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Chapter

Procedure to Prepare and Model
Speed Data Considering the
Traffic Infrastructure, as Part of
a Cyber-Physical System
José Gerardo Carrillo-González,

Jacobo Sandoval-Gutiérrez and Francisco Pérez-Martínez

Abstract

This chapter investigates the relationship between traffic control infrastructure
(traffic lights and speed bumps) and the vehicles’ travel speeds, for certain hours
and days of the week. The authors propose the following procedures: (1) street
segmentation, (2) clustering and categorization of speed data, (3) histograms’
comparison analysis, (4) outlier detection, (5) modeling, and (6) delivering info to
the users. Comparing speed histograms, segments with matching infrastructure
presented similarities, regardless of the day of the week. Two techniques to model
data were employed: polynomial regression and multinomial logistic regression. The
algorithms to predict the travel speed category were also developed. The first
technique yields on average 91.3% of data categorized correctly, and the second gets
90.09%. The traffic lights and speed bumps, located on the street segments under
consideration, were identified as variables causing different travel speeds. The
procedure allows to incorporate more traffic elements and can also be applied to
other geographical locations.

Keywords: cyber-physical system, speed bumps, street segments, traffic lights,
travel speed

1. Introduction

Traffic conditions have a profound effect on population’s quality life. The
TomTom traffic index states that in 2017, Mexico City had a travel delay of 66%
when compared with normal times of uncongested traffic, placing it as the first in
the world rank. The wasted time per day was 59 min, or 227 h per year, with delays
in the morning and evening peaks of about 100%. Of the 23 million private cars in
Mexico, 72% correspond to metropolitan areas [1]. As a result, those areas are a
suitable choice to analyze traffic behavior. In 2010, with a population of 20,116,842
and 0.3 cars per habitant (about 6,035,052 cars), the Mexico City Valley is the most
crowded of the country. The number of operating vehicles in a city reduces the
average traveling speed and increases pollution [2, 3] and the number of car acci-
dents [4, 5]. The zone under study in this work is located between Mexico City and
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Toluca, a region that is part of the Mexico City megalopolis, which makes the area a
suitable candidate for analyzing traffic conditions. In this research we developed a
procedure to analyze speed tendencies (by comparing histograms) and prepare
(set clusters and remove anomalies) and model speed data to be used in an applica-
tion example: speed prediction. The procedure answers the following question:
what is the pathway to generate new information when speed data is available?

Recently, there has been a great effort in studying and analyzing traffic data
from different world locations. Travel speed is one way to measure traffic condi-
tions, as is travel time. In [6], the travel time distribution for different kinds of
roads is estimated for Beijing. The time intervals to analyze data were set to 15 min,
and it was concluded that the best-fitting distribution depends on the congestion
level and that the average travel time of all road segments (for all days) can be
estimated with acceptable precision using the normal distribution (compared with
the log-normal, gamma and Weibull). In [7], travel time prediction is pursued. The
variables considered were flow, concentration, and higher order auto-regression,
concluding that local linear regression is preferable than global modeling. Charac-
terization of the daily temporal variation of congestion is presented in [8], where a
fitted model and live data are combined in a ten-parameter exponential smoothing
equation. With the purpose of analyzing historical traffic data, a query processing
method with timeline information is proposed in [9], along with an analysis of the
congestion dependency along roads. The work presented in [10] estimates the
average link speed with vehicles equipped with GPS, and therefore the quantity of
equipped vehicles required for estimating the speed was established.

Using traffic data to make predictions is a current challenge, as Google maps
traffic and Waze are doing. The purpose in [11] is to use information from Bing
Maps to analyze, visualize, and predict traffic jams in Chicago. In addition, a
prediction model to correct flow intensities with logistic regression was proposed,
where the independent variables were day, hour, street number, and number of
pixels (red, yellow, and green). In this work, a tool was developed to extract the
roads’ traffic intensity from a GIS map service, where colors represent flow inten-
sity: red as congested, green not congested, and yellow in between. In [12], the
properties of a community-driven mapping service (Waze) are characterized.
Additionally, the authors discuss the use of traffic data to identify traffic accidents
and potholes. In [13], a four-phase traffic approach is proposed: (1) data collection
and representation, (2) traffic prediction, (3) vehicle selection for re-routing, and
(4) alternative route assignment. In our work, we focus our contribution in the first
two phases.

The traffic infrastructure elements (such as traffic lights, speed bumps, pot-
holes) involved in driving situations influence driver’s behavior, which in turn
affects speed and number of accidents. The intention in [14] is the development of
statistical models to predict accidents. These models correlate highway characteris-
tics with traffic accidents. The variables considered were classified in groups: sec-
tion identifiers, cross section related, location, traffic related (e.g., the percentage of
trucks on a highway section), alignment, horizontal curvature, and accidents. The
regression methods used were Poisson and negative binomial. The statistically sig-
nificant variables were number of lanes, horizontal curvature, speed limit, tangent
length, section length, average annual daily traffic, and peak hour. In addition,
accidents are predicted with equations that consider roadway elements such as
average daily traffic, commercial and residential units, intersections, speed limits,
lane width, and number of lanes.

The work presented in [15] classifies traffic control elements (infrastructure)
into three groups according to their effect on accidents. In Group 1 are those
elements that reduce the number of accidents, such as speed limit signs,
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speed-reducing devices, signalized pedestrian crossings, urban play streets,
pedestrian streets, traffic-calming areas, traffic signals at intersections, bus lines
and bus stops, parking control, and access control. Group 2 has no statistical effect
on accidents: road markings, one-way streets, reversible lanes, traffic control for
pedestrians and cyclists, priority control, and yield signs at intersections. Group 3
increases accidents: right turn on red, pedestrian crossing without signs, blinking
traffic light, and increasing speed limits. According to [16], the presence of traffic
control elements with the purpose to reduce speed or simplify the road users’ tasks
(e.g., traffic signs) tends to reduce accidents. An obvious consequence of the
presence of speed-reducing devices (humps, rumble strips, narrow road width,
bollards) is the increase of travel time [17] and the decrease of the average travel
speed. One of the conclusions in [15] is that the traffic control elements that reduce
accidents also reduce mobility.

Traffic elements such as signals and traffic lights are important in human driving
decisions. The work presented in [18] intends to determine the relevance of the
static road elements in driving situations using Markov logic networks (MLNs). The
information considered to determine the relevance of speed limits and supplemen-
tary signs were the position in relation to lanes, vehicle type, date, time, and
weather. Then, with first-order logic rules, the relevance of each was inferred. To
determine the relevance of traffic lights, the following variables were considered:
navigation system, environment perception, spatial relations, and the traffic light
state.

The speed changes in the presence of speed bumps were analyzed in [19]. The
speed limit on the streets under study is 50 km/h. The speed results measured at the
bump location are as follows: about 30% of the cases show an 85th percentile speed
higher than the posted limit speed, 26% lie in the range 45–50 m km/h, and the rest
is under 45 km/h. The 85th percentile speed (measured after 20–25 m of the bumps’
location, at the crosswalk area) tends to increase in 50% of the tested sites, similar
result for the 50th percentile case (45%). Nevertheless, for both cases the speed
change was not significant, according to the statistical analysis. Another result was
obtained comparing the speed at bumps and 100 m away: in most sites, the 85th
percentile speed decreases in the range of 1–18% (with respect to the zone without
bumps). The statistical analysis concludes for both percentiles that speed values do
not change significantly.

The use of cyber-physical system in traffic is a current topic in the literature. In
[20], a simulated vehicular cyber-physical system (VCPS) is designed for delivering
warnings to the driver and to avoid accidents. With this end, the predicted vehicle
motion/location, the driver behavior and the road geometry were considered. Then,
the short-term motion of the objective vehicle and the surrounding vehicles are
predicted. With the objective vehicle location and the traveled distance among
vehicles, the collision risk is estimated, and the driver is notified. In [21], a percep-
tual Control Architecture of Cyber-Physical Systems (CPSs) is proposed, taking as
example a traffic incident management system. The intelligent behavior of this is
characterized by the physical-reflex space and cyber-virtual space. In the physical-
reflex space, the sensing actuation of the objective scenario is constructed on four
levels of traffic infrastructure. In the cyber-virtual space, the decisions (through
Bayesian reasoning network) are defined according to three levels: principles,
interrelated factors, and situation assessment. In [22] the potential participation of
smartphones (equipped with GPS) is discussed to build a traffic information system
(to inform the entire transportation network) that is part of the cyber-physical
infrastructure system. In [23] a cloud-based cyber-physical system is presented,
with the end to find fast routes for the users. The system is presented in four steps:
(1) the GPS on taxis are used as mobile sensors to measure the traffic status in the
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physical world; (2) the info generated by the taxis is sent to the cloud (cyber world)
and mined, and then knowledge is acquired about the taxis’ preferred directions
and traffic patterns on the roads; (3) the knowledge in the cloud is sent to the users
with the Internet; and (4) the recommendations for a specific user are improved
using its driving behavior and preferred routes. In [24], a short-term traffic predic-
tion model (combining fuzzy theory with Markov progress) is presented, which is
part of a vehicular cyber-physical system; the prediction results are expressed in
terms of traffic flow and speed. A proper discussion about the definition of a cyber-
physical system, and its relationship with transportation, is in [25].

From a cyber-physical system point of view, in the procedure presented in this
work, the cyber part corresponds to the elements in charge to acquire and mine data
for generating knowledge and the process to communicate that Intel to the users.
The user (a biological entity) and intelligent devices (e.g., the user smartphone, the
vehicle computer) reacting in response of the knowledge correspond to the physical
part.

The aim of the present work is to introduce a method for analyzing speed data
measured on streets where the traffic infrastructure is assumed to be the cause of
low speeds. Then, we develop models and algorithms that, working with our data,
allow to make predictions. The procedure presented in this work is summarized in
the following steps:

• Street segmentation is performed considering traffic control elements (speed
bumps and traffic lights).

• Clustering speed data, validated with the silhouette metric.

• With the Chi-Square distance (χ2Þ, the travel speed histograms of weekdays are
compared and also the histograms of segments.

• Mahalanobis distance is used to detect outliers.

• Two techniques (polynomial and logistic regression) were used to develop the
models that describe speed data. An algorithm for each modeling technique
was developed to predict travel speed.

• Communicate the generated knowledge to the users.

This chapter is organized as follows: Section 1 Introduction; Section 2 Method,
which includes theoretical frame (data, clusters, histograms, outliers) and proce-
dure (street segmentation, clustering, comparative analysis of histograms, outlier
detection, mathematical models, connecting Intel with users); Section 3 Results
(with discussion); and Section 4 Conclusions (with future work).

2. Method

2.1 Theoretical frame

2.1.1 Data

The zone under study is comprised of two streets located in Lerma de Villada,
Mexico: Av. Miguel Hidalgo and Av. Reolin Barejon. Data was obtained using the
Google Maps Directions API. The time for a vehicle to traverse each segment was
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recorded every 15 min, after [6]. We found this time interval to be highly efficient
for incorporating relevant data while ignoring redundant information. In this way,
the average travel speed on each segment was measured. Three weeks (w1, w2,
and w3) of data were considered: w1 from Dec 27, 2016 to Jan 03, 2017; w2 from Jan
03, 2017 to Jan 10, 2017; and w3 from Jan 20, 2017 to Jan 27, 2017. The time interval
to acquire data was from 6 a.m. to 11:59 p.m. (an interval of 18 h per day) and
only in weekdays, i.e., between Monday and Friday.

2.1.2 Clusters

The k-means technique [26] was selected (because it is easy to implement and is
commonly used in distinct traffic problems [27–29]) to cluster the speed data of any
of the 3 weeks; since these are close in time, it is expected a similar travel speed
from 1 week to another, and then we select w1. In simple terms, the k-means
technique consists in calculating the centroid of each cluster as the mean of the data
in the corresponding cluster and is recalculated until convergence.

We apply the k-means technique selecting a number of clusters in the range 3–6;
for each case we calculate the silhouette score [30], given in Eq. (1), where a ið Þ is
the average distance from i with the data in the same cluster, b ið Þ is the minimum
average distance from i with the data of each other’s cluster, and i is the data index.
The silhouette score is in the range � 1 to +1; a value close to 1 indicates that the
speed data is well matched in the selected clusters, while a value close to �1
indicates the opposite situation:

ss ið Þ ¼
b ið Þ � a ið Þ

max a ið Þ; b ið Þf g
(1)

2.1.3 Histograms

Analyzing the speed frequency, by comparing speed histograms of certain loca-
tions (special selection) and certain time (temporal selection), we expected to find
spatial and temporal relationship about the weekdays when the speed is similar
(dissimilar) and the segments where the speed is similar (dissimilar).

The metric employed to compare a pair of histograms is the Chi-Square (χ2)
histogram distance [31], given in Eq. (2), where P and Q are the histograms to be
compared and Pi and Q i contain the speed frequency of the i bin (i is the bin index,
the selected bin width is 1):

χ
2 P;Qð Þ ¼

1

2

X

i

Pi �Q ið Þ2

Pi þQ ið Þ
(2)

This metric has the advantage of reducing the importance of the result when
bins with large count are compared, as in many natural histograms, the difference
of bins with high values is less important [31]. If the metric gets a 0 result, then
there is no difference between the compared histograms; as the result value
becomes larger, the difference in terms of the speed frequency also becomes higher.

2.1.4 Outliers

We filtered the speed data using the Mahalanobis distance (MD) [32] to detect
outliers, i.e., atypical speed not belonging to normal driving behavior, since we are
not interested in including this data for modeling. The MD is presented in Eq. (3),
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where xi is a vector containing the time and speed, x is a vector with the means, and

C�1
x is the covariance matrix:

MDi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xð ÞTC�1
x xi � xð Þ

q

(3)

2.2 Procedure

2.2.1 Street segmentation

The avenues under study were divided into segments: each segment is denoted
sk, with k as the segment index. On each segment, we have number of speed bumps
c1, number of traffic lights c2, and landmarks c3. A segment’s length l is set to
approximately 500 m, and then on each segment there are specific traffic elements:
sk ¼ c1; c2; c3, lf g, as shown in Table 1.

2.2.2 Clustering

The silhouette score, considering three clusters, is better evaluated, with
ss ¼ 0:7360. For four, five, and six clusters, we calculated a ss ¼ 0:7331, ss ¼ 0:7194,
and ss ¼ 0:7105, respectively. As we were interested in communicating in a simple
way the speed category at which is possible to travel, three options (as slow,
medium, and normal) seem adequate. A similar approach in Google Maps (traffic
option), where the speed is represented considering four options, from fast to slow.

The resultant average speed (in km/h) range of each cluster (or category) is
category 1 (5.4112–18.1455), category 2 (18.1455–23.4234), and category 3
(23.4234–36.0750). For w2 and w3, values smaller than 5.4112 fall into category 1,
and those larger than 36.0750 fall into category 3.

The percentage of a segment’s speed data (from w1) in a cluster is shown in
Table 2. It is interesting to note that for all segments, there is a specific cluster that

sk c1 c2 c3 l (m) GPS start

coordinate

GPS end

coordinate

s0 2 0 None 501 19.284512,

�99.500927

19.285725,

�99.505498

s1 2 0 School, museum, gas station, government

offices

500 19.285725,

�99.505498

19.286330,

�99.510221

s2 0 1 Banks, center square, school, fast-food

restaurants

500 19.286330,

�99.510221

19.286711,

�99.514964

s3 3 2 Cultural center, hospital, school offices,

kindergarten

501 19.286711,

�99.514964

19.286477,

�99.519630

s4 3 0 Telecom company offices, shopping mail 499 19.286477,

�99.519630

19.285784,

�99.514944

s5 2 1 Hospital, government offices, cultural

forum

500 19.285784,

�99.514944

19.284943,

�99.510282

s6 4 1 School, supermarket, hospital 500 19.284943,

�99.510282

19.284500,

�99.505561

s7 2 0 None 481 19.284500,

�99.505561

19.284403,

�99.500993

Table 1.
Segments’ characteristics.
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contains a high percentage of data (at least 79.61%), which validates our clustering
results.

2.2.3 Comparative analysis of histograms

First, we consider all segments as a single road, and then the histograms of the
speed frequency (from 6 a.m. to 11:59 p.m.) happening on weekdays (in w1) are
compared in pairs, with the Chi-Square metric presented in Eq. (2). The results are
shown in Table 3, starting with the lowest χ2 value, i.e., the similar histograms
among weekdays, with D1 = Monday, D2 = Tuesday, and so on.

Second, the speed data throughout weekdays, but individual segments, was used
to conform the histograms of the speed frequency happening on each segment for
5 days (the weekdays of w1). These histograms were compared in pairs with the χ2.
Table 4 shows the results starting with the lowest χ2. We found that if the com-
pared segments share similar traffic elements, the speed frequency also is similar,
and therefore a low χ

2 is obtained.

Segment Cluster 1 (%) Cluster 2 (%) Cluster 3 (%)

s0 0.55 9.9 89.53

s1 11.84 80.71 7.43

s2 88.98 11.01 0

s3 93.66 6.33 0

s4 14.04 85.95 0

s5 79.61 20.38 0

s6 83.47 16.52 0

s7 4.13 3.85 92.01

Table 2.
Percentage of speed data in a cluster.

D2–D3 D4–D5 D3–D4 D2–D4 D1–D3 D1–D2 D1–D5 D3–D5 D2–D5 D1–D4

7.77 10.758 10.936 11.139 14.097 15.168 16.347 16.827 17.609 20.653

Table 3.
Chi-Square distance between histograms with weekdays’ data.

s2–s5 s3–s6 s5–s6 s1–s4 s2–s6 s0–s7 s2–s3

20.37 34.17 39.01 45.57 46.05 73.75 88.591

s3–s5 s4–s5 s4–s6 s1–s5 s2–s4 s3–s4 s1–s6

98.59 167.65 185.37 198.5 212.47 220.04 226.01

s1–s2 s0–s1 s1–s3 s1–s7 s0–s4 s4–s7 s6–s7

238.39 269.15 271.36 303.87 321.89 337.16 337.43

s2–s7 s5–s7 s0–s5 s0–s6 s0–s2 s3–s7 s0–s3

339.58 340.24 342.78 344.59 346.80 350.76 356.21

Table 4.
Chi-Square distance between histograms with segments data.

7

Procedure to Prepare and Model Speed Data Considering the Traffic Infrastructure, as Part…
DOI: http://dx.doi.org/10.5772/intechopen.88280



Figure 1 shows the most dissimilar histograms, s0 and s3. Table 1 shows that s0
has two speed bumps and no traffic lights, while s3 has three speed bumps and two
traffic lights; because the traffic lights on s3, we will expect a lower speed in this
segment, and this conclusion can be corroborated by looking at Figure 1.

Figure 2 shows the most similar histograms, s2 and s5. Segments s2 and s5 share
the same number of traffic lights; however, there are two speed bumps in s5 and 0 in
s2, then a slight superior speed is expected in s2 (see Figure 2).

Figure 1.
Dissimilar histograms (s0 and s3).

Figure 2.
Similar histograms (s2 and s5).
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Tables 3 and 4 show that comparing histograms with the speed frequency of
individual days (and all segments) are evaluated with a lower χ2 (the lower value is
7.77, the higher is 20.653) than the observed comparing histograms with the speed
frequency of individual segments (and all days), where the lower value is 20.37 and
the higher is 356.21. Then, it appears that the travel speed is weakly influenced by
the day of the week, since the traffic control elements of the whole road, from day
to day, are the same. However, it seems that the segment strongly influences the
travel speed, since the traffic control elements, which characterize each segment,
modify the speed at which is possible to travel.

To corroborate the abovementioned statement, we use the speed frequency of
w2. Figure 3 shows the histograms of the speed frequency of each day (and all
segments), where it can be observed the histograms’ similarity. Figure 4 shows the
histograms of the speed frequency of each segment (and all days), where it can be
observed the histograms’ dissimilarities.

2.2.4 Outlier detection

To put an example, the speed data of s0 and w1 is presented in Figure 5.
We calculate the MD of this data (Figure 5), and then the probability density
of the MD is presented in Figure 6, which has mean = 1.2331 and standard deviation
SD = 0.6894. From Figure 6, a point with value MD > (2*SD + mean) = 2.6119
corresponds to a red point in Figure 5 and is considered an atypical point. The
inequality value, i.e., (2*SD + mean), was established through trial and error.

The speed data from w1 and w2, for all segments, is filtered the same way as the
example. The data used in the polynomial regression satisfy MD < = (2*SD + mean)
and in the logistic regression MD < = (3*SD + mean).

Figure 3.
Seed frequency of days.
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2.2.5 Mathematical models

Polynomial: The data of each segment, with time as the independent variable
and travel speed as the dependent variable, is modeled with a five-degree polyno-
mial, enabling four-speed trend changes (the common requirement from the
observations). The coefficients are calculated with the least-squares regression
technique.

Figure 4.
Speed frequency of segments.

Figure 5.
Time vs. speed: Data of s0 and w1.
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The following terminology is used to describe the model: the data size of all

segments is N ¼
Pk¼7

k¼0 Nk, with Nk referring the data size of the k segment. The
observed i speed is denoted by y ið Þ, while time is t ið Þ. The speed model of segment k

and week q is denoted by M
q
k ið Þ, with k ¼ 0; 1; 2; 3;4; 5; 6; 7f g and q ¼ 1; 2f g. The

model is presented in Eq. (4), where coefficients φ1…φ6 were calculated with speed
data of the corresponding week (q) and segment (k):

M
q
k ið Þ ¼ φ1 þ φ2t ið Þ þ φ3t ið Þ

2 þ φ4t ið Þ
3 þ φ5t ið Þ

4 þ φ6t ið Þ
5 (4)

Multinomial logistic: The number of speed bumps and traffic lights (see
Table 1) are used to explain the speed. With multinomial logistic regression [33],
we obtained the logistic model presented in Eq. (5), with ψ = a; bf g:

Eq
ψ
ið Þ ¼ ψ1 þ ψ2v1 ið Þ þ ψ3v2 ið Þ þ ψ4v3 ið Þ þ ψ5v4 ið Þ þ ψ6v5 ið Þ (5)

The coefficients are denoted by ψ1…ψ6, and q ¼ 1; 2f g refers again to the data
from w1 and w2, respectively. The explanatory variables are v1 = day weight,
v2 = number of speed bumps, v3 =number of traffic lights, v4 = segment weight,
and v5 = time. The weight of a specific day is calculated as the day average speed
(of the speed measured from 6 a.m. to 11:59 p.m.) divided by the sum of the speed
average of each weekday. A segment’s weight is calculated as the segment’s
average speed (during weekdays) divided by the sum of the speed average of each
segment.

In Eq. (5), Eq
a calculates the relative risk of being in cluster 1 vs. cluster 3 (the

reference), and E
q
b calculates the same but for cluster 2 vs. cluster 3. The conversion

to probability is given in Eqs. (6)–(8), where R
q
j is the probability belonging to the

j category, with j ={1,2,3}:

R
q
1 ið Þ ¼ eE

q
a ið Þ= 1þ eE

q
a ið Þ þ eE

q

b
ið Þ

� �

(6)

R
q
2 ið Þ ¼ eE

q

b
ið Þ= 1þ eE

q
a ið Þ þ eE

q

b
ið Þ

� �

(7)

R
q
3 ið Þ ¼ 1� R

q
1 ið Þ þ R

q
2 ið Þ

� �

(8)

Figure 6.
Mahalanobis distance vs. probability density.
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2.2.6 Connecting Intel with users

With the developed procedure, knowledge is acquired about the speed at which
is expected to travel on the segments under the study. The architecture design (and
the implementation) to connect the Intel with the users is out of the scope in this
work (planned as future work); nevertheless we present in this section the
basic idea.

The algorithms developed (in Appendix A and Appendix B) were programmed
in a regular computer; according the procedure presented, the data acquired (from
the zone under study) is modeled, and the models are used in the algorithms to
generate knowledge. The link between this knowledge and the users could be
established through a cell phone app (via the Internet). When a driver is in the
proximity of a street segment, the cell phone (with GPS) detects the current loca-
tion and acquires information for the driver, as the number of bumps and traffic
lights, and also the expected travel speed calculated with the proposed algorithms;
this info is presented to the driver in a proper way to not distract him, and then the
driver can decide the more convenient route. A more challenging design is to
communicate the cell phone with the vehicle (assuming that an intelligent system is
part of it and can control some functions) and, for example, when the vehicle is
approaching a speed bump, it automatically decelerates (if the driver is not reacting
adequately).

The program running in a computer, in charged to acquire and mine data for
generating knowledge and to establish communication with the responsive ele-
ments, conforms the “cyber” part of the system. The elements reacting with intel-
ligence to the Intel delivered, as the driver, the cell phone, and the vehicle, conform
the “physical” part of the system. Finally, the cyber and physical parts combined
conform a cyber-physical system.

3. Results

3.1 Polynomial regression model and Algorithm 1

The error between the modeled data, with Eq. (4), and the observed data, was
calculated with the mean absolute error (MAE) (see Eq. (9)) [34]. Here, n ¼ Nk,
y ið Þ and ŷ ið Þ are the observed and modeled data, respectively. Table 5 shows the

M
1
k

M
2
k

Segment MAE (km/h) SD (km/h) MAE (km/h) SD (km/h)

s0 0.8269 0.6802 0.7895 0.6321

s1 1.0101 0.9630 1.1939 0.9916

s2 0.9523 0.7622 1.1754 1.0670

s3 0.6198 0.4628 0.6701 0.5917

s4 0.8435 0.6882 0.9765 0.7416

s5 0.8971 0.6826 0.9234 0.7408

s6 0.8438 0.7297 0.7737 0.6680

s7 0.9376 1.0762 0.7894 0.6653

Table 5.
MAE and SD.
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MAE, and its standard deviation (SD), with the data of w1 and w2, and the respec-
tive modeled equations:

MAE ¼
1

n

X

n

i¼1

y ið Þ � ŷ ið Þj j (9)

An algorithm (Appendix A, Algorithm 1) is designed to predict the speed of w3

using the modeled equations (M1
k andM2

k) and historical data, i.e., the data available
from w3 before the current time. The error between the observed (from w3) and
predicted (with Algorithm 1) travel speeds is calculated with Eq. (9). The MAE, SD,
and hits (percentage of data categorized correctly) for w3, using Algorithm 1, are
shown in Table 6.

Figure 7 shows, as example, the observed speed data (in black circles) of w3 and

segment s0, the modeled data with w1 (model M1
0, in blue dots) and w2 (model M2

0,
in green dots), and the estimated speed with Algorithm 1 (in red plus signs).

3.2 Multinomial logistic regression model and Algorithm 2

Algorithm 2 (see Appendix B) is used to predict the speed category of the
observed data from w3. H1 ið Þ and H2 ið Þ are two data sets obtained from w1 and w2,
respectively. These sets save the associated category of the average speed in a time
interval from t(i)-0.5 to t(i) + 0.5 (0.5 h = 30 min) and centered on t(i), of the day
and segment under evaluation. H3 ið Þ is the category speed of w3 (which is only
available for previous data, i.e., prior to (i), with i…N being the data index. The

probability most likely to occur is Pq ið Þ ¼ max R
q
1 ið Þ;R

q
2 ið Þ;R

q
3 ið Þ

� �

¼ Rq
x ið Þ and the

category is stored in Sq ið Þ ¼ x, where subindex q = {1,2} refers to the week. A
threshold value, selected through trial and error, is used to discard the result in Sq ið Þ

if Pq ið Þ < threshold. Algorithm 2 predicts the speed category for w3, which is stored in
S3 ið Þ. Choosing threshold = 0.9 gives 90.09% of correct evaluations. This percentage
is the summation of cases, where S3(i) was categorized correctly divided by the total
data N.

Afterward, we attempted to predict the speed category of the observed speed in
w3 under the assumption that set H2 ið Þ is composed only with the average speed of
each segment, and not including H1. The optimum result was found if thresh-
old = �0.85, with 85.62% of correct predictions. If the threshold value is reduced, the
positive prediction decreases (because the model fails to predict accurately with
that threshold value). Similarly, if the threshold is increased, it becomes more

Segment MAE (km/h) SD (km/h) Hits (%)

s0 0.7757 0.7142 92.4

s1 0.9353 1.0061 85.2

s2 0.8641 0.7537 89.5

s3 0.7749 0.7658 94.8

s4 1.0053 1.0903 85.2

s5 0.8051 0.7942 93.5

s6 0.6968 0.6639 96.5

s7 0.7994 0.9391 93.5

Table 6.
Algorithm 1 prediction results: MAE, SD, and hits.
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difficult to satisfy the condition Pq ið Þ≥ threshold, and then the positive prediction
also drops because now the set H2 ið Þ (with the limitation mentioned before) con-
tributes more. Table 7 shows the percentage of speed data categorized correctly
with different threshold values.

3.3 Discussion

A series of steps are employed in a numerical example that, in combination,
constitute a new method for speed prediction. The first step, street segmentation,
divides an avenue in such a way that distributes different traffic elements on
different segments. These elements are number of speed bumps, traffic lights, and
landmarks, which in turn leads to different speed behavior on each segment. The
second step, clustering, selects intervals which better fit the travel speed observed,
resulting in three categories. Depending on the segment, most of the speed data
(approximately at least 80%) is within a specific cluster (category). For example,
we infer that the speed behaviors in s2 and s5 are similar, since most of the speeds for
both fall inside cluster 1. Moreover, speed behaviors of s0 and s3 are dissimilar, since
most of the speeds belong to different clusters (3 and 1, respectively). In the third
step, comparative analysis of histograms, we corroborate that for each segment, the

Threshold Prediction (%)

0.75 81.69

0.80 83.10

0.85 85.62

0.90 84.24

0.95 83.97

Table 7.
Algorithm 2: threshold values and w3 prediction results.

Figure 7.
Time vs. speed: data of s0 and w3.
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speed behavior is related to the traffic elements involved. It was observed that the
speed histograms of two segments get a low Chi-Square distance if the segments
share approximately the same number of speed bumps, traffic lights, and land-
marks, independent of the day of the week. A high Chi-Square distance implies the
opposite situation, i.e., segments with different number of traffic elements. The
fourth step, outlier detection, removes atypical speed behavior, e.g., a vehicle circu-
lating slower or faster than the usual. In step five, mathematical models, the models
explain the speed. From steps 2 and 3, it is already known that on each segment,
speed behaves according to the traffic elements involved, and hence the speed data
of each segment is modeled independently with a polynomial model, with time as
the independent variable. The multinomial logistic model uses as independent vari-
ables the number of speed bumps, traffic lights, the time, and two weights. The
weights are calculated based on the average of the measured travel speeds consid-
ering segments and days. Finally, in step 6, connecting Intel with users, the drivers are
properly informed about the travel speed expected on the surrounding segments,
helping them to continuously adjust their route.

4. Conclusions

The procedure presented in this chapter proposes street segmentation; on each
segment, there are traffic elements that we infer may be related with the observed
speed frequency. By comparing speed histograms, we found that the speed fre-
quency of all segments is similar among weekdays, and then the speed frequency of
a specific segment is similar regarding the day. Considering the speed frequency of
all weekdays, and individual segments, the segments with different traffic elements
(speed bumps, traffic lights, and landmarks) yield dissimilar traveling speeds. From
this observation, two techniques were considered for modeling speed: (1) polyno-
mial regression, where the data of each segment is modeled independently, using
time as the independent term, and (2) logistic regression, with several independent
variables—number of speed bumps and traffic lights, time, and two weights (from
the observed speeds on street segments and weekdays). The models were
implemented in algorithms, which use the modeled and historical data. With the
polynomial model and Algorithm 1, it was possible to categorize correctly the travel
speed in the range from 85.2 to 96.5%, depending on the segment. The multinomial
logistic model and Algorithm 2 correctly predict the speed category in 90.09% of
the evaluated cases. With these results, we conclude that the proposed procedure is
suitable to prepare and model speed data and then to predict the speed category at a
low computer processing cost. The procedure is useful to establish the relationship
between traffic infrastructure and travel speed.

4.1 Future work

We contemplate as future work the development of the architecture to commu-
nicate the expected travel speed (obtained with the proposed procedure) with the
users, as well as convert this knowledge in suggestions and decision-making.

Appendix A

In Algorithm 1, if i≤ deep (line 3), the modeled speed of w1 and w2 contributes
the same (each multiplied by 0.5). The case i≥ deepþ 1 (line 6) enables the
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estimation of y i� 1ð Þ and y ið Þ with known data from w3. Variables h1 and h2 (see
lines from 9 to 14) store the average of the absolute difference between historical
and modeled data, from w1 and w2, respectively. h3 (line 15) stores the absolute
difference of the historical and estimated data, from w3 and index i-1. The condition
in line 16 verifies that the y i� 3ð Þ to y i� 1ð Þ speeds are nonempty, i.e., available.
h1…h3 are normalized and converted to weights, named W1…W3. Because h carries
the error, a greater h results in a smaller W, and so forth. In line 18, the predicted
speed is calculated using the weights, the modeled speed with w1 and w2, and the
estimation with previous data of w3. If the condition in line 16 is not true, then in
line 21 the speed prediction is calculated with the modeled data and new weights,
without the w3 data.

Algorithm 1

Initial conditions: deep = 3;

1. for k ¼ 0 to k ¼ 7
2. for i ¼ 1 to i ¼ Nk

3. if i≤ deep

4. ŷ ið Þ ¼ M1
k ið Þ ∗0:5þM2

k ið Þ ∗0:5
5.end if

6. if i≥ deepþ 1
7.y i� 1ð Þ ¼ y i� 2ð Þ þ y i� 2ð Þ � y i� 3ð Þð Þ
8.y ið Þ ¼ y i� 1ð Þ þ y i� 1ð Þ � y i� 2ð Þð Þ
9.h1 ¼ 0; h2 ¼ 0;
10.for j ¼ 1 to j ¼ deep

11.h1 ¼ h1 þ y i� jð Þ �M1
k i� jð Þ

	

	

	

	

12.h2 ¼ h2 þ y i� jð Þ �M2
k i� jð Þ

	

	

	

	

13.end for
14.h1 ¼ h1=deep ; h2 ¼ h2=deep
15.h3 ¼ y i� 1ð Þ � y i� 1ð Þj j

16. if y i� 1ð Þ∉∅ ∧ y i� 2ð Þ∉∅ ∧ y i� 3ð Þ∉∅

17.h1 ¼
h1

h1þh2þh3
; h2 ¼

h2
h1þh2þh3

; h3 ¼
h3

h1þh2þh3
; W1 ¼

1�h1
1�h1þ1�h2þ1�h3

;

W2 ¼
1�h2

1�h1þ1�h2þ1�h3
; W3 ¼

1�h3
1�h1þ1�h2þ1�h3

18. ŷ ið Þ ¼ M1
k ið Þ ∗W1 þM2

k ið Þ ∗W2 þ y ið Þ ∗W3

19.else

20.h1 ¼
h1

h1þh2
; h2 ¼

h2
h1þh2

; W1 ¼ 1� h1; W2 ¼ 1� h2;

21. ŷ ið Þ ¼ M1
k ið Þ ∗W1 þM2

k ið Þ ∗W2

22.end if
23.end if
24.end for
25.end for

Appendix B

From Algorithm 2, in lines 3 to 10 it is compared the modeled and historical
speed category (from w1 and w2), with the historical from w3, to determine which is

16

Sustainability in Urban Planning and Design



the accurate. The number of hits of the model and the historical (for weeks 1 and 2)
is stored in score with sub-index from 1 to 4, for the four cases. In line 12, if the
probability P2 ið Þ is greater or equal than the selected threshold and, if score2 ≥ score1,
then S2 ið Þ is the predicted speed category. In line 14, if P1 ið Þ≥ threshold and, if
score1 ≥ score2, then the predicted speed category is S1 ið Þ. If previous conditionals
(line 12 and 14) are not evaluated to true, in lines from 16 to 18, the historical with
the greater score, H2 or H1, is the selected to predict the speed category.

Algorithm 2

Initial conditions: score1 = 0; score2 = 0; score3 = 0; score4 = 0;
threshold ∈ [0.75,0.95];

1. for i ¼ 1 to i ¼ N
2. if i>1
3. if H3 i� 1ð Þ ¼¼ S1 i� 1ð Þ
4. score1 þþ; end if
5. if H3 i� 1ð Þ ¼¼ S2 i� 1ð Þ
6. score2 þþ; end if
7. if H3 i� 1ð Þ ¼¼ H1 i� 1ð Þ
8. score3 þþ; end if
9. if H3 i� 1ð Þ ¼¼ H2 i� 1ð Þ
10.score4 þþ; end if
11.end if
12. if P2 ið Þ≥ threshold∧ score2 ≥ score1ð Þð
13.S3 ið Þ ¼ S2 ið Þ; else
14. if P1 ið Þ≥ threshold∧ score1 ≥ score2ð Þð
15.S3 ið Þ ¼ S1 ið Þ; else
16. if score4 ≥ score3
17.S3 ið Þ ¼ H2 ið Þ; else
18.S3 ið Þ ¼ H1 ið Þ; end if
19.end if
20.end if
21.end for
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