

� �� �

, and so f 1 reduces the rank

of ∗ n
i¼1π1 Gii

� �

: Also, if f 2 ⊻ n
i¼1Gi

� �

¼ G1 ⊻ G2 ⊻ …⊻ f 2 Gs

� �

⊻ …⊻ f 2 Gk

� �

⊻ …⊻ Gn for k ¼ 1, 2,…n and s< k and size f 2 Gs

� �

� �

≤ size Gs

� �

and size f 2 Gk

� �

� �

≤ size Gk

� �

, we haverank f 2 π1 Gs

� �� �

� �

¼ rank π1 f 2 Gs

� �

� �� �

≤ rank π1 Gs

� �� �

,

rank f 2 π1 Gk

� �� �

� �

¼ rank π1 f 2 Gk

� �

� �� �

≤ rank π1 Gk

� �� �

; thus f 2 reduces the rank

of ∗ n
i¼1π1 Gii

� �

: Moreover, by continuing with this procedure if

f n ⊻ n
i¼1Gi

� �

¼ ⊻ n
i¼1 f n Gi

� �

� �

, then f n ∗ n
i¼1π1 Gii

� �� �

¼ π1 f n ⊻ n
i¼1Gi

� �

� �

¼

π1 ⊻ n
i¼1f n Gi

� �

� �

≈ ∗ n
i¼1π1 f n Gii

� �

� �

. Hence, f n reduces the rank of ∗ n
i¼1π1 Gii

� �

.

Figure 3.
Chaotic connected edge.
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Theorem 4. Let G1 and G2 be two chaotic graphs; then there is a chaotic homomor-

phism f : G1 ! G2 which induces f : π1 G1

� �

! π1 G2

� �

if π1 G2

� �

is a chaotic folding of

π1 G1 ⊻ G2

� �

:

Proof. Let f : G1 ! G2 be a chaotic homomorphism. Since G2 is chaotic sub-

graph of G1 ⊻ G2, then there exists a chaotic homomorphism f : G1 ⊻ G2 ! G2 with

f vð Þ ¼ v for any chaotic vertex v of G2 which induces f : π1 G1

� �

! π1 G2

� �

: What

follows from G2 is a chaotic folding of G1 ⊻ G2 in that π1 G2

� �

is a chaotic folding of

π1 G1 ⊻ G2

� �

: Conversely, assume that G2 is a chaotic folding of G1 ⊻ G2; thus

f : G1 ⊻ G2 ! G2 is a chaotic homomorphism with f vð Þ ¼ v for any chaotic vertex v

of G2, and so there is a chaotic homomorphism f : G1 ! G2 which induce

f : π1 G1

� �

! π1 G2

� �

.

Theorem 5. For any chaotic path graphs Pn, Pm, n,m≥ 2, there is a sequence of

topological foldings with variation curvature f i : i ¼ 1; 2;…k
n o

on Pn ⊻ Pm which

induce a sequence of topological foldings f i : i ¼ 1; 2;…k
n o

such that f k f k�1 … f 1

���

π1 Pn ⊻ Pm

� �

…g ¼ Z
�

and limk!∞ f k f k�1 … f 1 π1 Pn ⊻ Pm

� �

…
�

� �

¼ 0
����

.

Proof. Consider the following sequence of chaotic topological foldings with

variation curvature, f 1 : Pn ⊻ Pm ! Pn ⊻ Pm

� �

1
, where Pn ⊻ Pm

� �

1
is a chaotic sub-

graph with decreasing inner curvature between every two adjacent chaotic edges in

Pn ⊻ Pm and f 2 : f 1 Pn ⊻ P
� �

m
! f 1 Pn ⊻ Pm

� �

1

� �

where f 2 f 1 Pn ⊻ Pm

� �

1

� �

� �

is a cha-

otic subgraph with decreasing inner curvature between every two adjacent chaotic

edges in f 1 Pn ⊻ Pm

� �

1

� �

, and so on, such that f k f k�1 f k�2 … f 1 Pn ⊻ Pm

� �

⋯

� �

¼
���

Cnþm�2 and limk!∞ f k f k�1 f k�2 … f 1 Pn ⊻ Pm

� �

…

� �

¼ N1,
����

thus f k f k�1 f k�2 …ð
��

f 1 π1 Pn ⊻ Pm

� �

…
� �

¼ π11 Cnþm�2

� �

¼ Z:

�

Also, limk!∞ f k f k�1 f k�2 … f 1 π1ð
�����

Pn ⊻ Pm

� �

…Þ ¼ π1 N1

� �

¼ 0:

Theorem 6. For every two chaotic connected graphs G1 and G2, the fundamental

group of the limit of chaotic topological folding of G1 ⊻ G2 ¼ 0:

Proof. Let G1 and G2 be two chaotic connected graphs; then we have two cases:

Case (1): If f 1 : G1 ⊻ G2 ! G1 ⊻ G2 is a chaotic topological folding such that

f 1 G1 ⊻ G2

� �

consists of chaotic cycles, so we can define a sequence of chaotic

topological folding f 2 : f 1 G1 ⊻ G2

� �

! f 1 G1 ⊻ G2

� �

where f 2 f 1 G1 ⊻ G2

� �

� �

is a

chaotic tree with nchaotic edges, f 3 : f 2 f 1 G1 ⊻ G2

� �

� �

! f 2 f 1 G1 ⊻ G2

� �

� �

, such that

f 3 f 2 f 1 G1 ⊻ G2

� �

…

� ��

is a chaotic tree with k< n chaotic edges, chaotic edges by

continuing this process we get f k : f k�1 f k�2 … f 1 G1 ⊻ G2

� �

⋯Þ !
���

f k�1 f k�2 … f 1 G1 ⊻ G2

� �

⋯

����

such that limk!∞ f k f k�1 f k�2 … f 1 G1 ⊻ G2

� �

…

� �����

is

a chaotic edge, and so π1 limk!∞ f k f k�1 f k�2 … f 1 G1 ⊻ G2

� �

…

� �� �

¼ 0:

����

Case (2): If g1 : G1 ⊻ G2 ! G1 ⊻ G2 is a chaotic topological folding such that.

g1 G1 ⊻ G2

� �

has no chaotic cycles, then clearly limk!∞ gk gk�1 gk�2 … g1
�����

G1 ⊻ G2

� �

…Þ is a chaotic edge and π1 limk!∞ gk gk�1 gk�2 … g1 G1 ⊻ G2

� �

…
� �� �

¼ 0
����

.

Theorem 7. If G1 and G2 are chaotic connected and not chaotic cores graphs, then

π1 limn!∞ f n G1 ⊻ G2

� �

� �

= π1 limn!∞ f n G1

� �

� �

∗ π1 limn!∞ f n G2

� �

� �

.
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Proof. If G1 and G2 are chaotic connected and not chaotic cores graphs, then we

get the following chaotic induced graphs limn!∞ f n G1 ⊻ G2

� �

, limn!∞ f n G1

� �

,

limn!∞ f n G2

� �

, and each of them are isomorphic to k2. Since k2 ≈ k2 ⊻ k2 it follows

that limn!∞ f n G1 ⊻ G2

� �

¼ limn!∞ f n G1

� �

⊻ limn!∞ f n G2

� �

and

π1 limn!∞ f n G1 ⊻ G2

� �

� �

= π1 limn!∞ f n G1

� �

� �

∗ π1 limn!∞ f n G2

� �

� �

:

3. Some applications

i. A polymer is composed of many repeating units called monomers. Starch,
cellulose, and proteins are natural polymers. Nylon and polyethylene are
synthetic polymers. Polymerization is the process of joining monomers.
Polymers may be formed by addition polymerization; furthermore, one
essential advance likewise polymerization is mix as in Figure 4, which
happens when the polymer’s development is halted by free electrons from two
developing chains that join and frame a solitary chain. The accompanying
chart portrays mix, with the image (R) speaking to whatever remains of the
chain.

ii. Chemical nature of enzymes, all known catalysts are proteins. They are high
atomic weight mixes made up primarily of chains of amino acids connected
together by peptide bonds as in Figure 5.

Figure 4.
Polymerization.

Figure 5.
Typical amino acids.
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iii. There are two types of the subunit structure of ribosomes as in Figure 6
which is represented by the different connected types of protein subunit and
rRNA to form a new type of ribosomes.

4. Conclusion

In this chapter, the fundamental group of the limit chaotic foldings on chaotic
connected edge graphs is deduced. Also, we can deduce some algorithms from a
new operation of a graph by using the adjacency matrices.
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Figure 6.
Prokaryotic ribosome components.
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