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Reinforcement Learning-Based Supervisory 
Control Strategy for a Rotary Kiln Process 

Xiaojie Zhou, Heng Yue and Tianyou Chai 
 Key Laboratory of Integrated Automation of Process Industry, Northeastern University 

P. R. China 

1. Introduction  

Rotary kiln is a kind of large scale sintering device widely used in metallurgical, cement, 
refractory materials, chemical and environment protection industries. Its complicated 
working mechanism includes physical change and chemical reaction of material, procedure 
of combustion, thermal transmission among gaseous fluid, solid material fluid and the liner. 
The automation problem of such processes remains unsolved because of the following 
inherent complexities. A rotary kiln is a typical distributed parameter system with 
correlative temperature distribution of gaseous phase and solid phase along its axis 
direction. Limited by device rotation and technical design, sensors and actuators can be 
installed only at the kiln head and kiln tail, and lumped parameter control strategies are 
employed to deal with distributed parameter problems.  Thus the rotary kiln process is a 
multivariable nonlinear system with strong coupling, large lag and uncertain disturbances. 
Moreover, the key controlled variable of burning zone temperature is measured with 
serious disturbances. Most of rotary kilns are still under manual control with human 
operator observing the burning status. As a result, the product quality is hard to be kept 
consistent and energy consumption remains high, kiln liner is easy to wear out, the kiln 
running rate and yield is low. 
Although several advanced control strategies including fuzzy control (Holmblad & 
Østergaard, 1995) , intelligent control (Jarvensivu et al., 2001a; Jarvensivu et al., 2001b) and 
predictive control (Zanovello & Budman, 1999) have been introduced into process control of 
rotary kiln, all these researches focused on stabilizing some key controlled variables but are 
valid only for  cases that boundary conditions do not change frequently. As a matter of fact, 
the boundary conditions of a rotary kiln often change. For example, the material load, water 
content and components of the raw material slurry vary frequently and severely. Moreover, 
the offline analysis data of components of raw material slurry reach the operator with large 
time delay. Thus conventional control strategy cannot reach automatic control and keep the 
product quality consistent. To deal with the complexity of operation conditions, the authors 
have proposed an intelligent control system based on human-machine interaction for an 
alumina rotary kiln in (Zhou et al., 2004; Zhou et al., 2006), in which human intervention 
function was design so that, if the operation condition changed largely, the human operator 
observing burning status can intervene the control actions when the system is in the 
automatic control mode to enhance the adaptability of the control system. 

Source: Reinforcement Learning: Theory and Applications, Book edited by Cornelius Weber, Mark Elshaw and Norbert Michael Mayer
ISBN 978-3-902613-14-1, pp.424, January 2008, I-Tech Education and Publishing, Vienna, Austria
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This chapter develops a supervisory control approach for burning zone temperature based 
on Q-learning, in which the signals of human intervention are viewed as the reinforcement 
learning signals. Section 2 makes brief descriptions of process and supervisory control 
system architecture. Section 3 discusses the detailed methodology of Q-learning-based 
supervisory control approach. The implementation and industrial applications are shown in 
Section 4. Finally, Section 5 draws the conclusion. 

2. Process description and supervisory control system architecture 

The alumina rotary kiln process is described as follows. Raw material slurry is sprayed into 
the rotary kiln from upper end (the kiln tail). At the lower end (the kiln head), the coal 
powders from the coal injector and the primary air from the air blower are mixed into bi-
phase fuel flow, which is sprayed into the kiln head hood and combusts with the secondary 
air, which comes from the cooler. The heated gas was brought to the kiln tail by the induced 
draft fan, while the material moves to the kiln head via the rotation of the kiln and its self 
weight, in counter direction with the gas. After the material passes through the drying zone, 
pre-heating zone, decomposing zone, burning zone and cooling zone in sequence, soluble 
sodium aluminate is generated in the clinker, which is the product of the kiln process. This 
process aims to reach high digesting rate of alumina in the following digestion procedure. 
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Fig. 1.  Schematic diagram of the alumina rotary kiln 

The control problem of quality index of kiln production is how to keep the liter weight of 
clinker being qualified under fluctuated boundary conditions and operating conditions. The 
liter weight of clinker is hard to measure online and cannot be controlled directly. This 
paper employs the following strategy to deal with this problem. Some online measurable 
technologic parameters with closed relations to the final quality index are chosen and 
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controlled into certain ranges governed by technical requirement so that the quality index 
control is realized indirectly. 
In the sintering process, the normal range of sintering temperature Tsinter of raw material 
depends upon components of raw material slurry. Variations of components of raw material 
slurry require corresponding variations of sintering temperature. Inconsistency of real 
sintering temperature range with requirement of raw material will results in over burning  
or under burning, and clinker quality is not satisfactory. Thus we conclude that components 
of raw material slurry and sintering temperature are the main aspects influencing clinker 
quality. Besides, other factors include particle size of raw material and residing time under 
Tsinter. The relationship between desired Tsinter and components of raw material slurry can be 
viewed as a unknown nonlinear function  

 
sin ([ / ],[ / ],[ / ],[ / ])terT f A S N R C S F A=  (1) 

where [A/S] is the alumina silica ratio of raw material slurry, [N/R] is the alkali ratio, [C/S] is 
the calcium silica ratio, [F/A] is the iron alumina ratio. Among them, the alumina silica ratio 
of raw material slurry has the strongest influence on Tsinter, the latter must be enhanced 
along with the enhancement of the former.  
From above analysis, one may conclude that there are two key issues about the control 
problem of quality index of kiln production. One is how to keep the kiln temperature 
distribution satisfing technical requirement under fluctuated boundary conditions and 
operating conditions, i.e. how to keep burning zone temperature, kiln tail temperature and 
residual oxygen content in combustion gas in their technical required ranges. The other is 
how to adjust the setpoint range of burning zone temperature so that the liter weight of 
clinker may be kept qualified under fluctuated boundary conditions and operating 
conditions.  
 
 

 
 
 
Fig. 2.  General structure of the supervisory control system for rotary kiln process 
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This paper has constructed a supervisory control system consisting of a supervisory level 
and a process control level, whose general structure is shown in Fig. 2. The final target of 
this supervisory control system is to keep the production quality index, i.e. the clinker unit 
weight, being acceptable even if the boundary conditions changed. The related process 
control strategies in process control level include, 1) a hybrid intelligent temperature 
controller was designed, which coordinated the coal feeding u1, damper position of the 
induced draft fan u2, and primary air flow u3 to make the burning zone temperature TBZ, the 
kiln tail temperature TBE, and the residual oxygen content in combustion gas OX satisfy 
technical requirements; TBZ is indirectly measured by an infrared pyrometer located at kiln 
head hood, and TBE is obtained through a thermocouple; 2) individual PI controllers were 
assigned to basic loops of primary air flow, primary air pressure and flow rate of raw 
material slurry; and 3) a human-machine interaction(HMI) mechanism was designed so that 
certain human interventions to coal feeding control from experienced operator can be 
introduced in the mode of automatic control when the operating conditions changed 
significantly. The aforementioned process control strategies were depicted in our previous 
study (Zhou et al., 2004).  
The main part of the supervisory level is an intelligent setting model of TBZ, which adjusts 
the setpoint range of TBZ according to the variations of components of raw material slurry. 
The setpoints of TBE, OX, primary air pressure, flow rate of raw material slurry and the kiln 
rotary speed n are given by the operators according to production scheduling and 
production experiences. 
The intelligent setting model of burning zone temperature consists of a pre-setting model of 
burning zone temperature, a compensation model and a setting selector mechanism. The 
pre-setting model is to give the upper and lower limits of setpoint range of burning zone 

temperature, denoted by 0

_

HI

BZ SPT  and 0

_

LO

BZ SPT , calculating from the offline analysis data of 

components of raw material slurry. The fuzzy clustering analysis combined with case-based 
inference learning is employed to build up the pre-setting model of burning zone 
temperature. The core of the pre-setting model is a case base containing different upper and 
lower limits of setpoint range of burning zone temperature corresponding to different 
components of raw material slurry. Such case base is established through fuzzy clustering 
based data mining from vast process data samples under various components of raw 
material slurry. Details are not described in this paper. 
As a matter of fact, the main problem we are facing is that the components of raw material 
slurry often change due to unstable raw material mixing process and the offline analysis 
data reach to the operator with large time delay so that the operator or the pre-setting model 
cannot directly adjust the setpoint of TBZ duly. As a result, a single intelligent temperature 
controller and a single pre-setting model of TBZ cannot maintain satisfactory performance. In 
such a case, a human operator usually rectifies the output of the temperature controller, i.e. 
the coal feeding, based on the experience of observing burning status through the HMI 
embedded in the control system. Such interventions can adapt the variation of operating 
conditions to a certain degree to sustain the quality of the product.  
To deal with such a problem, a compensation model and a setting selector are appended. 
When the offline analysis data of components of raw material slurry are known and input 
into the system, i.e. the lth sampled time, the setting selector mechanism triggers the pre-
setting model to calculated the proper setpoint range of TBZ. When the components of raw 
material slurry are unknown, the compensation model is triggered to calculated the proper 
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upper and lower limits of setpoint range of the burning zone temperature, denoted by 
1

_

HI

BZ SPT  and 1

_

LO

BZ SPT  respectively. In the following section, a Q-learning strategy is employed 

to construct compensation model to learn the self-adjusting knowledge about the setpoint of 
TBZ through online self-learning from the human intervention signals. 

3. Setpoint adjustment approach based on Q-learning 

3.1 Bases of Q-learning 

Reinforcement learning is learning with a critic instead of a teacher. The only feedback 
provided by the critic is a scalar signal r called reinforcement, which can be regarded as a 
reward or a punishment. Reinforcement learning performs an online search to find an 
optimal decision policy in multi-stage decision problems. 
Q-learning (Watkins & Dayan, 1992) is a reinforcement learning method where the learner 
builds incrementally a Q-function which attempts to estimate the discounted future rewards 
for taking actions from given states. The output of the Q-function for state x and action a  is 

denoted by ),( axQ .When action a  has been chosen and applied, the environment moves to 

a new state, x′ , and a reinforcement signal, r, is received. ),( axQ is updated by 

 1 1 1
( )

( , ) ( , ) { max ( , ) ( , )}k k k k k
a A x

Q x a Q x a r Q x a Q x aα γ− − −′ ′∈
′ ′← + + −  (2) 

where  

 
1

1 ( , )
k

kvisits x a
α =

+
 (3) 

where ( )A x′  is the set of possible actions in state x′ ,  γ  is discount factor , kα is the learning 

rate, and ( , )kvisits x a is the total number of times this state-action pair ( , )x a has been visited 

up to and including the kth iteration. 

3.2 Principle of setpoint adjustment approach based on Q-learning 

In this section, we may design an online self-learning system based on reinforcement 
learning to gradually establish the optimal policy of setpoint adjustment of TBZ. Although it 
cannot reach to the operator in time, the changes of components of raw material slurry may 
be indirectly reflected through certain measurements of the rotary kiln process. The 
measurements can be used to construct the environment state set of the learning system. 
Moreover, information of human interventions can be regarded as evaluations about 
whether the setpoint of TBZ is proper or not, for human interventions often occur when the 
performance is unsatisfactory. Thus this kind of information can be defined as reward signal 
from environment.  
For the learning system, the environment includes the rotary kiln process, the temperature 
controller and the operator. The environment provides current states and reinforcement 
payoffs to the learning system. The learning system produces the compensated upper and 
lower limits of setpoint range of TBZ to temperature controller in the environment. The 
learning system consists of a state perceptron, a critic, a learner and an action selector, as 
shown in Fig. 3. The state perceptron firstly samples and processes selected measurements 
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to construct the original state vector, and then converts the original continuous state vector 
into a discrete feature vector x based on a defined feature extraction function. The action 
selector employs a ε-greedy action selection strategy to produce an amendment of setpoint 

of TBZ , i.e. _BZ SPTΔ and the critic serves to calculate an internal practicable reward r relying 

on some heuristic rules. The learner updates value function of the state-action pair based on 
tabular Q-learning. The final outputs of the learning system are the compensated upper and 
lower limits of setpoint range of TBZ, which are calculated respectively by 
 

 1 1

_ _ _( ) ( ) ( 1)HI HI

BZ SP BZ SP BZ SPT k T k T k= Δ + −  (4) 

 

 1 1

_ _ _( ) ( ) ( 1)LO LO

BZ SP BZ SP BZ SPT k T k T k= Δ + −  (5) 

 

 

 

 Fig. 3.  Schematic diagram of setpoint adjustment approach for TBZ based on Q-learning  
In a Markov decision process (MDP), only the sequential nature of the decision process is 
relevant, not the amount of time that passes between decision stages. A generalization of 
this is the semi-Markov decision process (SMDP) in which the amount of time between one 

decision and the next is a random variable. For the learning process, we define sτ  as state 

perception time span for the perceptron to get the state of the environment and rτ  as reward 

calculation time span, also named as action execution time span, for the critic to calculate 

internal reward. The shortest time span from one decision to the next is s rτ τ τ= + .  
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The design of the learning system concerns the following key issues: 
 
1. Construction of the environment perception state set; 
2. Determination of the action set; 
3. Determination of the immediate reward function; 
4. Determination of the learning algorithm. 

3.3 Construction of the state set 

When components of raw material slurry fluctuate and related offline analysis data are 
unavailable, we hope that the learning system can estimate the changes of the components 
of raw material slurry through the percepted information about the environment state. From 
this idea, some related variables are selected from online measurable variables of the kiln 
process based on human experience, with which the state vector s  is defined to buildup the 

original state space S  of the learning system, where 1 2 3 4 5[ , , , , ]s s s s s=s , ∈s S . 1s is defined as 

the averaged burning zone temperature BZT , 2s  is the averaged flow rate of raw material 

slurry G , 3s  is the averaged coal feeding 1u , 4s and 5s  are the averaged upper and lower 

limit of the setpoint range of TBZ , named as _

HI

BZ SPT and _

LO

BZ SPT respectively, all during sτ . 

They are calculated from  

 
1

( )
J

BZ BZ

j

T T j J
=

=∑  (6) 

 
1

( )
J

j

G G j J
=

=∑  (7) 

 1 1

1

( )
J

j

u u j J
=

=∑  (8) 

 _ _

1

( )
J

HI HI

BZ SP BZ SP

j

T T j J
=

=∑  (9) 

 _ _

1

( )
J

LO LO

BZ SP BZ SP

j

T T j J
=

=∑  (10) 

where ( )BZT j , ( )G j , 1( )u j , _ ( )HI

BZ SPT j , _ ( )LO

BZ SPT j  denote the jth sampling values of TBZ , flow 

rate of raw material slurry, coal feeding, upper and lower limits of the setpoint range of TBZ 

during sτ  respectively. J is the total number of sampling values during sτ . 

Since the state space S  defined above is continuous, it is impossible to compute and store 

value functions for every possible state or state-action pair due to the curse of 
dimensionality. The issue is often addressed by generating a compact parametric 
representation, such as an artificial neural network, that approximates the value function 
and can guide future actions. we practically choose to use a feature extraction method 
(Tsitsiklis & Van Roy, 1996)  to map the original continuous state space into a finite feature 
space, then we can employ tabular Q-learning to solve the problem.  
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By identifying one partition per possible feature vector, the feature extraction mapping 

1 1 4 5 2 1 3 2 4 3( ) [ ( , , ), ( ), ( ), ( )]F f s s s f s f s f s=s  defines a partitioning of the original state space. The 

burning zone temperature biasing (from the setpoint range) level feature f1, the temperature 
level feature f2, flow rate of raw material slurry level feature f3, the coal feeding level feature 
f4 are defined respectively by 
 
 

 

_

_

1 1 4 5 _ _

_

_

2, ( ) 2

1, 2 ( ) 1

( , , ) 0, ( ) 1 ( ) 1

1, 1 ( ) 2

2, ( ) 2

LO

BZ BZ SP

LO

BZ BZ SP

HI LO

BZ BZ SP BZ BZ SP

HI

BZ BZ SP

HI

BZ BZ SP

T T L

L T T L

f s s s T T L and T T L

L T T L

T T L

⎧− − < −
⎪
− − ≤ − < −⎪
⎪⎪= − ≤ − ≥ −⎨
⎪

< − ≤⎪
⎪ − >⎪⎩

 (11) 

 

 

2 1

0, 1250

( ) 1, 1250 1280

2, 1280
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BZ
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T

f s T

T

⎧ <
⎪

= ≤ <⎨
⎪ ≥⎩  (12) 

 

 

3 2
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( )

2, 80
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f s

G
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⎧ ≤ <
⎪
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⎪
⎩  (13) 

 

 

1

1

4 3

1

0, 800 1000

1, 1000 1200
( )

2, 1200 1400

3,

u

u
f s

u

else

≤ <⎧
⎪ ≤ <⎪= ⎨ ≤ <⎪
⎪⎩  (14) 

 

where 1L and 2L  are the thresholds scaling the burning zone temperature bias from setpoint 

range level.  

Each feature function maps the state space S  to a finite set , 1,2,3,4mP m = . Then we 

associate the feature vector 1 2 3 4[ , , , ] ( )x x x x F= =x s  to each state ∈s S . The resulting set of all 

possible feature vectors, also defined as feature space X , is the Cartesian product of the sets 

mP . 
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Because the compensation model for the setpoint of burning zone temperature needs only to 
be applicable for the normal kiln operating conditions, the design of state set needs certain 

filtration in the feature space X . The appearence of  3 3x = or 4 3x =  might means the 

abnormal operating conditions such as low load of  flow rate of raw material slurry during 
kiln starting phase or abnormal coal components. The state set excludes such valued feature 
vectors. 

3.4 Action set 

The learning system aims to deduce the proper or best actions of setpoint adjustment of TBZ 
from specified environment state. The problem to be handled is how to choose 

_BZ SPTΔ according to the changes of environment state. Thus the action set can be defined as 

1 2 3 4 5{ , , , , } { 30, 15,0,15,30}A a a a a a= = − − . 

3.5 Immediate reward signal 

During rτ  after the action selection based on current state judgment, the learning system 

determines the immediate reward signal 1 1( , )MAN AUTOr R u u= Δ Δ , which represents the 

satisfactory degree of the environment about the action execution under current state,   

using the human intervention regulation of coal feeding 1

MANuΔ  and temperature controller 

regulation 1

AUTOuΔ .The reward signal r is determined in table 1.  

 

r 3AUTOCoal LΔ ≤ 3AUTOCoal LΔ > 3AUTOCoal LΔ < −  

3MANCoal LΔ ≤ 0.4 0.4 0.4 

3MANCoal LΔ >  -0.2 0.2 -0.4 

3MANCoal LΔ <  -0.2 -0.4 0.2 

 

Table 1. Definition of immediate reward function R 

 

where L3 is the threshold constant, MANCoalΔ  denotes the total regulation of coal feeding 

from human intervention during rτ , which is calculated by 

 1

r

MAN

MANCoal u
τ

Δ = Δ∑  (15) 

and AUTOCoalΔ  denotes the total regulation from temperature controller during rτ , which is 

calculated by 
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 1

r

AUTO

AUTOCoal u
τ

Δ = Δ∑  (16) 

The immediate reward function R in Table 1 is from the following heuristic rules: 

During rτ , if 3MANCoal LΔ ≤ , which means the operator is satisfied with the regulation 

action of the control system and little human intervention occurs, then a positive reward 

r=0.4 is returned. If MANCoalΔ and AUTOCoalΔ  have same regulation directions , which means 

the direction of regulation action of the control system fits with the operator  expectation 

with short amplitude, then a positive reward r=0.2 is returned. If MANCoalΔ > L3 or 

MANCoalΔ < 3L− , and 3AUTOCoal LΔ ≤ , which means little regulation action of the control 

system occurs while large human intervention occurs, then r=-0.2. If MANCoalΔ and 

AUTOCoalΔ  have contrary regulation directions, which means the operator is not satisfied 

with the regulation action of the control system, then a negative reward r=-0.4 is returned. 

3.6 Algorithm summary 

The whole learning algorithm of the learning system under learning mode is summarized as 
follows: 
 
Step 1: If it is in initialization, then the Q value table of state-action pairs is initialized 

according to expert experience, otherwise goto step 2 directly; 

Step 2: During sτ , the state perceptron obtains and saves measured burning zone 

temperature, flow rate of raw material slurry, coal feeding, upper and lower limits of 
the setpoint range of the burning zone temperature, and calculates related averaged 
values by using (6)-(10), then transfer them into related level features to construct 
feature vector x by using (11)-(14) . 

Step 3: Search in the Q table to make state matching, if unsuccessful then goto step 2 to make 
state judgement again, if successful then go ahead; 

Step 4: The action selector chooses an amendment of setpoint of BZT  as its output according 

to ε-greedy action selection strategy (Sutton & Barto, 1998), where ε=0.1; 

Step 5: During rτ , the critic determines the reward signal r of this state-action pair according 

to  Table 1. 

Step 6: When the current rτ finishes, entering the next sτ , the state perceptron judges the 

next state ′x , state matching is made in the Q table, if unsuccessful then goto step 2 to 
start the next learning round, if successful then using the reward signal r, the learner 
calculates and updates the Q value of the last state-action pair by using (2)-(3), where 

0.9γ = . 

Step 7: Judge if the learning should be finished. When all evaluation values of state-action 
pairs in the Q table do not change obviously, it means that the Q-function have 
converged, and the compensation model is well trained.  

 
The problem of Q table initialization: there is no explicit tutor signal in reinforcement 
learning, the learning procedure is carried out through constant interaction with 
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environment to get the reward signals. Usually, less information from environment will 
results low learning efficiency of reinforcement learning. In this paper different initial 
evaluation values are given for different actions under same state based on expert 
experience so that the convergence of the algorithm has been speedup, and online 
learning efficiency has been enhanced. 

3.7 Technical issues 

The main task of the learning system is to estimate the variations of the kiln operating 
conditions continuously, and to adjust the setpoint range of burning zone temperature 
accordingly. Such adjustments should be made when the burning zone temperature is 
fairly controlled smooth by the temperature controller. Such a judgment signal is given 
out from the hybrid intelligent temperature controller. If the temperature control is in 
the abnormal conditions, the learning procedure must be postponed. In this case the 
setpoint range of the burning zone temperature is kept constant. 
Moreover, setpoint adjustments should be made when the learning system make 
accurate judgment about the kiln operating conditions. Because of complexity and 
fluctuation of kiln operating conditions, accurate judgment for current state usually 
needs long time, and the time span between two setpoint adjustments cannot be too 
short, otherwise the calculated immediate reward cannot reflect the real influence of the 
above adjustment upon the behaviour and performance of the control system. Thus 

special attention should be paid to selection of sτ and rτ . This makes solid foundation, 

on which obtained environmental states and reinforcement payoffs are effective. 
After long term running, large characteristic changes of components of raw material 
slurry, coal and kiln device may appear. The previous optimal designed compensation 
model for the setpoint of burning zone temperature might become invalid under new 
operating conditions. This needs new optimal design to keep good performance of 
control system for long term. In this case, the reinforcement learning system should be 
switched into the learning mode, and above models can be established through new 
learning to improve the performance, so that the control system has strong adaptability 
for long term running.  This is an important issue drawing the attentions of the 
enterprise. 

4. Industrial application  

Shanxi Alumina Plant is the largest alumina plant in Asia with megaton production 
capacity. It has 6 oversize rotary kilns of φ4.5×110m. Its production employs the series 
parallel technology of Bayer and Sintering Processes. Such a production technology 
makes components of the raw material of rotary kilns often vary in large range. It is 
more difficult to keep a stable kiln operation than ordinary rotary kiln. 
A supervisory control system has been developed in the #4 rotary kiln of Shanxi 
Alumina Plant based on the proposed structure and the setpoint adjustment approach 
of burning zone temperature. It is implemented in the I/A Series 51 DCS of Foxboro. 
The Q-learning-based strategy has been realized in the configuration environment of 

Fox Draw and ICC of I/A Series 51 DCS. Related parameters are chosen as sτ ＝30min, 

rτ =120min. 
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Fig. 4. The setpoint of burning zone temperature is properly adjusted after learning 

Fig. 4 shows the condition that, after a period of learning, a set of relatively stable strategies 
of setpoint adjustment has been established so that the setpoint range of TBZ can be 
automatically adjusted to satisfy the requirement of sintering temperature, according to the 
level of raw material slurry flow, the level of coal feeding, the level of TBZ and the level of 
temperature biasing. It can be seen that the setpoint adjustment happened only when TBZ is 
controlled smoothly. The judgment signal, denoted by “control parameter” in Fig. 4, takes 
value of 0 when the burning zone temperature is fairly controlled smooth, and vice versa. 
The adjustment actions of the above reinforcement learning system result in satisfactory 
performance of the kiln temperature controller, with reasonable and acceptable regulation 
amplitude of coal feeding and regulation rhythm, so that the adaptability for variations of 
operating conditions has been significantly enhanced and the production quality index, liter 
weight of clinker, can be kept to reach the technical requirement even if the boundary 
conditions and operation conditions change. Meanwhile, human interventions become 
weaker and weaker since the model application has improved the system performance.  
In the period of test run, the running rate of supervisory control system has been up to 90%. 
Negative influences on the heating and operating conditions from human factors have been 
avoided, rationalization and stability of clinker production has been kept, and operational 
life span of kiln liner has been prolonged remarkably. The qualification rate of clinker unit 
weight has been enhanced from 78.67% to 84.77%; production capacity in unit time per kiln 
has been increased from 52.95t/h to 55t/h with 3.9% increment. The kiln running rate has 

been elevated up to 1.5%. Through the calculation based on average 10℃ reduction of kiln 

tail temperature and average 2% decrease of the residual oxygen content in combustion gas, 
it can be concluded that 1.5% energy consumption has been saved. 
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5. Conclusion 

In this chapter, we focus on the discussion about an implementation strategy of how to 
employ reinforcement learning in control of a typical complex industrial process to 
enhance control performance and adaptability for the variations of operating conditions 
of the automatic control system. 
Operation of large rotary kilns is difficult and relies on experienced human operators 
observing the burning status, because of their inherent complexities. Thus the problem 
of human-machine coordination is addressed when we design the rotary kiln control 
system, and the human intervention and adjustment can be introduced. Except for 
emergent operation conditions that need urgent human operation for system safety, the 
fact is observed that human interventions to the automatic control system usually imply 
human’s discontent to the performance of the control system when the variation of 
boundary conditions occurs. From this idea, an online reinforcement learning-based 
supervisory control system is designed, in which the human interventions might be 
defined as the environmental reward signals. The optimal mapping between rotary kiln 
operating conditions and adjustment of important controller setpoint parameters can be 
established gradually. Successful application of this strategy in an alumina rotary kiln 
has shown that the adaptability and performance of the control system have been 
improved effectively. 
Further research will focus on trying to improve the setting model of the burning zone 
temperature by introducing the offline analysis data of clinker liter weight to reject the 
other uncertain disturbances in the quality control of kiln production.  
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