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Chapter

Generalized Low-Density
Parity-Check Codes: Construction
and Decoding Algorithms
Sherif Elsanadily

Abstract

Scientists have competed to find codes that can be decoded with optimal
decoding algorithms. Generalized LDPC codes were found to compare well with
such codes. LDPC codes are well treated with both types of decoding; HDD and
SDD. On the other hand GLDPC codes iterative decoding, on both AWGN and BSC
channels, was not sufficiently investigated in the literature. This chapter first
describes its construction then discusses its iterative decoding algorithms on both
channels so far. The SISO decoders, of GLDPC component codes, show excellent
error performance with moderate and high code rate. However, the complexities of
such decoding algorithms are very high. When the HDD BF algorithm presented to
LDPC for its simplicity and speed, it was far from the BSC capacity. Therefore
involving LDPC codes in optical systems using such algorithms is a wrong choice.
GLDPC codes can be introduced as a good alternative of LDPC codes as their
performance under BF algorithm can be improved and they would then be a
competitive choice for optical communications. This chapter will discuss the itera-
tive HDD algorithms that improve decoding error performance of GLDPC codes.
SDD algorithms that maintain the performance but lowering decoding simplicity
are also described.

Keywords: channel coding, generalized LDPC codes, iterative decoding,
bit-flipping, chase algorithm

1. Introduction

Generalized LDPC (GLDPC) block codes were first proposed by Tanner [1] as
they internally contain block codes (which are called component codes) and not just
single parity check (SPC) as the case in LDPC codes. From this definition, we know
that LDPC codes can be regarded as a special class of GLDPC codes. GLDPC block
codes possess many desirable features, such as large minimum distance [2], good
iterative decoding performance, and low error floor [3]. At the same time, the
complexity of the processed operations increases due to the inserted complicated
constraints. Therefore, scientists are stirred to find a good GLDPC code with
suitable subcodes achieving the desired error performance at fair complication. The
methods in [4] by Fossorier and the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm
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[5], APP decoding algorithm, are vastly investigated for GLDPC decoding. Both
algorithms perform the task with various subcodes, such as Hamming codes [2, 6],
BCH codes [6, 7], RS codes [7], and GLDPC code with hybrid subcodes [8, 9].
However, these decoders can be considered highly complicated. In [10], a kind of
Hadamard-based GLDPC codes was suggested. The complicated decoding processes
were avoided due to the easiness and fastness of the used subcode transform (FHT).
On the other hand, this code is not convenient in many communication systems as it
is described as low code rate (R≤0:1). The soft-input/soft-output (SISO) decoders
for decoding the component codes in GLDPC codes were considered in [2, 6] and
[11] showing very good error performance with moderate and high code rate. Two
interesting approaches at GLDPC codes have been presented in [4, 12]. In [12] the
proposed construction concentrates on maximizing the girth and the minimum
distance of the global code. The generated codes achieved coding gain up to 11 dB
over 40 GB/s optical channel. In [4] the authors propose doubly generalized LDPC
codes. These codes employ local codes at both variable and check nodes. Back to
LDPC codes and since their resurrection, most research efforts were directed
toward the implementation of these codes over the additive white Gaussian noise
(AWGN) channel. The LDPC codes were proven to perform very close to the
Shannon limit of AWGN channel, and much work has been carried out to design
optimal codes and improve and simplify iterative decoding of these codes over the
AWGN channel. The major drawback is that it exhibits considerable computational
complexity. Gallager accurately, on the other hand, analyzed the performance of
LDPC codes over the binary symmetric channel (BSC) in his original paper and
proposed two HDD bit-flipping (BF) algorithms, for which he provided theoretical
limits under iterative decoding. However, BF algorithms did not gain much atten-
tion. Most of the work that considered BF decoding used it in conjunction with soft
information obtained from AWGN channel to improve decoding performance.
However, in some applications, such as optical communications, soft values are not
available at the receiver. Therefore, optical channels are an excellent example of the
BSC, and only hard decision decoding is possible. Currently, BCH and RS codes
are exclusively used in optical communication for error control, since there are
simple and efficient algorithms for decoding. With the recent introduction of
wavelength division multiple access (WDMA), transmission rates in optical com-
munications reach 40 GB/s per channel/fiber, a standard in modem optical net-
works, SONET/SDH. Moreover, the concept of signal regeneration was abandoned
in optical communication with the advancement in lasers so that optical signal is
transmitted over larger distance than before, reaching the receiver very attenuated.
These developments in optical communication call for an error control code which
is very powerful yet has a simple and fast decoding. Furthermore, very low error

rates are needed, say BER of 10�15.
The BF algorithm proposed by Gallager is a HDD algorithm and is implemented

using modulo-2 logic. Therefore it satisfies the requirement for simplicity and
speed. However, the performance of the decoding algorithm is far from the capacity
of the BSC, and, more importantly, an error floor is generally observed, which
seriously constrains implementation of LDPC codes in optical systems. GLDPC
codes can be introduced as a good alternative of LDPC codes as their performance
under the BF algorithm can be improved and the observed error floor can be
lowered or even removed. GLDPC codes would then be a competitive choice for
optical communications.

In this chapter, iterative decoding of GLDPC codes over AWGN and BSC is
studied. HDD algorithms that improve decoding performance and error floor
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behavior of GLDPC codes over BSC channels are discussed. They make GLDPC
codes very competitive for high-rate optical communications. Soft decision
decoding (SDD) algorithms that maintain the performance but lower decoding
simplicity are also presented.

2. GLDPC code construction

The check node in the bipartite graph of the LDPC code, as said before, is
connected to a number of variable nodes which satisfy a single parity check. The
GLDPC is a more generalized form of LDPC as the bits of the VNs, connected to the
same CN, constitute a valid codeword of a (n,k) linear block code (other than the
simple SPC code). Therefore this (n,k) code is called a constituent code, component
code, or simply subcode. The CN which associates with this generalized code is
called a generalized CN (GCN). The GLDPC code is referred to as a (N, J, n) regular
and “strict-sense” code, as depicted in Figure 1, if:

• The VN degree (denoted as qw) is constant for all VNs (qw ¼ J).

• The GCN degree (denoted as qc) is constant for all GCNs (qc ¼ n).

• The same constituent code (other than the simple SPC code) stands for all GCNs.

Figure 1.
The bipartite graph of the strict-sense (32,2,16) regular GLDPC code.
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where J is the column weight in the parity-check matrix of the global LDPC code
and N is the overall code block length. The GLDPC code is otherwise called “hybrid
code” (if not all the GCNs has the same constituent code) [8, 13].

The GLDPC code rate is given by R ¼ K=N ≥ 1� J 1� k=nð Þ, where K denotes its
code dimension and N denotes its block length. The GLDPC code, according to the
chosen values of its parameters, has multiple wonderful properties such as the
better minimum distance (compared to LDPC code with the same code rate) [2].
The GLDPC also converges faster, and it is distinguished by the lower error floor
[3]. We are interested here with GLDPC codes based on Hamming codes for sim-
plicity and fast decoding purposes.

Figure 1 elaborates the bipartite graph of a N; J; nð Þ regular Hamming-based
GLDPC code with (4 � 32) global LDPC matrix. The extended Hamming (8,4)
constituent code is represented in every GCN. Figure 2 depicts the procedures to
get the overall parity-check matrix of this code from the global LDPC matrix (or
referred to as the graph adjacency matrix). Every “1” in every row in the global
matrix is replaced with a column from the columns of the constituent code
parity-check matrix, and every “0” is replaced with a zero column. The assignments
of the constituent code H columns should be randomly done to generate a code
with good characteristics. There are other constructions of GLDPC which can be
further discussed in [14–16].

3. SDD of GLDPC codes

SDD of Hamming-based GLDPC codes was presented in the literature and
shows that GLDPC codes are asymptotically good and can achieve the capacity by
iterative decoding using soft-input/soft-output subcode decoders [2, 6, 17]. The
SISO decoder is typically a sub-optimal erasure decoder extended to deliver soft
outputs, e.g., chase-II decoder [18], which is used in this section.

A N; J; nð Þ GLDPC code is constructed from a N:J=nð Þ by N random sparse
matrix H, with row weights of n and column weights of J, and the parity-check
matrix Hc of a n; k; dð Þ subcode. The resultant GLDPC parity-check matrix is
denoted as HGLDPC as discussed in Section 2.

Figure 2.
The procedure of generating a (32,2,16) Hamming-based GLDPC code from its base matrix.
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At any GCN c, the input to the chase decoder is Rc ¼ rc,1;⋯; rc, i;⋯; rc,nf g
corresponding to the transmitted word Xc ¼ xc,1;⋯; xc, i;⋯; xc,nf g and its hard

demodulated values Yc ¼ yc,1;⋯; yc, i;⋯; yc,n

n o

.

A group of codewords are selected as the most likely ones that hold the trans-
mitted words with the minimum errors. The algorithm operates on the available
data (reliability) and flips all possible combinations of p ¼ d=2 demodulated sym-
bols with the least-reliable positions (LRPs). Setting the reliability information in
[19] in the log-likelihood ratio (LLR) of decision yc, i as

Λ yc, i

� �

¼ ln
pr xc, i ¼ þ1=xc, ið Þ
pr xc, i ¼ �1=xc, ið Þ

� �

¼ 2

σ2

� �

rc, i (1)

A set Zc ¼ Zq
c

� �

of error patterns with all possible errors confined to p LRP
positions of Yc is used to modify Yc yielding list of test patterns Tq

c q∈ 1;⋯; 2pf g;ð
Tq
c ¼ Zq

c þ YcÞ. Then every Tq
c in the list is decoded using algebraic decoder, and the

valid decoded codeword Cq is stored in a list Ω as a candidate codeword. Decision
codeword Dc ¼ dc,1;⋯; dc, i;⋯; dc,nf g should be chosen from this list as it is obtained
using the rule [20]:

Dc ¼ Cq if Rc � Cqj j2 ≤ Rc � Cl
�

�

�

�

2
for everyCl ∈Ω (2)

Now, every decoded symbol resulting value in the subcode (soft) is to be
estimated to be passed back on the edges, linked to symbol nodes with steps as the
MP algorithm iteratively to output a final estimate after performing a predefined
amount of iterations or satisfying the syndrome check.

In order to calculate the reliability of each bit, dc, i, in the decision Dc (i.e., the ith

soft output of the soft-input decoder), two codewords Cþ1 ið Þ and C�1 ið Þ are to be
selected from two sets of Ω with minimum Euclidean distance from R. The decision
Dc is one of them, and the second one, Bc ¼ bc,1;⋯; bc, i;⋯; bc,nf g, called as
competing codeword of D with bc, i 6¼ dc, i, should be found.

The soft outputs are generated in the LLR domain outgoing from GCN c using
the following approximation formula:

r
0

c, i ¼
Rc � Bcj j2 � Rc �Dcj j2

4

 !

dc, i (3)

If the competing codeword Bc is not found, the following alternative and
efficient formula is used:

r
0

c, i ¼ β � dc, i with β≥0 (4)

where β is a reliability factor. Due to the variation of sample deviation in the
input and in the output of the soft decoders, we put a scaling factor, α, to increase
the convergence rate:

Wc tþ 1ð Þ ¼ Rc þ α tð ÞWc tð Þ (5)

By subtracting the soft input rc, i from the soft output r
0
c, i for each i∈ 1; 2;⋯; nf g

at GCN c, the extrinsic information during the tth iteration, W tð Þ, is obtained. It is
then multiplied by the scaling factor, α tð Þ, added to the channel observed values Rc,
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and the result is considered as a priori information for the decoder at the next
tþ 1ð Þth iteration.

Figure 3 shows that a chase rather than optimal SISO decoder can be
successfully employed in the decoding of high-rate extended Hamming-based
GLDPC codes and the BERs are close to the capacity with the efficient fast chase
decoding in [21].

4. HDD of GLDPC codes

The HDD such as BF decoding or any other algebraic decoding scheme can be
generalized to GLDPC codes especially over BEC or BSC and can be applied in very
high-speed applications such as the 40 GBps optical communications. The error-
correcting capability of the subcodes, at the GCNs, is used to more accurately
determine the position of least-reliable symbols. The iterative HDD algorithms for
decoding GLDPC codes will be described in the next subsections.

4.1 WBFV algorithm

As mentioned before in BF algorithm of LDPC codes, symbols belonging to the
maximum number of unsatisfied CNs, in each iteration, have the binary bits
inverted before the following iteration. Subsequently, the failed CNs convey their
votes of unit weight to the corresponding connected VNs, and the algorithm inverts
the LR bits with the highest amount of votes.

The presented iterative weighted bit-flip voting (WBFV) in [22] employs
subcode hard decision decoders (HDDs) at the GCNs that have a greater range of
vote weights passed to the connected VNs. It passes the high-weight votes to a
specific symbol if the HDD, at a given GCN, considers it to be in error.

As the GLDPC codes of Gallager construction, J ¼ 2, and Hamming subcode are
only concerned, all nonzero syndromes of these subcodes will be error-correctable.
The algebraic decoders only allow for two instances:

• All-zero syndromes imply a valid codeword; in this case a vote V will be
returned to all connected VNs (symbols) as in GCN 1 in Figure 4.

Figure 3.
Performance variation with erasures p for (65,536,2,64) GLD code.
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• Nonzero syndromes imply nonvalid codewords; in this case the indicated error
position will be sent a vote E, and all other bits a vote e as in GCN 2 in Figure 4.

After votes have been cast, each symbol has received a vote pair: either VV, eV,
ee, EV, Ee, or EE. In the example shown, the symbol at the two subcodes’ intersec-
tion has a vote pair eV.

The strategy proceeds by passing current bit values from the VNs to the Ham-
ming decoders at GCNs. The HDDs at these GCNs pass back n individual votes to
the symbols they connect.

The magnitude of a vote marks the power of the decision for a GCN about the
current symbol (reliable or not). The higher magnitudes mark the unreliable bits,
and the lower ones mark the bits of more reliability.

The J arriving votes to every VN are collected such that all N variable symbols
are sorted by the reliability information and the group of LRP bits inverted before
the upcoming iteration.

The iterative algorithm proceeds until all symbols become of weight pair VV or
the maximum number of iterations is reached. For Hamming subcodes there are
only three votes V, e, and E generated by the subcode HDDs described before. The
vote rules, as sets of vote weights, are defined and listed in Table 1.

Figure 4.
Example votes from subcode decoders.

Rule A Rule B Rule C

V ¼ 0, e ¼ 2,E ¼ 3 V ¼ 0, e ¼ 1,E ¼ 2 V ¼ 0, e ¼ 1,E ¼ 3

Vote pair Total Vote pair Total Vote pair Total

EE 6 EE 4 EE 6

Ee 5 Ee 3 Ee 4

ee 4 EV, ee 2 EV 3

eV 2 VV 0 eV 1

VV 0 VV 0

Table 1.
Vote pair orderings for three vote rules.
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Figure 5 shows that there is an obvious coding gain with increasing N. Actually,

the BER curve p required to give Pb ¼ 10�5 versus N showing a linear relationship
between log p and log N.

4.2 BCH-based Fossorier decoding algorithm

In [6] GLDPC codes with BCH subcodes (instead of Hamming subcodes) were
considered, but for AWGN channel and ML soft decoding due to its higher error-
correcting capability. The algorithm presented here also uses the high-rate BCH and
RS codes, but as HDD algorithm, and can be efficiently applied in very high-speed
(40 GBps) optical systems as the soft information is not available due to optical-
electrical conversions [7].

The actions of this algorithm are updated as follows: VN i is considered to be
connected to the GCNs j and k. Two messages will be sent from GCN j to VN i. First,
it outputs uji (the value of VN i) taken out from the sub-decoder. Second, it outputs
Uji (represents data about success or failure of GCN decoding). Uji is then a binary
signaling with estimate 1 if there is a valid word or estimate 0 if there is not. W.r.t
the arriving messages from node k, the same action is applied.

The VN message vij depends on the value received from the channel yi, and the
messages received from the GCNs other than node j. Since GLDPC codes of high
code rate (J ¼ 2) is only concerned, there is only one other GCN k). Hence, the
updating rule in the symbol node can be expressed as

vij ¼ yi �Uki þ uki �Uki (6)

where Uki is the complement of Uki. The processes of the decoder are carried out
until the satisfaction of all GCNs or until reaching a certain amount of iterations.
Finally, any symbol (VN) connected to a satisfied GCN will take its proposed
value. If the VN connected to two unsatisfied GCNs, it will take the original
received value.

RS-based GLDPC code of rate r ¼ 0:467 and different lengths are examined
(Figure 6). It shows that RS(15,11,5) product code performs better than the
corresponding GLDPC of length 225, because it possesses a better minimum dis-
tance. As N increases, the BER is improved particularly in the region of error floor.

Figure 5.
Variation in performance with block length for (N,M,15,2) GLDPC codes.
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5. Modified HDD algorithms for improving the error performance

5.1 Two-side state-aided bit-flipping (TSSA-BF) algorithm

A HDD decoder founded on BF algorithm is presented in [23]. The main view
depends on taking advantage of the different sub-decoder states. Therefore it adds
this data representing these states as a reliability factor to be utilized for the rest of
the decoding process. This additional data (in the form of additional bit) is inserted
in two sides (VNs and CNs).

The goal is generally to remove all likely produced trapping sets (that generate
non-editable errors) from the code construction. This approach is presently still not
obtainable due to constraints in the processing speed and implementation. An
alternative approach that fulfills the most of this goal is suggested (with reasonable
processing speeds). That approach adds resources only operated in unusual cir-
cumstances when the previously mentioned trapping sets happen.

Taking commonness into account and due to its simplicity, the extended Ham-
ming code is studied inside the GLDPC codes.

5.1.1 Failure analysis

In the case of using the ext-Hamming code dmin ¼ 4, the sub-decoders of
GLDPC code may output errors in both cases of decoding success or failure. At GCN
failure case, it cannot clearly locate the error place. In the case of GCN decoding
success, the errors may be generated from undiscovered errors (when a received
word decoded to non-sent valid ones, i.e., e≥4) or faulty repair (when e> 2).
Therefore, the errors at a given GCN can be distinguished by the following names:

1. Plain single error (element P): one error and true correction take place.

2.Unknown set (U-set): multiple errors (e> 1) with decoder failure (detects but
can’t mark errors).

Figure 6.
Performance of GLDPC codes with RS(15,11,5) codes.
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3.Ambiguous set (A-set): multiple errors (e> 2) making the decoder flipping an
assumed-correct bit (false correction).

4.Dark set (D-set): multiple errors (e≥4) not detected by the decoder which
produce zero-syndrome vector.

5.1.2 Algorithm description

As GLDPC code with 1B-construction is studied in [22] as in Figure 7, a further
bit is inserted beside the main bit moving between the VN and GCN. For VNs, it
acts as the reliability of its bit value (bit 1 if suspect or bit 0 if assumed correct), and
it forwards this additional data to be used by GCNs. For GCNs, this additional bit
acts as the power of its decision by raising the reliability levels to 4. The GCN
decodes the received word, forwards a signal (bit 1 or 0, namely, flip or keep), and
appends this additional bit as the power of this signal (in ascending reliability level
arrangement, 1þ 11ð Þ, 1� 10ð Þ,0� 00ð Þ and 0þ 01ð Þ, corresponding strong flip, weak
flip, weak keep, and strong keep, respectively).

5.1.2.1 Horizontal processing

Specifying the ext-Hamming decoder, there are three states at a given GCN as
state “0” in the case of zero syndrome, state “1” in the case of one-error repair, and
state “2” in the case of decoder failure.

For any GCN c, c ¼ 1, 2,⋯,M, let d lð Þ
c be the cth GCN decoder state at the lth

iteration. If d lð Þ
c ¼ 0, the decoder forwards a message (0�) to all set elements of its

connected VNs, W cð Þ ¼ w1;w2; ::;wi; ::;wnf g. The message (0�) with reliability

level 3 is forwarded assuming W cð Þ may contain a dark set (D-set). If d lð Þ
c ¼ 1, the

decoder forwards (1þ) with level 1 on the assumed-error place w ∗ and (0�) to the

remaining set elements W
0
cð Þ. Elements of W

0
cð Þ are given 0� (not 0þ) assuming

that they may contain A-set. Finally, If d lð Þ
c ¼ 2, it sends (1�) with level 2 to all

elements of W cð Þ which contains a U-set.

As illustrated in Figure 8, let U lð Þ
c,wi

¼ U lð Þ
c,wi

1ð Þ;U lð Þ
c,wi

2ð Þ
h i

be the two bits

representing the outgoing flip message and its reliability, respectively, from GCN c
to VN wi. Table 2 illustrates the four possible outgoing messages from GCN c to
every connected VN wi.

Figure 7.
GLDPC bipartite graph example.
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Let V lð Þ
c,wi

¼ V lð Þ
c,wi

1ð Þ;V lð Þ
c,wi

2ð Þ
h i

be the two bits representing arriving bit value

and its reliability, respectively, at GCN c from VN wi. For any GCN c, let initial

reliability bit be V 0ð Þ
c,wi

2ð Þ ¼ 0 for all wi ∈W cð Þ. As previously mentioned,

V lð Þ
c,wi

2ð Þ ¼ 1 if a suspect bit and 0 if assumed correct one.

Now a local GCN counter will be introduced to compare the present GCN state

with the one of previous iteration. Let α lð Þ
c be the number of consecutive previous

repetitions of the state d lð Þ
c , and let β lð Þ

c be the number of incoming suspects among

the n bits connected to GCN c. According to α
lð Þ
c , β lð Þ

c values and the additional

information V lð Þ
c,wi

2ð Þ, the algorithm can improve its decision, and the horizontal

process iteratively continues as illustrated in [23].

For d lð Þ
c ¼ 0, the counter role is to enhance the reliability from 0� to 0þ if the

state remains for two consecutive iterations. For any GCN c and d lð Þ
c ¼ 2, if the

message V lð Þ
c,wi

2ð Þ from the bit wi indicates a suspected bit and the decoder state

(d lð Þ
c ¼ 2) remains for three consecutive iterations, the decoder recalculates the

syndrome after flipping this suspect. If the syndrome check is satisfied (i.e., valid
codeword), the decoder estimates that bit as error and degrades its reliability from
1� to 1þ.

5.1.2.2 Vertical processing

With four reliability levels and J ¼ 2, there will be a set of 10 possible combina-
tions of incoming messages at VN w, w ¼ 1, 2,⋯, N. This set can be divided,
according to the failure analysis, into three subsets si; i ¼ 1; 2; 3f g. For any VN w, its

reliability state r
lð Þ
w is determined based on its incoming messages (from GCNs cj,

with j ¼ 1; 2f g) to which subset it belongs:

Figure 8.
Incoming and outgoing messages between GCNs and VNs.

U lð Þ
c,wi

1ð ÞU lð Þ
c,wi

2ð Þ Alternative denotation Reliability grade Message meaning

1 1 1+ 1 Strong flip

1 0 l� 2 Weak flip

0 0 0� 3 Weak keep

0 1 0+ 4 Strong keep

Table 2.
Possible outgoing messages from GCN c to any connected VN.
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s1 ¼ 1þ; 1þð Þ; 1þ; 1�ð Þ; 1þ;0�ð Þf g,
s2 ¼ 1�; 1�ð Þ; 1�;0�ð Þ; 0þ; 1þð Þf g,
s3 ¼ 0�;0�ð Þ; 0þ; 1�ð Þ; 0þ;0�ð Þ; 0þ;0þð Þf g

r lð Þ
w ¼

0 if U lð Þ
cjw

; j ¼ 1; 2
n o

∈ s1

1 if U lð Þ
cjw

; j ¼ 1; 2
n o

∈ s2

2 if U lð Þ
cjw

; j ¼ 1; 2
n o

∈ s3

8

>

>

>

>

<

>

>

>

>

:

The VN w with least-reliable level, r lð Þ
w ¼ 0, needs to be flipped. For r lð Þ

w ¼ 1, VN
state counter is appointed to make a comparison between the VN current reliability

state and the one of the previous iteration. Let γ lð Þ
w be the number of consecutive

previous repetitions of the state r
lð Þ
w . With r

lð Þ
w ¼ 1 and according to γ

lð Þ
w values, the

VN will not be flipped but counted as a suspected bit. It sends such reliability

information V lð Þ
cjw

2ð Þ ¼ 1; j ¼ 1; 2
� �

to GCNs to be taken into account. For r lð Þ
w ¼ 2,

the VN is considered a reliable bit and kept with V lð Þ
cjw

2ð Þ ¼ 0, j ¼ 1, 2 (i.e., assumed

correct bit).
Figures 9–11 show the block diagrams of the overall decoder, horizontal process,

and vertical process, respectively. Table 3 illustrates an example for ext-Hamming
(8,4) constituent decoder employed at GCN c n ¼ 8ð Þ at lth iteration as the shaded
parts represent certain conditions satisfied.

Figure 9.
Block diagram of the overall TSSA-BF decoder.

Figure 10.
Block diagram of the horizontal process of the TSSA-BF decoder.
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5.1.3 Important notes on the algorithm

• The output messages from VN w to its two connected GCNs cj, j ¼ 1, 2 are the

same (i.e., V lð Þ
c1w

¼ V lð Þ
c2w

).

• The initial incoming message at GCN c V 0ð Þ
cjw

1ð Þ ¼ yw, V
0ð Þ
cjw

2ð Þ ¼ 0, j ¼ 1, 2 as the

overall demodulated binary sequence Y ¼ yw;w ¼ 1; 2;⋯;N; yw ∈ 0; 1f g
� �

.

• U lð Þ
cwi

¼ U lð Þ
cwi

1ð ÞU lð Þ
cwi

2ð Þ
h i

is the outgoing message from GCN c to VN wi

consisting of two bits representing the reliability level (one of four possible
values 0+, 0�, 1�, or 1+).

• The GCN decoder does not output actual decoded words to its connected VNs.
Instead, it sends a reliability signal (taking a value of four possible values)

which is represented by two bits U lð Þ
cwi

1ð Þ and U lð Þ
cwi

2ð Þ. On the other hand, the

VN has to take a decision based on its incoming messages. The decision is
(Flip), (Keep but as suspect) or (Keep as assumed correct).

• The function of GCN state counter α
lð Þ
c

� �

or VN state counter γ
lð Þ
w

� �

is to count

the number of consecutive iterations with the same state (at this GCN or VN)
up to this present iteration lð Þ, respectively.

Table 3.
Example of ext-Hamming (8,4) constituent decoder employed at GCN c at lth iteration.

Figure 11.
Block diagram of the vertical process of the TSSA-BF decoder.
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Figure 12 is showing the BER performance of the ext-Hamming-based GLDPC
code (with overall rate R ¼ 0:625) by the TSSA-BF algorithm compared to HD
decoder BF algorithms in [7, 22] and SD chase sub-decoder (number of LRPs
p ¼ 2). The finite-length 1B-construction-GLDPC codes of block length N = 4096 is
used, and the maximum number of iterations (Imax) is set to 20. It is noted that this
algorithm outperforms the other HDD ones along various values of Eb=No with gain
not <0.5 dB at the expense of a little increase in resources used by the algorithm.

5.2 Classification-based algorithm for BF decoding with initial soft information

This algorithm is a modern bit-flipping decoding approach [24]. It is established
on taking advantage of the fast BF HDD method with the help of the data extracted
from the AWGN channel.

However it exploits this data at only the start phase of the decoding intentionally
to make a certain classification operation. This algorithm also improves its perfor-
mance by adding an additional bit in the arriving messages at VNs from CNs as a
technique to enhance the decision reliability at both VNs and GCNs. The main role
of this additional bit is to benefit from the subcodes states as in [23] but with a
distinct fashion. This approach allows for considerable enhancement in BER at the
expense of additional resources at only the side of VNs. SDD is characterized by
complexity and the need to a large amount of real calculations (according to the
channel soft information) all during the whole decoding procedure. However, this
algorithm (accounted as HDD) needs them only in the start phase, and all processed
data thereafter are hard values. Therefore this technique could reduce a significant
part of the computational complexity, which was noticed in [23].

5.2.1 Algorithm description

The trapping sets, producing unrepaired errors, form the major part of the error
performance letdown of the bipartite graph-based codes. The goal here is to
diminish the damaging effect of most of the generated sets even by inserting
supplemental resources which will be discussed below in this section.

Figure 12.
Performance of GLDPC with (32,26) ext-Hamming subcodes.
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The algorithm uses the soft channel values at the beginning of the decoding to
classify the received symbols (VNs) by a predetermined threshold. Taking com-
monness into account and due to its simplicity, the extended Hamming code is
studied inside the GLDPC codes. The extended Hamming code with increased
dmin dmin ¼ 4ð Þ is powerful and suitable for constructing standard-relevant GLDPC
codes. The ext-Hamming sub-decoders may produce errors in both cases, decoding
success and failure. At the GCN sub-decoder failure, it cannot locate the places of
errors. At the GCN sub-decoder success, the decoder errors may emerge from two
reasons: the undiscovered errors (as the received word decoded to non-transmitted
valid one (e≥ 4), where e is the number of errors at the input of the local decoder)
and the false repair (e> 2).

An additional bit is inserted next to the main bit in the message from the GCN to a
connected VN. It acts as the decision power of GCN by raising the reliability from
two to four levels. The GCN sub-decoder decodes the received word and forwards
two bits (the main bit and the additional one) to every connected VN. If the main bit
is seen as a decision (flip (1) or keep (0)), the additional one is seen as the decision
power (strong (1) or weak (0)). The four reliability levels in descending arrangement
are 0þ(01), 0�(00), 1�(10), and 1þ(11), corresponding to strong keep, weak keep,
weak flip, and strong flip, respectively. This decoding contains two processes, the
GCN processing and the VN processing, as will be explained below.

5.2.1.1 GCN processing

The three possible states, in which the ext-Hamming sub-decoder at a given
GCN can be one of them, are defined as follows:

1. State 0: when the syndrome gives zero (i.e., the received sequence is a valid
codeword).

2. State 1: is the case of one-error repair when the syndrome vector is one of the
subcode parity-check matrix columns (i.e., error discovered and can be
corrected). Therefore, it decodes to the right transmitted codeword or decodes
to another valid codeword.

3. State 2: at the decoder failure (errors detected and cannot be corrected).

Using the same notations as in Figure 8, for any GCN c, c ¼ 1, 2,⋯,M, let d lð Þ
c be

the decoder state of the cth GCN at the lth iteration. The procedures of the GCN
sub-decoder of this algorithm are illustrated below:

• If d lð Þ
c ¼ 0, it sends 0þ to all elements of the connected VNs set, W cð Þ =

{w1, w2,.., wi,.., wn}. The message 0þð Þ is the highest reliability level.

• If d lð Þ
c ¼ 1, it sends 1þ (level 1) on the place b ∗ (an assumed-error bit) and 0�

(level 3) to the rest of set elements W
0
cð Þ. Elements of W

0
cð Þ are given 0� (not

0þ) assuming some errors may be involved (with e> 2) making the decoder
perform a wrong repair (an assumed-correct bit is flipped).

• If d lð Þ
c ¼ 2, it sends 1� (level 2) to all of W cð Þ elements as they contain a set of

errors (with e> 1) leading to a decoder failure (errors detected with no repair
capability).
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Let U lð Þ
c,wi

¼ ½U lð Þ
c,wi

1ð Þ U lð Þ
c,wi

2ð Þ� be the two bits which represent the outgoing

decision message and its power, respectively, from GCN a to VN wi. Let V
lð Þ
c,wi

be the

incoming binary bit value of the constituent codeword at c from VN wi.
The overall set of N hard demodulated sequence bits is Y ¼ yw;w ¼ 1; 2;⋯;N;

�

yw ∈ 0; 1f gg as yw ¼ 1
2 sgn rwð Þ þ 1ð Þ and rw is the soft value of the wth bit in the

received sequence from AWGN channel. For any VN w, the initial values V 0ð Þ
cjw

¼ yw

for j ¼ 1, 2. Therefore at any GCN c, the initial values V 0ð Þ
c,wi

¼ ywi
for i ¼ 1, 2,⋯, n.

Table 4 illustrates an example for ext-Hamming (8,4) constituent decoder
employed at GCN c (with n ¼ 8) at lth iteration.

5.2.1.2 VN processing

For any VN, it is represented by two bits. The main bit is the symbol binary
value. The additional bit represents the initial reliability of the symbol value, (1) if a
suspect bit or (0) if an assumed-correct bit, and the VN will use this extra infor-
mation as will be discussed later. The codeword symbols which are represented by
VNs are classified into two categories: most-reliable bits (MR) and least-reliable bits
(LR). The classification is only initiated according to the soft information received
through the channel based on a predetermined threshold.

For any transmitted codeword of length N, the wth code bit vw ∈ 0; 1f g are
mapped to xw ∈ �1; 1f g, respectively, and transmitted over AWGN channel which
is characterized by the probability density function (pdf) p r=xð Þ given by

p rw=xwð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2πσ2
p exp � rw � xwð Þ2=2σ2

h i

(7)

where σ2 is the variance of the zero-mean Gaussian noise nw that the channel
adds to the transmitted value xw (so that rw ¼ xw þ nw) [25].

As illustrated in Figure 13, let ηo be the standard threshold on which the hard
demodulator decision is based. For BPSK over AWGNchannel, ηo ¼ 0 and at this value

p r=x ¼ 1ð Þ ¼ p r=x ¼ �1ð Þ (8)

Let δ rð Þ be the absolute difference between the two probabilities as

δ rð Þ ¼ ∣p r=x ¼ 1ð Þ � p r=x ¼ �1ð Þ∣ (9)

The received symbol is assumed to be accounted as LR bit if its value rw gets near
to the zero point or ηo (δ ¼ 0). The value of r with maximum difference δmax can be

Table 4.
Output messages at GCN c with ext-Hamming (8,4) decoder.
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taken as a second point ηm that the received symbol is accounted as MR bit if its
value rw approaches it. The absolute of the second point ∣ηm∣ is the same for both
�rw values as the two probability density functions are symmetric around the zero

point. The equation δ
0
rð Þ
�

�

r¼ηm
¼ 0 should be solved to get ηm:

δ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2πσ2
p e� r�1ð Þ2=2σ2 � e� rþ1ð Þ2=2σ2

h i

(10)

then

δ0 rð Þjr¼ηm
¼ 1

ffiffiffiffiffiffiffiffiffiffi

2πσ2
p 1� r

σ2
e� r�1ð Þ2=2σ2 �⋯




(11)

� 1þ rð Þ
σ2

e� rþ1ð Þ2=2σ2 � ¼ 0 (12)

therefore

1� ηmð Þe
ηm
σ2 ¼ � 1þ ηmð Þe

�ηm
σ2 (13)

This equation can be solved numerically by Newton-Raphson method and for
various values of σ2 (0.1–0.9), ηm≈1:04.

The classification threshold ηc for this algorithm is set to be in the middle

between the two points. Therefore ηc ¼ ηoþηm
2 ¼ 0þ1:04

2 ¼ 0:52. Denote the initial
reliability of the wth received bit as λw. According to the algorithm, this bit is
classified as MR (λw ¼ 0) if ∣rw∣ ≥ ηc; else it is classified as LR (λw ¼ 1).

Using column weight of two and four levels of reliability, there are 10 probable
combinations of these incoming messages to VN w, w ¼ 1, 2,⋯, N. These combina-
tions are categorized into three subsets si; i ¼ 1; 2; 3f g. For any VN w, its reliability

state g lð Þ
w is set according to the arriving messages (belong to which subset).

Motivated by TSSA-BF in [8] with inserting the new parameter λw

s1 ¼ 1þ; 1þð Þ; 1þ; 1�ð Þ; 1þ;0�ð Þf g,

s2 ¼ 1�; 1�ð Þ; 1�;0�ð Þ; 0þ; 1þð Þf g,

s3 ¼ 0�;0�ð Þ; 0þ; 1�ð Þ; 0þ;0�ð Þ; 0þ;0þð Þf g

Figure 13.
The threshold ηc over AWGN channel.
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g lð Þ
w ¼

0 if U lð Þ
cjw

; j ¼ 1; 2
n o

∈ s1

1 if U lð Þ
cjw

; j ¼ 1; 2
n o

∈ s2

2 if U lð Þ
cjw

; j ¼ 1; 2
n o

∈ s3

8

>

>

>

>

<

>

>

>

>

:

• The VN w with least reliability, g lð Þ
w ¼ 0, needs flipping immediately.

• For g lð Þ
w ¼ 1, VN state counter is employed to compare the VN present in

reliability state g lð Þ
w with one of the previous iterations g l�1ð Þ

w . Let γ
lð Þ
w be the

number of previous successive repetitions of this state g lð Þ
w . If g lð Þ

w ¼ 1 with

γ
lð Þ
w ¼ 2 and, in the same time, λw ¼ 1 (i.e., it is considered as LR bit), the VN
will be flipped.

• Else, the VN is assumed a correct bit and kept without flipping.

By using the previously mentioned rules, the messages are renewed, and the
algorithm proceeds until a zero overall syndrome output or it reaches a predefined
number of iterations.

It is worth emphasizing that the GCN decoder does not output actual decoded
word to its connected VNs. Instead, it sends a reliability signal (taking a value of

four possible values) which is represented by two bits U lð Þ
c,wi

1ð Þ and U lð Þ
c,wi

2ð Þ. On the

other hand, the VN has to take a decision (flip or keep) based on its incoming
messages and its initial reliability λw (MR or LR). The function of VN state counter

γ
lð Þ
w is to count a number of consecutive iterations with the same state g lð Þ

w (at this
VN) up to this present iteration (l).

Figures 14–16 show the block diagrams of the overall decoder, horizontal pro-
cess, and vertical process, respectively.

5.2.2 Important notes on the algorithm

• The output messages from VN w to its two connected GCNs cj, j ¼ 1, 2 are the

same (i.e., V lð Þ
c1w

¼ V lð Þ
c2w

).

• The initial incoming message at GCN c V 0ð Þ
cjw

¼ yw, j ¼ 1, 2 is the demodulated

bit V 0ð Þ
w as the overall demodulated binary sequence Y ¼ yw;w ¼ 1; 2;⋯;N;

�

yw ∈ 0; 1f gg.

Figure 14.
Block diagram of the overall classification-based decoder.
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• U lð Þ
cwi

¼ U lð Þ
cwi

1ð ÞU lð Þ
cwi

2ð Þ
h i

is the outgoing message from GCN c to VN wi

consisting of two bits representing the reliability level (one of four possible

values 0+, 0�, 1�, or 1+). On the other hand, V lð Þ
cjw

is the outgoing message from

VN w to GCN cj containing just the decoded symbol bit value.

• The GCN decoder does not output actual decoded words to its connected VNs.
Instead, it sends a reliability signal (taking a value of four possible values)

which is represented by two bits U lð Þ
cwi

1ð Þ and U lð Þ
cwi

2ð Þ. On the other hand, the

VN has to take a decision based on its incoming messages. The decision is flip
or keep.

• The function of VN state counter γ
lð Þ
w

� �

is to count the number of consecutive

iterations with the same state (at this VN) up to this present iteration lð Þ.

• The algorithm manages without the greater portion of the overhead of the
algorithm in [23] which was specially located in the horizontal (GCN) process.

Figure 17 shows the GLDPC BER performance using the (32,26,4) extended
Hamming subcode by this decoding with respect to the bit-flipping algorithms in
[7, 22] and [23]. It is noticed that this algorithm surpasses the other ones at the cost
of a slight increase in computational complexity resulting from the comparison
operations made at the initial classification step. It is also noticed that as N
increases, a slow improvement in the performance is achieved.

The predefined number of iterations (20) is found to be very sufficient for good
performance as the additional iterations beyond this limit have no considerable
difference in the performance and latency in the decoding process which should be
avoided for fast decoding purposes.

Not similar to the conventional GLDPC HDD BF decoding, the received
sequence soft values are utilized to make appropriate classification of the received
bits (variable nodes) into two classes.

Figure 15.
Block diagram of the horizontal process of the classification-based decoder.

Figure 16.
Block diagram of the vertical process of the classification-based decoder.
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The algorithm not only achieves a better error performance but also requires less
iterations than the other competent algorithms. In terms of the impacts of the soft
information (from AWGN channel) on coding gain of the GLDPC, the algorithm is
revealed to exhibit considerable performance to decoder complexity trade-off. The
algorithm can be adapted to handle generalized and more robust subcodes with the
capability to correct more errors to improve the performance.

As discussed in [24], the computational complexity is provided in terms of the
average number of executed operations for this algorithm against the rather com-
parable TSSA-BF algorithm. It is noticed that the complexity of this decoder is
reduced by more than 60%.

6. Simplified SDD algorithm over AWGN channels

The algorithm, in [26], serves to use the chase SD decoders as minimum as
possible to lower their complexity and expedites the decoding procedures. This
algorithm is a variant approach from a previous one by [27] to lower the complexity
of turbo product code (TPC) with multiple-error correction BCH subcodes. The
chase decoder at every row or column input sequence in the product code was used
as it attempts to decrease the HDD operations executed on the test patterns (TPs)
produced in the chase decoder. The algorithm, explained below, will benefit from
the algorithm in [27] for more reduction in the complexity.

The introduced algorithm is the MP method for decoding GLDPC with the
chase-II algorithm operated as a posteriori probability decoding on GCNs. It will use
extended double-error BCH (with high error-correcting capability) as a subcode to
obtain a better performance. For simplicity, all GCNs are represented with the same
eBCH code of parameters n; k; dð Þ. The overall block diagram of this algorithm is
depicted in Figure 18.

As discussed before in Section 3 and using the same notations and consider-
ations, the soft-output value of every decoded symbol of the subcode should be
calculated, by Eqs. (3) or (4), to be sent back on the connected edges to the GLDPC

Figure 17.
Simulated BER curves of N; 2; 32ð Þ GLDPC codes.
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VNs as followed by the MP algorithm in an iterative method to obtain a final
decision after a certain number of iterations or a syndrome condition should be
satisfied.

W.r.t any given GCN c, the chase-II-based SISO decoder produces 2p TPs by
making a perturbation of the p LRPs in the demodulated word with length n
(subcode word). Therefore 2p HDDs should be performed to obtain a decided
codeword. Therefore algorithm will get the syndromes of Yc.

For extended BCH2 (double-error correction), the algorithm computes two

syndromes S1c and S3c as follows:

S1c ¼ yc2 ⊕ yc3x⊕⋯⊕ ycn�1x
n�3 ⊕ ycnx

n�2
�

�

x¼α
,

S3c ¼ yc2 ⊕ yc3x⊕⋯⊕ ycn�1x
n�3 ⊕ ycnx

n�2
�

�

x¼α3

(14)

where α is the primitive element of GF(2m) that generates the BCH code
polynomial.

According to the values of the syndromes as illustrated in Table 5, the algorithm
estimates the number of errors contained in the sequence.

If there are no errors (e ¼ 0), it is likely (with high percentage) that the
demodulated word is the valid transmitted one and the decoder will not do its task.
If 0 < e≤ 2, the algorithm may execute the HDD (Berlekamp-Massey algorithm) and
outputs the decoding decision. In these two preceding cases, the soft-output values
can be estimated as the decision is highly probable to be correct as follows:

Figure 18.
The block diagram of the lowered-complexity chase-based decoding algorithm.

Syndrome of

demodulated vector

Sa ¼ Ya:Hbch

Number of

contained

errors (e)

Action taken (method of

estimating the decision Da)

Calculation model of

extrinsic information

r0a, i

S1a ¼ S3a ¼ 0 0 Nothing (the demodulated

vector is the decision

codeword)

r0a, i ¼ β0 xdi

S1a ¼ 0, S3a 6¼ 0 >2 Apply TP-reduced chase

algorithm [12]

Pyndiah model [15]

S1a
� �

⊕ S3a ¼ 0 1 Apply HDD (Berlekamp-

Massey algorithm)
r0a, i ¼ β0 xdi

Else 2 Apply HDD (Berlekamp-

Massey algorithm)
r0a, i ¼ β0 xdi

Table 5.
The actions of the proposed algorithm.
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r0c, i ¼ β � dc, i with β≥0

where β is chosen to be evolved with the decoding iterations, β lð Þ ¼
0:4;0:6;0:8; 1; 1; 1;⋯½ �.

If e> 2, the chase algorithm is needed to extract a decision codeword but will not
decode a complete list of 2p test patterns (TPs). The proposed algorithm in this case
will benefit from the lowered-complexity TP-reduced algorithm in [27]. The
amount of reduction in HDDs of the algorithm compared to the standard one is
listed in Table 6.

The computational complexity of this algorithm is estimated by the number of
hard decision decoding processes (Berlekamp-Massey algorithm) employed at
GCNs. The (64,51) eBCH subcode is chosen with double-error correction capability
to exploit the multiple calculated syndroms, while keeping a moderate code rate
(R ffi 0.6). Therefore, for keeping this rate, only GLDPC codes with column weight
(j ¼ 2) are considered. As shown in Figure 19, the number of HDDs in the decoder
is calculated for two numbers of LRPs (p ¼ 3, p ¼ 4) and up to five iterations

BCH

code (n,k)

N J Code

rate

No. of

LRPs

(p)

Number of

HDDs in

standard alg. [7]

Avg. number of

HDDs in

proposed alg.

Percentage of

complexity

reduction (%)

eBCH2

(64,51)

4096 2 0.6 3 5120 3072 60

eBCH2

(64,51)

4096 2 0.6 4 10,240 5734 56

eBCH3

(64,45)

4096 2 0.41 4 10,240 5232 51.1

e8CH3

(64,45)

4096 2 0.41 5 20,480 9011 44

Table 6.
The reduction of HDDs in the lowered-complexity chase-based decoding algorithm (SNR = 2 dB at Imax ¼ 5).

Figure 19.
Comparison of computational complexity of less-complex and conventional SISO decoding algorithms for
decoding (64,51) eBCH-based GLDPC codes with length N = 4096 for various values of p and Im.
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(Im ¼ 5). For clarification, the number of HDDs is normalized to the one of the
conventional chase decoder. It is shown that a considerable reduction occurs
especially after Eb=No ¼ 2 dB.

The results show a significant lowering in the soft decoding operations executed
at GCNs compared to conventional chase decoders with little wastage in the BER
performance. This scheme is highly required in low error rate applications such as
optical communication systems.
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