
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

Water Splitting Electrocatalysis 
within Layered Inorganic 
Nanomaterials
Mario V. Ramos-Garcés, Joel Sanchez, Isabel Barraza Alvarez, 

Yanyu Wu, Dino Villagrán, Thomas F. Jaramillo  

and Jorge L. Colón

Abstract

The conversion of solar energy into chemical fuel is one of the “Holy Grails” of 
twenty-first century chemistry. Solar energy can be used to split water into oxygen 
and protons, which are then used to make hydrogen fuel. Nature is able to catalyze 
both the oxygen evolution reaction (OER) and the hydrogen evolution reaction 
(HER) required for the conversion of solar energy into chemical fuel through 
the employment of enzymes that are composed of inexpensive transition metals. 
Instead of using expensive catalysts such as platinum, cheaper alternatives (such 
as cobalt, iron, or nickel) would provide the opportunity to make solar energy 
competitive with fossil fuels. However, obtaining efficient catalysts based on earth-
abundant materials is still a daunting task. In this chapter, we review the advance-
ments made with zirconium phosphate (ZrP) as a support for earth-abundant 
transition metals for the OER. Our studies have found that ZrP is a suitable support 
for transition metals as it provides an accessible surface where the OER can occur. 
Further findings have also shown that exfoliation of ZrP increases the availability of 
sites where active species can be adsorbed and performance is improved with this 
strategy.

Keywords: water splitting, electrocatalysis, zirconium phosphate, inorganic 
nanomaterials, oxygen evolution

1. Introduction

Global energy consumption is projected to increase drastically in the coming 
decades [1]. To meet this demand, it is estimated that there are 1000–2000 years 
of fossil fuel resources [2]. Nonetheless, while fossil fuels could meet this huge 
demand of energy, CO2 emissions from these resources would contribute to the 
recognized danger of climate change by increasing anthropogenic carbon emissions 
to the atmosphere. This motivates the development of sustainable energy produc-
tion technologies, including fuel production, using solar energy in a process that has 
been called artificial photosynthesis. However, there are large scientific and techni-
cal challenges involved in these schemes.
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One promising scheme for this purpose is the use of hydrogen as a fuel. 
Hydrogen has the largest energy density over any other fuel and it is the most 
abundant molecule in the universe. Hydrogen’s energy density is 120 MJ/kg, more 
than twice than that of natural gas and almost three times higher than petroleum 
[3]. The problem with hydrogen is that even though it is very abundant, it is hard 
to obtain in pure form since it readily reacts with other substances and it is mostly 
found in compounds. Currently, ~96% of hydrogen is produced from fossil fuels 
with the steam methane reforming process [4]. Thus, methods for producing 
hydrogen from hydrogen-containing resources like biomass and water need to 
be more environmentally friendly and economical in order to substitute current 
methods of hydrogen production [4]. The high interest of hydrogen as a fuel arises 
because this gas is highly flammable, burns cleanly, and the cost of solar-based 
electricity is falling rapidly, including that used for hydrogen production [5]. 
The product of hydrogen combustion is water and energy, making this process 
extremely clean:

   2H  2   (g)  +  O  2   (g)  →  2H  2   O (g)  ∆H = − 286 kJ / mol  

Out of all energy resources, solar energy is the most abundant, but it is an inter-
mittent resource [6]. Therefore, to effectively use solar energy, we must convert 
and store it. One way to store this energy is in the form of chemical fuels, such as 
hydrogen. The idea is to split water in its components (hydrogen and oxygen) with 
the help of solar energy since 4.92 eV is stored when two water molecules are split 
[7]. This approach to store energy in the form of chemical bonds (a process that 
mimics the natural photosynthetic process) is called artificial photosynthesis. An 
example of artificial photosynthesis is the process occurring in a solar fuel cell. In 
such cells water is split using sunlight as the energy source. This reaction involves 
two separate redox reactions, one being the oxidation of water to produce oxygen 
and protons (a 4-electron process) and the other one is the reduction of protons to 
form dihydrogen:

  Water oxidation :  2H  2   O →  O  2   +  4H   +  +  4e   −   (Oxygen evolution reaction, OER) .  

  Proton reduction :  2H   +  +  2e   −  →  H  2    (Hydrogen evolution reaction, HER) .  

Electrochemical water splitting can be achieved by using devices that can 
harvest the sun’s energy. The two main configurations of these devices consist of 
(1) a photovoltaic (PV) device connected to a separate electrolyzer with catalysts 
that drive the necessary half reactions (PV/electrolysis) and (2) a fully integrated 
system where the catalysts are deposited on top of the light absorbing materi-
als (photoelectrochemical, PEC devices) [8]. The efficiency of these devices is 
calculated based on the solar-to-hydrogen (STH) or solar-to-fuel (STF) effi-
ciency, which is defined as the amount of chemical energy produced in the form 
of fuel divided by the solar energy input, with no external bias applied [9]. High 
STH efficiencies are desired as it has been proved that it is the factor with the 
biggest impact on the final cost of the fuel produced on any of these systems [8]. 
Although, other factors such as stability and material cost are also important for 
the final cost of the fuel.

Theoretical efficiencies calculated using combinations of published catalysts 
for the OER and the HER in a PEC device show that the STH efficiencies are far 
lower than the maximum thermodynamically achievable efficiency of 41% [8]. 
This highlights the need to develop more active catalysts, especially for the OER 
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as it is the main cause of energy loss in the form of kinetic overpotentials during 
fuel production. Furthermore, to bring these technologies towards economi-
cal implementation, it is of much importance to continually improve device 
performance. Besides, benchmarking studies have shown that catalyst stability 
is also a major issue as the reactions are mostly carried in harsh chemical condi-
tions, especially in very high or low pH [10–12]. Recently, density functional 
theory (DFT) calculations have shown that performing the OER in a confined 
nanoscopic environment improves the electrochemistry of the reaction by 
lowering the overpotential and increasing the catalytic efficiency by 10% [13]. 
These theoretical results were modeled on a layered RuO2 system and attributed 
the improvement in activity to interactions of intermediates with the opposite 
surface of the metal oxide. There is evidence that encapsulation of catalysts 
can lead to improvements on selectivity and activity for a variety of reac-
tions, including water oxidation [14–17]. This motivated us to use the layered 
compound zirconium phosphate (ZrP) as a support for active OER catalysts to 
mimic an environment that theoretical works have modeled. We want to target 
the issues presented by OER catalysts by developing catalytic systems based on 
ZrP nanomaterials with the goal of optimizing efficiencies of future solar water 
splitting devices.

1.1 Zirconium phosphates

Zirconium phosphates are part of the group of water-insoluble phosphates of 
tetravalent metals containing layered structures. Zirconium bis(monohydrogen 
orthophosphate) monohydrate (Zr(O3POH)2·H2O, α-ZrP) is the most exten-
sively studied phase of ZrP. α-ZrP has an interlayer distance of 7.6 Å with a layer 
thickness of 6.6 Å (Figure 1a and b) [18]. α-ZrP has a structure in which the 
zirconium atoms in each layer align nearly to a plane with bridging phosphate 
groups located alternately above and below the metal atom plane [19]. Three 
oxygen atoms of the phosphate group bond to three different Zr4+ and each Zr4+ 
ion coordinates with oxygens from six different phosphate groups [19]. The 
fourth oxygen from the phosphate group, which has a proton, points towards 
the interlayer region and the surface of the nanoparticles. This proton can be 
exchanged with cations or molecules. The structure of α-ZrP contains a zeolitic 
cavity in the interlayer region with a diameter of 2.61 Å that is occupied by a 
water molecule [20, 21].

Figure 1. 
(a) The structure of α-ZrP. (b) Polyhedral model of the structure of α-ZrP.
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1.2 Intercalation of guest species into ZrP

Intercalation is defined as the reversible insertion of guest species into a lamel-
lar host structure with maintenance of the structure features of the host [22]. For 
α-ZrP, the direct intercalation of small cations is possible if they are smaller than 
2.61 Å, but for larger cations and molecules intercalation is not significant and/or 
these species are exchanged at very slow rates [23–26]. To circumvent this problem, 
α-ZrP pre-intercalated phases with sodium ions or n-butylammonium (both pro-
duce expanded phases) are commonly used as precursors to intercalate the intended 
guest species. One problem that arises with this method is that the pre-intercalated 
species do not necessarily exchange completely with the intended guest, thus 
becoming a contaminant in the intercalation product.

Martí and Colón developed a new direct intercalation method that does not 
require a pre-intercalation step using a highly hydrated phase of zirconium phos-
phate, θ-ZrP [27]. θ-ZrP maintains the α-ZrP-type layered structure (Figure 2) but 
has an interlayer distance of 10.4 Å and has six water molecules per formula unit, in 
contrast with α-ZrP that only has one [28]. Zirconium bis(monohydrogen ortho-
phosphate) hexahydrate (θ-ZrP) converts back to α-ZrP when it dehydrates. X-ray 
powder diffraction (XRPD) can be used to distinguished between both ZrP phases. 
When θ-ZrP is dried, producing α-ZrP, the first diffraction peak at 2θ = 8.6° which 
corresponds to the 002-plane reflection of ZrP and that of the interlayer distance, 
shifts towards 11.6°; the angle corresponding to an interlayer distance of 7.6 Å, 
characteristic of α-ZrP (Figure 3). For this reason, if a dry intercalation product is 
analyzed by XRPD and the first diffraction peak corresponds to a distance greater 
than 7.6 Å, this indicates that the intercalation reaction was successful [29]. One of 
three possible patterns can be observed by XRPD for intercalation products of ZrP; 
either (i) a pattern with a peak corresponding to a larger interlayer spacing at lower 
2θ values than 11.6° indicates that the intercalant was introduced into the interlayer, 
(ii) a pattern with two distinct peaks, one at 2θ = 11.6° and one that appears at lower 

Figure 2. 
The structure of θ-ZrP.
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2θ values than 11.6° indicates that a mixed phase is present [30], and (iii) a pattern 
with no change in the reference peak, indicating that the intercalant species did not 
intercalate and is adsorbed on the outer surface of the layered structure or that is 
not present at all.

ZrP has been used for the intercalation of several photo-, bio- and redox-active 
compounds for a wide variety of applications including artificial photosynthesis, 
amperometric biosensors, and drug delivery [27, 30–42]. Even though ZrP has 
previously been studied for catalysis [43–47], membrane composites for proton 
exchange water electrolyzers [48–52], and as additive for catalytic layers for OER 
in order to protect metal oxide catalysts [53], our work is, to the best of our knowl-
edge, the first time ZrP is used as an inorganic support for catalysts for the OER.

1.3 Chemical exfoliation of ZrP nanoparticles

The process of separating the layers of a layered material is known as exfoliation. 
This process has been extensively studied for a myriad of layered materials and the 
two-dimensional materials (2D) that result have been shown to have several advan-
tages over their bulk systems [54]. α-ZrP has been successfully exfoliated through 
a variety of methods [55–58], and its nanosheets used for different applications 
[59–62]. The main strategy for ZrP exfoliation consists on the intercalation of small 
amines with positive charges that can easily displace the protons from the phosphate 
groups in an acid-base reaction and enter the interlayer space. If a high enough con-
centration of these amines is used, an amine double layer will form in the interlayer 
space, leading to exfoliation due to cation-cation repulsions (Figure 4) [56].

One of the most highly used amines for the exfoliation of ZrP is tetra-n-butyl-
ammonium hydroxide (TBA+OH−). If TBA+OH− is used, the exfoliated material will 
consist of single nanosheets of ZrP suspended with TBA+ attached to them. This 
reaction is temperature sensitive as it has been found that that hydrolysis of the ZrP 
edges occurs due to the OH− ions. However, the rate of hydrolysis of ZrP during 
exfoliation with TBA+OH− at 0 °C is essentially zero [58]. If the exfoliated material 

Figure 3. 
XRPD patterns of α-ZrP (black) and θ-ZrP (red).
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is dried, restacking of the layers occurs with a new expanded phase of 16.8 Å 
corresponding to TBA+ intercalated in ZrP [63]. The TBA+ cations can be displaced 
with another cationic species if the latter is put in contact with a suspension of 
the exfoliated ZrP nanoparticles. Hence, if the desired material is the exfoliated 
nanosheets with their phosphate groups protonated, then a follow up reaction with 
an acid can be performed [60].

2. Metal-modified ZrP based electrocatalysts for the OER

To facilitate the economic viability of water splitting, the efficiency of electro-
lyzers must be improved by addressing the overpotential losses associated with the 
sluggish OER kinetics. To this end, recent studies have focused on developing cata-
lysts materials using earth-abundant transition metals [64]. Significant research 
has been devoted to improving OER electrocatalysts by using a wide variety of 
strategies that either increase the intrinsic activity of active sites or by increasing 
the number of them [65]. One general strategy that has been effective is to support 
active materials onto supports that engender improved performance [65–68]. ZrP 
properties make it a potential candidate as a support for active OER catalysts. Its 
ability to confine catalysts, high thermal stability, stability under a wide range of pH 
values, and its overall robustness are all desired for an ideal support. In our work, 
we intercalated the earth-abundant transition metal cations Fe2+, Fe3+, Co2+, and 
Ni2+ into ZrP and assessed these composite materials as OER electrocatalysts [69].

2.1 Metal-intercalated and surface adsorbed ZrP systems

To intercalate the desired transition metals, a suspension of θ-ZrP must be 
mixed with a solution of the metal salt precursor and left stirring for 5 days so that 
ion-exchange reaches equilibrium. To optimize metal loading for improved catalysis 
performance, we synthetized these composite materials with several synthesis 
metal salt:ZrP molar ratios (10:1, 5:1, 3:1, 1:1, 1:3, 1:5, 1:10, and 1:20 M:ZrP). A 
stepwise process is expected as a function of intercalant solution molarity; the 
intercalation reaction initiates from the edges of the particle and proceeds by 
diffusion of the metal cations towards the interior of the interlayer sheets [70]. The 
XRPD patterns (Figure 5a) for all four metal samples show that the first diffraction 
peak of ZrP is shifted to lower 2θ angles, indicating larger interlayer distances and 
successful intercalation. Increasing the M:ZrP molar ratios results in peak broaden-
ing and shifting in all samples indicating a more mixed phase is present and that the 

Figure 4. 
Schematic drawing of the ZrP exfoliation process with TBA+.
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layered structure has not achieved its maximum cation loading within the inter-
layer. However, at the highest loadings (i.e., 1:1–10:1 molar ratios), the original peak 
at 2θ = 11.6° disappeared, and a new peak emerged at significantly lower values of 
2θ, reaching a final value indicative of the maximum interlayer distance for that 
particular metal cation intercalated within ZrP. As expected, +2 cations produced 
intercalated products with the first diffraction peak at lower angles than those pro-
duced by +3 cations. Compared to α-ZrP, the maximum interlayer distance increase 
observed for +2 cations was 2 Å, while for +3 cations it was 0.6 Å (Figure 5b). This 
difference in the increase in interlayer distance between the divalent and trivalent 
metal cations can be attributed to the difference electrostatic forces within the 
layers, consistent with Coulomb’s Law. Trivalent cations produced a smaller increase 
because of a stronger electrostatic attraction between the metal cation and the 
negatively charged ZrP layers.

Ion-exchange in ZrP occurs at the Brönsted acid groups (P-OH) which are also 
present at the surface of the nanoparticles. Hence, there is no way of preventing 
that the metal cations get adsorbed to the surface. To obtain more insights into the 
nature of the activity of the samples, a metal-modified ZrP system in which the 
metals are only adsorbed onto the surface of the nanoparticles was also prepared. 
To prepare these samples, α-ZrP must be used as the ZrP source as the metal cations 
are large enough to not intercalate into the interlayer. XRPD data shows that the 
interlayer distance of these dry sample remains that of α-ZrP, 7.6 Å (Figure 5b). 
The presence of the metals in these systems was confirmed by high resolution X-ray 
photoelectron spectroscopy (XPS). XPS was also used to determine the atomic 
concentration on both metal-modified ZrP systems, intercalated and adsorbed [69]. 
Due to the uptake of metal cations within the much larger area of the interlayers 
of ZrP rather than solely on the surface in the adsorbed case, XPS high resolution 
scans show that intercalated ZrP systems have higher atomic metal content when 
compared to adsorbed systems at similar M:ZrP ratios.

Another useful tool to characterize ZrP systems is Fourier transform 
infrared spectroscopy (FT-IR). α-ZrP has four characteristic bands associated 

Figure 5. 
(a) XRPD patterns for Fe(II), Fe(III), Co(II), and Ni(II)-intercalated ZrP at (from top to bottom) 10:1, 
5:1, 3:1, 1:1, 1:3, 1:5, 1:10, and 1:20 M:ZrP molar ratios. The bottom diffraction pattern in all frames is that of 
pure α-ZrP; (b) interlayer distance as a function of M:ZrP molar ratio for the various metal-intercalated ZrP 
materials. Metal-adsorbed systems are represented as dashed lines which have an exact interlayer spacing as 
pure α-ZrP indicating that metal intercalation did not occur. Taken from reference [69].
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with lattice water molecules. These bands appear at ~3600, ~3500, ~3140, and 
~1600 cm−1 [71]. When intercalation occurs, the intercalant species will dis-
place interlayer water molecules. For this reason, bands associated with these 
water vibrational modes showed reduced relative intensity in the intercalated 
materials (Figure 6a). In contrast, metal-adsorbed samples showed very similar 
spectra to that of α-ZrP, with the water bands still present, indicating negligible 
intercalation (Figure 6b). The characteristic orthophosphate group vibrations 
of ZrP are observed in the region of ~1100–950 cm−1 (Figure 6a). Intercalated 
samples show a diminished relative intensity of the shoulder at the left part 
of the orthophosphate group vibrations at ~1050 cm−1 that is attributed to the 
vibration of the exchangeable proton of the phosphate group, which is lost when 
the proton is exchanged by intercalation via ion exchange with other species. For 
metal-adsorbed samples, this vibration is still present indicating once again that 
no intercalation is observed.

2.2 OER electrochemical performance of metal-intercalated and surface 
adsorbed ZrP systems

To determine the activity of our metal-modified ZrP products towards the OER, 
cyclic voltammetry experiments were conducted using a Rotating Disk Electrode 
(RDE) assembly in alkaline electrolyte (0.1 M KOH). The methodology employed 
was according to the benchmarking protocols suggested for OER electrocatalysts 
[10–12]. The primary figure of merit from this data is the overpotential neces-
sary to achieve 10 mA/cm2 (ηj = 10 mA/cm2). The overpotential measured at 10 mA/
cm2 is the potential difference between the potential to achieve 10 mA/cm2 and 
the thermodynamic potential of water oxidation (1.23 V vs. RHE). All samples 
were active for the OER, requiring between 0.5 and 0.7 V of overpotential to reach 
10 mA/cm2, depending on the choice of metal cation, the M:ZrP molar ratio used 
during synthesis, and whether the metal was intercalated into or adsorbed onto 
ZrP. In general, lower overpotentials are observed for the higher M:ZrP molar ratios, 
ascribed to higher metal loadings. Also, OER activities for the metal-adsorbed ZrP 
catalysts are greater than or equal to those of their metal-intercalated counter-
parts at the same loading, as seen by their lower overpotentials (Figure 7). This is 

Figure 6. 
FTIR spectra of (a) intercalated and (b) adsorbed Fe(II), Fe(III), Co(II), and Ni(II) at 10:1 M:ZrP ratio. 
Taken from Ref. [69].
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somewhat surprising as XPS showed that higher metal loadings were achieved in 
the intercalated systems. This suggests that the OER is dominated by catalysis on 
the outer surface of the ZrP supported metal-based systems rather than within the 
layers, which may be limited by mass transport. These results serve as a basis for 
developing improved OER catalyst systems.

2.3 Metal-modified exfoliated ZrP

Our previous finding suggests that ZrP can serve as a support for transition 
metal-based OER catalysts and that the reaction occurs preferentially on the surface 
of the layered ZrP nanoparticles rather than the interlayer space [69]. Based on 
these results, we expected that exposing surface sites through exfoliation of ZrP 
could improve these catalytic systems. With the goal of developing more active 
materials, we prepared exfoliated ZrP nanosheets and modified these exfoliated 
nanoparticles with Co2+ and Ni2+ [72]. These systems underwent reaction at the 
same molar ratio than that of the best performing metal-adsorbed ZrP system 
(10:1 M:ZrP).

ZrP exfoliation was carried out by adding an excess of TBA+OH− in an ice bath 
followed by an acid wash with HCl. To modify the exfoliated ZrP with the transition 
metals, an aqueous suspension of the nanosheets is put in contact with an aqueous 
solution of the metal salt precursor. The XRPD pattern of exfoliated ZrP shows 
the extreme broadening characteristic of successful exfoliation (Figure 8). The 
diffractograms of Co and Ni-modified ZrP nanosheets are very similar to that of 
exfoliated ZrP confirming that no further restacking occurs after metal modifica-
tion (Figure 8). Transmission electron microscopy (TEM) also confirms this as the 
ZrP nanosheets show a fainter contrast when compared with α-ZrP nanoparticles 
which is consistent with its thinner nature, since in TEM areas that contain heavy 
atoms or are thick appear darker (Figure 9a–d). After exfoliation, the nanosheets 
retain the hexagonal shape of α-ZrP and no hydrated zirconia nanoparticles are 
observed decorating the edges of the sheets, indicating that the hydrolysis prone 

Figure 7. 
Electrochemical performance comparison of all four metal systems for adsorbed and intercalated species at 
10 mA/cm2 except for Ni(II) which was compared at 3 mA/cm2. Solid and dashed lines represent intercalated 
and adsorbed metal ZrP systems, respectively. Taken from reference [69].



Water Chemistry

10

edges were preserved by temperature control during the exfoliation reaction and 
that the structure of the layers did not change [58]. This was also confirmed by XPS 
as the P/Zr ratio after exfoliation remains constant at ~2.

Figure 8. 
XRPD patterns of α-ZrP, exfoliated ZrP, and metal-modified exfoliated ZrP samples. Reprinted with 
permission from [72].

Figure 9. 
(a, b) TEM images of α-ZrP nanoparticles. Scale bar: 0.5 and 100 nm, respectively. (c, d) TEM images of 
exfoliated ZrP. Scale bar: 0.5 μm and 100 nm, respectively. Reprinted with permission from [72].
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2.4 OER electrochemical performance of metal-modified exfoliated ZrP 
electrocatalysts

Linear sweep voltammetry (LSV) was used to assess the activity of these exfoli-
ated materials (Figure 10) [72]. OER catalytic currents for the exfoliated materials 
were shifted to lower potentials when compared to their surface adsorbed counter-
parts. The overpotential necessary to reach a current density of 10 mA/cm2 for the 
Co-modified exfoliated nanosheets was 0.450 V, an improvement of 41 mV over the 
surface adsorbed Co material. For the Ni-modified the overpotential necessary to 
reach a current density of 3 mA/cm2 is 0.410 V, an improvement of 181 mV over the 
surface adsorbed Ni material.

To elucidate the nature of the increased activity of the exfoliated materials, we 
determined the intrinsic activity of each catalytic site in both types of systems [72]. 
To construct a mass normalized current plot, we performed inductively plasma-
mass spectrometry (ICP-MS) measurements on our samples to quantify the amount 
of nickel and cobalt metal content in the exfoliated and bulk materials. ICP-MS 
measurements show that the exfoliated samples are substantially better at adsorb-
ing Co and Ni cations, leading to higher loadings than non-exfoliated ZrP. For our 
mass normalized plots, we assumed that all metal content quantified by ICP-MS 

Figure 10. 
Linear sweep voltammograms of (a) Ni(II)/ZrP systems and (b) Co(II)/ZrP systems. Reprinted with 
permission from Ref. [72].

Figure 11. 
Mass normalized catalytic currents for (a) Ni(II)/ZrP systems and (b) Co(II)/ZrP systems. Reprinted with 
permission from Ref. [72].
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in the materials were active and accessible to perform OER. Figure 11a and b show 
the LSVs where the OER currents are normalized by the mass of the metal content. 
These exfoliated systems maintain reasonably high intrinsic activity values that, 
when coupled to a significant greater number of active sites leads to higher geomet-
ric activity. We concluded that the enhancement in activity is due to the fact that 
the inner layer surfaces are now more electrochemically accessible [72]. Through 
exfoliation the number of ion-exchange sites increases which increases the number 
of catalytic species that are distributed on the surface of zirconium phosphate, 
therefore giving rise to the improved performance.
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