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Chapter

A Q-Learning-Based Approach for
Simple and Multi-Agent Systems
Ümit Ulusoy, Mehmet Serdar Güzel and Erkan Bostanci

Abstract

This study proposes different machine learning-based solutions to both single
and multi-agent systems, took place on a 2-D simulation platform, namely,
Robocode. This dynamic and programmable platform allows agents to interact with
the environment and each other by employing a variety of battling strategies.
Q-Learning is one of the leading and popular machine learning-based solutions to be
applied to such a problem. However, especially for continued spaces, the control
problem gets deeper. Essentially, one of the main drawbacks of reinforcement
learning (RL) is to design an appropriate reward function that the function can be
described by only employing few parameters for simple tasks, whereas estimating
the goal of the reward function may be a challenging problem. Recent studies prove
that neural network-based approaches can handle these challenges and achieve to
learn control strategies from 2-D or 1-D data. Besides those problems of RL algo-
rithms for single robots, once the number of robots increases and the systems need
to behave as multi-agent systems, the overall design requirements become more
complex. Accordingly, the proposed system is validated by considering different
battle scenarios. The performance of the Q-Learning-based system and the super-
vised learning techniques are compared by employing different scenarios for this
problem. Results reveal the superiority of the ANN-based approach over other
methods.

Keywords: multi-agent systems, Q-Learning, Robocode, auto-encoder,
neural network, battling strategy

1. Introduction

Swarm intelligence is a scientific field that integrates the fields of swarm intelli-
gence and cooperative robotics to establish and coordinate robots to achieve chal-
lenging tasks within a reasonable time [1, 2]. Multi-agent systems, on the other
hand, are considered to be coordination of autonomous agents so as to complete
tasks by exchanging or sharing information over a network. This resembles the
swarm intelligence discipline in similar ways [3, 4], as it has been previously noted
that multi-agent systems mainly deal with the coordination of multiple interacting
agents so as to complete different tasks. The key objective of those systems is to
coordinate rather simple agents instead of using a complex agent [5]. The coordi-
nation ability of agents gains different skills to these systems that individual agents
may not be allowed to achieve, which are, namely, robustness, scalability, and
flexibility [5, 6]. The Robocode platform on the other hand is a game developing
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platform and allows developers to design robot battle tanks to battle against other
tanks [7]. The battles are running in real time, and the game is played on a two-
dimensional simulation environment by employing single or multiple robots, as
shown in Figure 1. These robots can be defined as single robot, or some of them can
be marked as team robots. Each of them is possessed with battling behaviors which
allows them to decide movement, fire, and targeting in order to keep their energies
high and destroy their opponents. The time is measured with ticks, and each robot is
allowed only one movement for each tick. At the end of each round (game), the
total score for each attendee is calculated by their “fire damage,” “ram damage,”
and “survival status.” This lets a team to obtain the highest score even if their robots
did not survive.

The flexibility, scalability, and robustness of the Robocode platform encourage
authors to employ machine learning-based approaches for multi-agent system
problems. Despite their advantages, the platform also offers some challenges that
should be handled in an appropriate manner. The critical issues are detailed
as follows:

• Opponent rounds are not visible and the environment is not fully observable.

• Sensors used by robots are limited.

• The number of action is quite high which makes learning harder.

• The speed of robots slows down during firing and turning behaviors.

• Once the gun of robot’s temperature is high, firing behavior does not work,
which forces users to consider all parameters.

Robocode gathers great deal and attention from a big community including
researcher, students, and engineers, in which design concepts and source codes are

Figure 1.
An example screenshot from the Robocode environment [7].
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shared. Tournaments and leagues are arranged via websites. Hence, the rankings of
customized robots are continuously updated [7]. Therefore, game strategies are
very critical and continuously evolve by utilizing different approaches. Robocode
game strategies are characterized as trees of atomic elements agreeing to actions
and observations in a battle.

Machine learning has been widely used in single [8, 9] and multi-agent systems
[2, 3]. This also encourages researchers to apply machine learning or meta-
heuristic-based methods to train and prepare robotic teams for this battling process
of Robocode environment. For instance, there exist studies employing genetic
algorithm in order to generate various and evolving behaviors using genetic algo-
rithm [8, 10]. Besides, decision tree and neural network-based solutions have been
employed to estimate a strategy to obtain a higher rank in the league [11, 12].
Those studies prove that machine learning is an efficient way of designing and
implementing strategies for such an environment. Accordingly, this study is
inspired from those previous studies and introduces three different machine
learning-based approaches to train and prepare robots for the battle. The first
approach mainly employs reinforcement learning to train a single and team robot
separately so as to allow them to survive in a tank battle. It is proven that despite
its discrete structure, Q-Learning can be adapted for such a complex game. In
addition, a neural network-based design is also implemented in order to compare
the results, which has been previously employed in a similar study [13]. Finally, an
auto-encoder-based model is designed to train a number of robots, allowing them
to battle to the death in an arena. Similar studies can be seen in [14–16]. Next
section mainly introduces the proposed methods separately. The experiments are
defined, and results are evaluated in a detailed manner at the experimental section.
Lastly, the study is concluded at the conclusion section.

2. Methodology

This study proposes three different machine learning-based solutions to
the multi-agent battling game. The first of them employs reinforcement learning
approach, aiming extracting the maximum award from the network used in
learning procedure. The second approach, on the other hand, relies on a
supervised learning algorithm based on an artificial neural network architecture.
Finally, an auto-encoder-based model has been designed and implemented to
train the robots for the challenge. Each of those solutions will be detailed,
respectively.

2.1 Q-Learning robot for Robocode

Reinforcement learning (RL) aims to take suitable action to maximize reward in
a specific situation. It is employed by various software and machines to find the best
possible behavior in particular situation. Reinforcement learning differs from the
supervised learning that the agent agrees what to do to achieve with the given task.
Instead of employing a training dataset, the agent learns from its experiences.
Q-Learning is the most popular RL algorithm and preferred for this study due to its
efficiency and popularity [17]. The agent mainly observes the environment and
performs the action by employing the previously defined action. The agent then
obtains the action consequence or award from the environment. This state and
action pair is kept for future usage since it gives clues about the reward. The
algorithm mainly aims to generate a Q-Table which illustrates maximum expected
future rewards for action at each state. Q-Learning update rule is designed based on
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the Bellman equation so as to estimate the optimal Q-Value, and the Q-Learning
update rule is given as Eq. (1):

Q st; atð Þnew ¼ 1� αð ÞxQ st; atð Þold þ αx rt þ γx maxQ stþ1; atð Þð Þ (1)

where, at each time “t,” the agent selects an action “at,” observes a reward “rt,”
and enters a newer state “st + 1.” Besides, α refers to learning rate, whereas γ
illustrates discount factor. Within the given algorithm and approach, a Q-Learning
robot is designed according to the rule and environment of Robocode. Accordingly,
any robot knows enemy position, bearing angle, and distance to enemy by
employing its radar; then at each step, a robot selects an action that maximizes the
upcoming reward for the current state. These state and action pairs are stored in
table that is updated during the game, and robot collects rewards at each “thick” to
update the table (Q-Table) as a result of applied actions. The lookup table contains
following states and actions for the proposed Q-Learning robot for the Robocode
problem (see Table 1). The flow chart of the Q-Learning robot is given in Figure 2.

The pseudocode of the Q-Learning algorithm is given as follows:
Q-Learning algorithm:
Requires States s:1 to n;

Actions a:1 to m;
Reward Function;

α (learning rate), γ : (discount factor)
Ensures Updated Q-Table for action state coordination
Procedure Q-Learning
Initialize state-actions table Q(s,a)
Current state “s” should be selected

While(A final state or threshold value is obtained)
Basing on the action selection policies select and action a
Obtain reward r for selected action alongside with the next state.
Update Q value for current state s and for following state according to (1)
and parameters
EndWhile

EndProcedure

2.2 Artificial neural network robot for Robocode to approximate Q-Values

Artificial neural network is considered as universal approximators that can be
adapted in many different and challenging problems. Several studies have already
been applied to Robocode environment; some of those references can be seen in
Section 1. Accordingly, a multilayer perceptron inspired from those studies has been
adapted and designed for this study. It mainly aims to search the best output for

States Actions

Robot location Run away from the enemy

Enemy location Move toward the enemy

Bearing angle with the enemy Hold the current position

Energy level Spin clockwise or anticlockwise

Table 1.
List of states and actions for Q-Learning robot of Robocode.
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each Robocode thick based on actions and states that mainly allows us to
approximate maximum Q-Values.

The proposed neural network has a very simple structure which consists of
two layers. The first layer represents inputs, namely, X position, Y position, the
distance between the robot and the opponent, the bearing angle, action, and bias
values. The second layer on the other hand is a fully connected layer. The final layer
represents the Q-Values, as seen in Figure 3. Sigmoid function is employed as the
activation function, and also, node numbers at the hidden layer are estimated by
trial and error method that results in higher learning accuracy.

2.3 Deep auto-encoders applied Robocode to approximate Q-Values

Stacked sparse auto-encoder is a type of deep neural network involving stacking
sparse auto-encoders, and a classifier is regularly used as the final layer for mainly
classification or regression problems [18]. This model has not been applied in such a
problem which encourages authors to employ the technique into the current prob-
lem. Consequently, an example model is designed and given for this problem shown
in Figure 4.

Accordingly, the first auto-encoders are trained by utilizing an unsupervised
training method [18]. Fundamentally, the output of the first sparse auto-encoder is
considered as an input to the second one, and the output of second auto-encoders
becomes an input to the classifier as shown in the corresponding figure. The auto-
encoders and the classifier “SoftMax” are stacked and qualified in a supervised
manner by employing the backpropagation algorithm for estimating the optimum
Q-Value. Each auto-encoder is trained by employing using the cost function illus-
trated in Eq. (1). Er value is regulated by employing mean square error (MSE)
approach:

Figure 2.
Q-Learning robot training flow chart.
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Er ¼
1
M

XM

m¼1

XT

t¼1

xtm � x̂tmð Þ2 þ λ ∗Ω weightsþ β ∗Ω sparsity (2)

where Er is the error rate, x is the input and x̂ is the restored data, }λ} coefficient
is used by L2 “Weight Regularization” and }β} coefficient is used for the “Sparsity
Regularization,” m is the number of observations, and t illustrates the training data
label number.

The Ω weights illustrates “Weight Regularization” and is defined as flows:

Ω weights ¼
1
2

XX

x

XJ

j

XK

k

w xð Þ2

jk (3)

Here X indicates the number of hidden layers, n signifies observation numbers,
and k shows hidden layers [18].

Sparsity Regularization is on the other hand can be defined as follows:

Ω sparsity ¼
XD

i¼1

KL ρkρ̂ið Þ (4)

Figure 3.
ANN architecture to approximate Q-Values.
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where anticipated value is represented by ρ, ρ̂i denotes the average output
activation of each neuron }i, } and “KL” is the function that evaluates the variance
between two probabilities distribution over the same data. The details of those
equations can be seen in [18].

3. Experimental results

Aforementioned Robocode is a tank-combat emulator developed by IBM
alphaWorks [7]. Basically the tank or teams must navigate the environment to avoid
being shot by its rivals. Three different machine learning-based approaches are
employed to train the single and multi-agent systems to win the battle against their
opponents in an autonomous manner. A desktop computer having Intel Core
i7-6700 CPU @ 2.60-GHz and 16-GB RAM is employed to conduct experiments.
Each method and results are illustrated separately by defining scenarios.

3.1 Scenario 1

This scenario illustrates a single robot battle, in which a Q-Learned customized
robot (AUQRobot) fights against the Spin Robot. An example screenshot is illus-
trated in Figure 5. Within the scenario up to 12,000 round took place to train the
robot. Figure 6 illustrates the change of the winning percentage along the rounds.
Regarding to the graph, it is very clear that winning percentage is up to 87% with
the power of reinforcement learning that provided greedy method. Collaterally,
collected cumulative reward change along the rounds gives a same curve. This result
is obtained under Robocode maximum data storing constraints. Results are experi-
enced with a Q-Table includes 9216 elements, and it is also noted that increasing the
table size will probably increase the overall winning performance.

Figure 4.
A stacked sparse auto-encoder (SSAE) having two hidden layers and softmax classifier.
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Within this scenario, Q-Learned customized robot (AUQRobot) fights against
the TrackerBot Robot (see Figure 7), which is also a popular robot used in
Robocode. For this scenario, the same training configuration is also applied, and
92% winning rate is also obtained. An example screenshot obtained from the
Robocode platform is shown in Figure 8. Regarding to the results, Tracker Robot
never survived during a 20-round battle. AUQRobot has lost 8% against to
the opponent.

Figure 5.
A screenshot obtained from Scenario 1 (SpinBot Robot).

Figure 6.
Winning percentage of AUQRobot within rounds.
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3.2 Scenario 2

This scenario illustrates a single robot battle, in which a customized robot
(AUNNRobot) fights against the Spin Robot. The robot, which was implemented
according to the artificial neural network architecture described above, was trained
against SpinBot within 200 and 50,000 iterations. Table 2 illustrates the configu-
ration of ANN-based system.

The neural network performing linear regression and Q-Value, obtained from
Q-Learning algorithm, was employed to train the system. Figure 9 illustrates the

Figure 7.
A screenshot obtained from Scenario 1 (Tracker Robot).

Figure 8.
A screenshot illustrating Total score for Scenario 1 (Tracker Robot).

Input name Parameter range NN input range

Position X 0–800px {0.0, 0.1 … 7.9, 8.0}

Position Y 0–600px {0.0, 0.1 … 7.9, 8.0}

Distance to enemy 0–1000px {0.0, 0.1 … 5.9, 6.0}

Bearing angle between robot and enemy 0°–360° {0.0, 0.1 … 5.9, 6.0}

Table 2.
Configuration of ANN-based system.
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winning percentage of the ANN-based robot within training procedure. Results
reveal that the ANN-based method starts learning rapidly but converge lately when
compared with reinforcement-based approach.

Accordingly, it has been considered that a battle between AUQRobot and
AUNNRobot, both have already been trained for same robot class, may compare
both systems performance appropriately (see Figure 10). In general, none of the
participants are able to outperform the opponent clearly, but AUNNRobot has an
advance as 54–46% over the AUQRobot based on 50 rounds as can be seen in
Figure 11.

The results of deep auto-encoder-based method have also been trained that the
winning percentage of the network with respect to the training data is also illus-
trated in Figure 12, namely, AUAERobot (see Figure 13) that, however, provides
less wining rate compared with AUNNRobot. It should be noted that if raw image
data is employed as input instead of giving position values to the network, the deep

Figure 9.
Winning percentage of AUNNRobot within rounds.

Figure 10.
A screenshot obtained from Scenario 2 for AUQRobot vs. AUNNRobot.
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auto-encoder and also CNN-based architectures may outperform the AUNNRobot
architecture, which is, on the other hand, costly in terms of obtaining training data
as well as performing training process compared with aforementioned approaches.
Despite given challenges, it is planned to apply those architectures to the given

Figure 11.
Results for 50 rounds for Scenario 2.

Figure 12.
Winning percentage of AUAERobot within iterations.

Figure 13.
A screenshot obtained from Robocode for Scenario 2 (AUAERobot).
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problem as future works. Consequently, instead of AUAERobot, AUNNRobot is
preferred to compete with AUQRobot.

3.3 Scenario 3

This scenario illustrates a multi-agent robot battle, in which a customized robot
(AUQRobot) fights against with SpinBot Team. Since one of the starting points of
this study aims to perform multi-agent team battles, first the trained robot forms a
team against a single robot class. Afterward, the members of this team are
programmed not to strike each other. Finally, the robot class, where the training is
achieved, is defined as a robot team of AUQRobot. Figure 14 illustrates a screenshot
from the battlefield. Results reveal that customized decentralized AUQRobot teams
outperform “SpinBot Team” with an average of 65–35% as shown in Figure 15.

3.4 Scenario 4

This scenario illustrates a battle of multi-agent systems consisting of five robot
tanks. According to which, the first team is inherited from AUQRobot, whereas the

Figure 14.
A screenshot obtained from Scenario 3 (multi-agent battle).

Figure 15.
A screenshot obtained from Robocode to illustrate results for Scenario 3.
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second one is inherited from the AUNNRobot model. An example screenshot
obtained from this scenario is shown in Figure 16. Several different competitions
(experiments) were conducted between those robot teams, and results reveal that
the AUNNRobot team outperforms its opponent from 67% (minimum) to 74%
(maximum) winning rate. Figure 17, generated from the Robocode platform during
the experimental procedure, includes 50-round battle and illustrates the team per-
formance of AUNNRobot against its opponent.

4. Conclusion

This paper introduces and compares some of the popular machine learning-
based approaches for the single and multi-agent systems by employing a popular
2-D game simulator, namely, Robocode. This platform essentially allows researchers
to design customized robot teams so as to join the competition and perform tank
battle players and designers all around the world. Despite the challenges of
continued space problem with respect to the characteristics of the games, a

Figure 16.
A screenshot obtained from Robocode for Scenario 4.

Figure 17.
A screenshot obtained from Robocode to illustrate results for Scenario 4.
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Q-Learning-based model is introduced for the problem. Besides, an ANN-based
model is designed to approximate Q-Values instead of constructing a huge Q-Table,
which in essence is not a realistic approach. In addition, previous experiences prove
that stacked auto-encoders (SAEs) may offer an alternative supervised learning
approach once the labeled data is obtained. However, as position data is employed
instead of a raw image, SAEs do not provide any advances such as denoising on
images or reducing the input size. Within these results, it should be noted that raw
images, illustrating game states, should better be employed by the deep architec-
tures, as input to design a stronger architecture than an ANN architecture. How-
ever, within the given input, the ANN model outperforms both machine learning
approaches on both single and multi-agent systems. The experimental results and
evaluation of those results encourage authors to design a SAE- or CNN-based model
using raw images as future works. Those models will only need raw image data to
train models, which will probably outperform both RL- and ANN-based models but
may need larger amount of training data, and also require excessive training time to
form a suitable model. Despite the given explanation, it is not clear to estimate the
performance of those algorithms on different multi-agent systems except Robocode
without implementing and evaluating their overall performance.
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