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Chapter

Granular Approach for
Recognizing Surgically Altered
Face Images Using Keypoint
Descriptors and Artificial Neural
Network
Archana Harsing Sable and Haricharan A. Dhirbasi

Abstract

This chapter presents a new technique called entropy volume-based scale-
invariant feature transform for correct face recognition post cosmetic surgery. The
comparable features taken are the key points and volume of the Difference of
Gaussian (DOG) structure for those points the information rate is confirmed. The
information extracted has a minimum effect on uncertain changes in the face since
the entropy is the higher-order statistical feature. Then the extracted corresponding
entropy volume-based scale-invariant feature transform features are applied and
provided to the support vector machine for classification. The normal scale-
invariant feature transform feature extracts the key points based on dissimilarity
which is also known as the contrast of the image, and the volume-based scale-
invariant feature transform (V-SIFT) feature extracts the key points based on the
volume of the structure. However, the EV-SIFT method provides both the contrast
and volume information. Thus, EV-SIFT provides better performance when com-
pared with principal component analysis (PCA), normal scale-invariant feature
transform (SIFT), and V-SIFT-based feature extraction. Since it is well known that
the artificial neural network (ANN) with Levenberg-Marquardt (LM) is a powerful
computation tool for accurate classification, it is further used in this technique for
better classification results.

Keywords: face recognition, plastic surgery, scale-invariant feature transform,
(SIFT) feature, EV-SIFT feature, Levenberg-Marquardt-based neural network
classifier (LM-NN)

1. Introduction

Human faces are multidimensional and complex visual stimuli, which contain
useful information about the uniqueness of a person. Recognizing their faces used
for security and authentication purposes has taken a new turn in the current era of
computer image and vision analysis, for example, in monitoring applications, image
recovery, man-machine interaction, and biometric authentication. Normally, the
facial recognition system does not have the sense of touch or human interaction to
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complete the recognition process. This is one of the benefits of face recognition in
relation to other recognition methods. Facial recognition can designate the verifica-
tion phase [1] or the identification phase [2]. In the verification phase, the corre-
spondence between two faces is resolved. There are many methods available to
achieve facial recognition [3–8]. But the accuracy of recognition is not always high.
This is due to variations in lighting levels, facial expressions, poses, aging, low-
resolution input images, or facial markings [9, 10]. Several investigators have
implemented several methods of face recognition to treat the effects of imposition
[11] of illumination [12], low resolution [13], aging [14], or a combination thereof
[15]. However, these uncertainties could be overcome, and, in the face of plastic
surgery, recognition will intensify with the identification of the person. The fact
that face recognition in plastic surgery is due to the lack or variation of facial
components, the texture of the skin, the general appearance of the face, and the
geometric relationship between facial features or variation of the facial components
[16–18]. Plastic surgery, both economic and sophisticated, has attracted people
from all over the world. However, only a few contributions or research methodolo-
gies have been reported in the literature to address the problem of face recognition
of plastic surgery. Few of them include recognition by local region analysis [19], a
local form of cascade texture function (SLBT) with periocular features [20]. A
review was also carried out in [21] to illustrate the use of multimodal features in the
recognition of plastic surgery on the basis of contributions.

1.1 Related works

De Marsico et al. [22] have made perfect recognition of the face, undergone
cosmetic surgery, with region-based approach on a multimodal supervised archi-
tecture, also named as Split Face Architecture (SFA). Author proved dominance of
their method by the application of supervised SFA to conventional PCA as well
as FDA, toward LBP in the multiscale, rotation-invariant version with uniform
patterns, face analysis for commercial entities (FACE), as well as face recognition
against occlusions and expression variations (FARO).

Kohli et al. [23] enclose layout of multiple projective dictionary learning frame-
work (MPDL) that never needs to figure norms to recognize usual faces, which
have undergone modification via cosmetic surgery. Several projective dictionaries
as well as compact binary face descriptors have been used to understand local and
global plastic surgery face representations, in order to facilitate the distinction
between plastic surgery faces and their original faces. The tests performed on the
plastic surgery database resulted in an accuracy of about 97.96%.

Chude-Olisah et al. [24] has overcome the degradation of facial recognition per-
formance; they have found that the approach had gone beyond the facial recognition
approaches of cosmetic surgery before accessible, regardless of changes in lighting,
facial expressions, and other changes resulting from cosmetic surgery. Ouanan [25]
has introduced HOG feature-based facial recognition approach, which uses HOG as a
substitute of DOG in the scale-invariant feature transform. Ouloul [26] introduces a
perfect recognition approach for face using SIFT feature in RGBD images which
depend on RGBD images produced by Kinect; this kind of cameras are low price, as
well as it can be utilized in every setting and in several situations. Bhatt et al. [27]
have proposed a multi-objective granular evolutionary method, which provides the
pairing of images taken before and after in cosmetic surgery. Primarily, the algorithm
generates superimposed face granules in three levels of granularity. Facial recognition
in plastic surgery has undergone several developments in recent years. Contributions
to the research were reported in the literature, either in the feature extraction phase,
in the classification phase, or in both phases.
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2. Granular approach for recognizing surgically altered face images
using EV-SIFT and LM trained NN

The surgical face recognition is developed, which is based on the granular
approach and Laplacian sharpening since it is identified that the sharpening of
images will automatically enhance the cornerness and contrast of the image gran-
ules. Further, the key point elimination is done in this technique with entropy
threshold, because entropy is the effective selection criterion that is used to elimi-
nate the unreliable interest points. Since it is well known that the artificial neural
network (ANN) with Levenberg-Marquardt (LM) is a powerful computation tool
for accurate classification, it is further used in this technique for better classification
results. The architecture diagram of the proposed face recognition technique is
diagrammatically illustrated in Figure 1.

The testing image IT is initially preprocessed, in such a way that the image IT

gets cropped, resized, and formulated granularly. Then the local extrema of the

preprocessed image ITp is detected using DOG scale space. Moreover, in this pro-

posed recognition technique, EV-SIFT descriptor is used to extract the features. The
NN classifier with LM is also adopted for better classification.

3. Preprocessing: granular and Laplacian sharpening

This is the initial process with the input image IT, where the image gets resized,
cropped, and formulated. Two types of preprocessing are carried out, namely,
Laplacian sharpening and granular processing.

Figure 1.
Block diagram of the proposed granular approach for recognizing plastic surgery faces.
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3.1 Preprocessing-I

The image IT from database is cropped and resized to 150 � 150.
Laplacian operator: This operator is also called derivative operator that is used

to identify the edges in an image. The foremost difference among Laplacian and
other operators such as Sobel, Prewitt, Kirsch, and Robinson is that all the men-
tioned operators are first-order derivative masks, whereas the Laplacian is the
second-order derivative mask. Further, two classifications are there in this mask:

• Positive Laplacian operator

• Negative Laplacian operator

Moreover, one of the differences among the operators is that Laplacian will not
use any corresponding direction. However, it uses edges in two classifications:

• Inward edges

• Outward edges

Positive Laplacian operator: This category has the standard mask, the center
element of the mask is the negative element, and the elements that present in the
corner of the mask must be zero, which is utilized to take the outward edges in the
image, which is illustrated in Figure 2.

Negative Laplacian operator: This operator also has a standard mask, in which
the center element must be positive; all the elements that exist in the corner must be
zero, and the remaining mask elements must be �1. This operator is utilized to take
the inward edges in the image, which is illustrated in Figure 2.

Working strategy of Laplacian: This operator deemphasizes the region in
image by using gray-level discontinuities, and it is happened by slowly varying gray
levels. The operation results in the image that has grayish edge line with dark
background, which grants both the inward and outward edges in image. The filter
application basically emphasizes two major strategies: it is impossible to apply both
the operators (positive and negative); rather only one operator can be applied. If the
positive operator is applied to the image, then the resultant image is subtracted
from the original image to get the sharpened image. Same as this, if the negative

Figure 2.
Standard mask of (a) positive Laplacian operator and (b) negative Laplacian operator.
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Laplacian operator is applied to the image, then the resultant image is added to the
original image for the sharpened image.

3.2 Preprocessing II

This is the foremost process of the developed model. Consider I as the nomi-
nated plastic surgery face image of n�m size. The face granules are formed with
the consideration of three levels of granularity. The initial level outputs the infor-
mation, namely, global information at multiple determinations. The inner and outer
information from the face are resulted from the second level of granularity. Nor-
mally, features termed “local facial features” play a leading role in the recognition of
face and therefore in the third-level extracts of the local facial features. The brief
explanation of the three granularities is explained below:

First level of granularity: In this level, the face granules are generated by apply-
ing the Gaussian and Laplacian operators. In accordance with this, Gaussian operator
gives the series of low-pass filtered image along 2D Gaussian kernel, whereas the

Laplacian operator gives the sequence of band-pass images. Consider IGg as the gran-

ules that are resultant from Gaussian as well as Laplacian operators, where g denotes
the granule number. If the face image is of size 196� 224, the output image might be

in the pyramid view with six granules IGg1 to IGg6, and it may be either higher or lower

determination. From the generated six granules, the facial features are separated at
varied determination for providing blurriness, smoothness, edge information, and
noise, which presents in I. Hence, the variations are compensated in this level with
the alteration of face textures like skin resurfacing, dermabrasion, and facelift.

Second level of granularity: In this level, the face image I is divided into varied

regions to get the horizontal granules IGg7 to IGg15 and the vertical granules IGg16 to IGg24.

The size of the first three granules is n�m=3. From the size of the next three

granules, the size of IGg10 and IGg12 is n� m=3� ∈ð Þ, and the size of IGg11 is

n� m=3þ 2∈ð Þ. Further, n� m=3þ ∈ð Þ is the size of IGg13 and IGg15, and

n� m=3� 2∈ð Þ is the size of IGg16. In the same manner, it generates the vertical

granules. In this way, the second level grants the variations in both the inner and the
outer facial regions. The variations that are present in the chin, cheek, ears, and
forehead are denoted with the aid of relations among vertical and horizontal granules.

Third level of granularity: In general, humans classify individuals by identifying
their local face regions like the eyes, mouth, and nose. This property is accomplished
in this level, which extracts the local facial regions and is used as the granules. In eye
coordinate, with the use of golden ratio face template, it is probable to extract 16 local
facial regions. Every region is determined as the local information, in which it denotes
the deviations due to the plastic surgery. This granularity preprocessing grants flexi-
bility to deviations in both the inner and outer facial sections. It uses the relation
among horizontal and vertical granules to view the deviations in the cheeks, chins,
forehead, and ears that changed due to plastic surgery processes.

4. EV-SIFT, local binary pattern (LBP), and center-symmetric local
binary pattern (CSLBP)

4.1 EV-SIFT

Consider the face image Fj and database IDi , where i ¼ 1, 2:……ND, which must

satisfy the condition Fj ⊂ IDi and j ¼ 1, 2::…NS, and the database size is given as
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M�Nð Þ. The preprocessing phase initiates with resizing of image. The resizing
model of the image is defined in Eq. (1), where SM and SN denote the scaled number
of columns and rows:

I x; yð Þ ¼ Ii mr; nrð Þ ¼
1

SM ∗ SN
∑

mrSM

u¼ mr�1ð ÞSM

∑
nrSN

v¼ nr�1ð ÞSN

Ii u; vð Þ (1)

In Eq. (1), u∈ 1;M½ � and v∈ 1;N½ �, 0≤mr ≤Mr � 1 and 0≤ nr ≤Nr � 1,
Mr �Nrð Þ is the size of the resized image, and �½ � denotes the round-off function of
the nearest integer:

SM ¼
M

Mr

� �

(2)

SN ¼
N

Nr

� �

(3)

4.1.1 Acquisition of the EV-SIFT key points

Choosing the key points in the variation of the Gaussian function is the vital role
to be considered. The parameters of the key point are purely depending on distri-
bution property of the gradient operation of the image. Thus, the formulation of
both the orientation and gradient modules is done, which registers the invariance
toward the rotation of the image. The computation of orientation and gradient
module is defined in Eqs. (4) and (5), where θ x; yð Þ denotes the orientation of key
points and the gradient magnitude and L x; yð Þ refers to the image sample:

θ x; yð Þ ¼ tan �1 L x; yþ 1ð Þ � L x; y� 1ð Þð Þ2

L xþ 1; yð Þ � L x� 1; yð Þð Þ2

 !

(4)

m x; yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L xþ 1; yð Þ � L x� 1; yð Þð Þ2

þ L x; yþ 1ð Þ � L x� 1; y� 1ð Þð Þ2

v

u

u

t

0

@

1

A (5)

The scales used by L are the respective scale for each key point. Further, an
orientation histogram is achieved as a result of gradient operation of sample points.

4.1.2 Entropy-based feature descriptor

The Changeable information is measured using entropy. It basically defines the
statistical measure of randomness, which determines the texture of the input image.
Only the least effect remains in the higher-order statistical feature due to the
entropy on uncertain deviations in the face. The following steps show the entropy-
based feature descriptor:

Step 1: The volume of the image is evaluated with the aid of V-SIFT formulation,
which is determined in the matrix form as defined in Eq. (6):

V i; jð Þ ¼

v i1; j1
� �

v i1; j2
� �

: v i1; jn
� �

v i2; j1
� �

v i2; j2
� �

: v i2; jn
� �

: : : :

v im; j1
� �

v im; j2
� �

: v im; jn
� �

2

6

6

6

4

3

7

7

7

5

(6)
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Step 2: The information basis is both memory less and static. The volume of the
structure in EV-SIFT analysis is defined in Eq. (7), which is the probability function:

Vp i; jð Þ ¼
V i; jð Þ

∑i ∑j V i; jð Þ
(7)

Step 3: The computation of entropy is done from the volume of the structure.
The entropy calculation for EV-SIFT process is determined in Eq. (8), which states
that if E Vð Þ is high entropy, then the volume is from the unvarying direction, and if

it is low entropy, then it means that the volume is a varied distribution. Thus, FD
i

describes the entire database that achieved the final EV-SIFT descriptor:

E Vð Þ ¼ �Vp i; jð Þ logVp i; jð Þ (8)

The level of Gaussian blur of the image is selected by orientation and gradient
magnitude with entropy, and also the volume of the image is also sampled in terms
of scale of key points at particular key point location. The sample is an 8 � 8
neighbor window, which is centered on the key point and splits the neighbor into
4� 4 child window. Hence, the formulation of gradient orientation histogram is done
along with eight bins with the aid of each child window. In such a way that within
each key point, each descriptor intends the 4 � 4 array of histograms that comprises
eight bins. The feature vector attained is the size of 4 � 4 � 8 = 128 dimension.

4.2 Local binary pattern (LBP)

LBP [1] operator is designed for texture description. It encodes the pixel-wise
data in texture images, in such a way that a label is assigned to every pixel of the
image. This is done by thresholding the 3 � 3 neighborhood of all pixel value with
the center pixel, and the result must be a binary number. The basic LBP

thresholding function f T :; :ð Þ is defined as given in Eq. (9), where Y i, i ¼ 1, :::8 is
the eight neighborhood point around Y0, which is shown in Figure 3. LBP in other
words is termed as the concatenation of binary gradient direction, which is also
known as “micro pattern”:

fT IT Y0ð Þ; IT Y ið Þ
� �

¼
0, if IT Y ið Þ � IT Y0ð Þ≤ threshold

1, if IT Y ið Þ � IT Y0ð Þ. threshold
, i ¼ 1, 2, 3::……, 8

(

(9)

Figure 3.
Example of eight neighborhoods around Y0.
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Figure 4 illustrates the sample of attaining an LBP micro pattern when the
threshold is set to 0. Further, the resultant histogram of the micro pattern presents
the data related to the distribution of edges, spots, and more local features that
present in the image. It is observed that the LBP is a great tool for face recognition.
Despite a number of static learning approaches that tune with more parameters,
LBP is more effective since it has an “easy-to-formulate” feature extraction process,
and also the matching strategy is also very simple.

4.3 Center-symmetric local binary pattern (CSLBP)

CSLBP [1] is established for interest region description. It purposes for least LBP
labels to generate smaller histograms, which are well suited to utilize in region
descriptors. Moreover, it is designed for better stability, especially in regions that
include the face image. Here, the comparison of pixel values are not done between
the pixels and center pixels; rather the opposing pixels are symmetrically compared
in correspondence to the center pixel, which is defined in Eq. (10):

CSLBPS,T u; vð Þ ¼ ∑
S=2ð Þ�1

i¼0
t si � siþ S=2ð Þ

� �

, t uð Þ ¼
1, u.T

0, otherwise

�

(10)

where si and siþ S=2ð Þ refer to the gray values of center-symmetric pairs of S

similarly space out pixels.
In this work, the value of T threshold is 1% of pixel value. T is set to 0.01 since the

data lies among 0 and 1. The size of the neighborhood is eight as illustrated in Figure 5.
From the CSLBP formulation, it is evident that CSLBP is related to gradient operator,
and also it considers the gray level G differences among pairs of contrary pixels in
neighborhood. Thus, the CSLBP features show the advantage of both the LBP param-
eters and gradient features. CSLBP generates 16 varied binary patterns. Feature vector
of every key point is generated by concatenating 128-dimensional descriptor as well as
LBP [256-dimensional descriptor]/CSLBP [16-dimensional descriptor]. The feature
vectors’ dimensions are diminished to 25 dimensions by evaluating the covariance
matrix for PCA, from which the highest 25 eigenvectors are chosen for description.

5. Recognition system: Levenberg-Marquardt-based neural network
classifier (LM-NN)

In this work, LM-NN classifier is used for recognition purpose. The NN model is

represented in Eqs. (11)–(13), where n denotes the hidden neurons, w
hð Þ
bnð Þ refers to

Figure 4.
An example for LBP micro pattern for a given region.
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the bias weight to nth hidden neurons, and w
hð Þ
jn represents the hidden neuron’s

weight. The input is the dimensional reduced features from PCA, which is denoted

as f , A hð Þ is the output of the hidden layer that is defined in Eq. (11), and the
nonlinear function is represented as F •ð Þ:

A hð Þ ¼ F w
hð Þ
bnð Þ þ ∑

N Ið Þ

j¼1
w

hð Þ
jn f

 !

(11)

where N Ið Þ denotes the count of input neurons. B̂ is the output of the network

model that is defined in Eq. (12), where w
oð Þ
bk is the weight of the output bias to kth

layer, w
oð Þ
ik is the output weight from ith hidden neuron to kth layer, and N hð Þ is the

count of hidden neurons. The weight w ∗ is optimally chosen by reducing the
objective function, which is defined in Eq. (13), where B denotes the actual output

and N oð Þ is the number of output neurons:

B̂ ¼ F w
oð Þ
bk þ ∑

N hð Þ

i¼1
w

oð Þ
ik A

hð Þ
i

 !

(12)

w ∗ ¼ arg min

w
hð Þ

bið Þ
;w

hð Þ

ji
;w

oð Þ

bk
;wo

ik

h i

∑
N oð Þ

k¼1

kB� B̂k (13)

Here, the LM algorithm is used for training the NN model. The error

functionEF wð Þ to be reduced is represented as the sum of squared errors among the

target output BT and the network model output B̂, which is defined in Eq. (14):

EF Wð Þ ¼ vTv (14)

whereW ¼ W1,W2,………WN,whichpresents all theweights of the network and v
is the error vector which includes the error of all the training samples.While training
with LMmodel, the growth ofweightΔW is obtained, and it is defined in Eq. (15):

Figure 5.
CSLBP establishment.
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ΔW ¼ MTMþ η
� ��‘1

MTv (15)

whereM is the Jacobian matrix and the learning rate to be updated is represented
as η. The updation of η is done using α, which depends to the outcome. Particularly, η

is multiplied by α, 0, α, 1ð Þ decay rate when EF Wð Þ minimizes, whereas when

EF Wð Þ increases, η is divided by α. The given pseudo-code shows the training process
of LM.

Step 1 Initializing the weights W and parameter η (η=.01 (approx.))

Step 2 Sum of the squared errors is formulated on the entire EF Wð Þ inputs.
Step 3 Increment of weights ΔW is computed using Eq. (14)

Step 4 Recomputing EF Wð Þ

Step 5 Use W + ΔW as the trail Wand evaluate

If trail EF Wð Þ
,EF Wð Þin step 2 then

W = W + ΔW
η = η � α α ¼ 0:01ð Þ
Back to step 2

else
η ¼ η

α

Back to step 4
End if

6. Results and discussion

6.1 Experimental setup

The cosmetic surgery face recognition experimentation is conducted in
MATLAB 2015a. The database including presurgery faces and postsurgery faces are
downloaded from http://www.locateadoc.com/pictures/. The experimentation is
performed for different plastic surgery faces. The total number of plastic surgery
faces in the database is 460, where it comprises 68 images from blepharoplasty
(eyelid surgery), 51 images from brow lift (forehead surgery), 51 images from
liposhaving (facial sculpturing), 17 images from malar augmentation (cheek
implant), 18 images from mentoplasty (chin surgery), 54 images from otoplasty
(ear surgery), 75 images from rhinoplasty (nose surgery), 74 images from
rhytidectomy (facelift), and 52 images from skin peeling (skin resurfacing).

Figure 6.
Computation of granular images 1, 2, and 3. (a) Horizontal granules and (b) vertical granules.
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6.2 Granularity preprocessing

By dividing the face image into varied regions, we get the vertical as well as
horizontal face granules as illustrated in Figure 6. The horizontal granules are
represented as R1, R2, and R3, and the size is 150 � 150/3. Similarly, the vertical
granules are denoted as R4, R5, and R6, which is of 150/3 � 150 size.

6.3 Analysis on EV-SIFT

In this work, EV-SIFT descriptor is used for the feature extraction. Figure 7
illustrates the original images. For each original image, the corresponding vertical
edge and horizontal edge of the image were evaluated, and it is illustrated in
Figures 8 and 9. The gradient magnitude of the images is also shown in Figure 10.
Similarly, the theta images of the given input images are illustrated in Figure 11.

Figure 7.
Original images: (a) image 1, (b) image 2, (c) image 3, (d) image 4, and (e) image 5.

Figure 8.
Vertical edge of the given images: (a) image 1, (b) image 2, (c) image 3, (d) image 4, and (e) image 5.

Figure 9.
Horizontal edge of the given images: (a) image 1, (b) image 2, (c) image 3, (d) image 4, and (e) image 5.
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One of the important processes is the evaluation of image orientation of the eight

angles such as 0, 45, 90, 135, 180, 225, 270, and 315° in each image, which is shown in
Figures 12–16. The resultant EV-SIFT contour of the input images is illustrated in
Figure 17.

6.4 Learning performance of LM-NN

The performance of the LM-NN classifier is illustrated in Figure 18. It is
observed that the best performance of the classifier is attained at the epoch 7, where
the training performance is 0.00022204, gradient is 7.0363e-08, Mu is 1e-10, and
the validation fail is 0 since there is no validation attained.

6.5 Comparative performance analysis of best-performing methods of
proposed approaches

While analyzing the first research technique, in the evaluation on LM-NN, it is
observed that the EV-SIFT proposed technique attained better results in all the
measures like accuracy, sensitivity, specificity, precision, false-positive rate (FPR),
false-negative rate (FNR), net present value (NPV), false discovery rate (FDR), and
F1score (also F-score or F-measure) which is a measure of a test’s accuracy and
Matthews correlation coefficient (MCC), respectively. The evaluation is summa-
rized in Tables 1–3.

It is observed that the proposed V-SIFT with LM-NN has achieved more over the
conventional methods for various plastic surgeries, which is summarized in

Figure 10.
Gradient magnitude of the images: (a) image 1, (b) image 2, (c) image 3, (d) image 4, and (e) image 5.

Figure 11.
Theta representation of the images: (a) image 1, (b) image 2, (c) image 3, (d) image 4, and (e) image 5.
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Figure 13.
Image orientation of eight angles (image 2): (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, and
(h) 315°.

Figure 12.
Image orientation of eight angles (image 1): (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, and
(h) 315°.
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Figure 14.
Image orientation of eight angles (image 3): (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, and
(h) 315°.

Figure 15.
Image orientation of eight angles (image 4): (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, and
(h) 315°.
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Figure 16.
Image orientation of eight angles (image 5): (a) 0°, (b) 45°, (c) 90°, (d) 135°, (e) 180°, (f) 225°, (g) 270°, and
(h) 315°.

Figure 17.
EV-SIFT contour of images: (a) image 1, (b) image 2, (c) image 3, (d) image 4, and (e) image 5.
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Figure 18.
Performance of LM-NN classifier in correspondence with (a) validation performance and (b) gradient, Mu,
and validation fails.

LM-NN

Accuracy Rhinoplasty 0.92

Sensitivity Malar augmentation 0.24

Specificity Rhinoplasty 0.97

Precision Skin peeling 0.04

FPR Rhinoplasty 0.03

FNR Malar augmentation 0.76

NPV Rhinoplasty 0.97

FDR Skin peeling 0.96

F1score Skin peeling 0.06

MCC Skin peeling 0.04

Table 1.
Proposed SIFT with LM-NN of different plastic surgery faces.
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Table 2. It is observed that for all the measures, the method has attained better
results, which also leads to the other types of plastic surgery.

From the second technique, it is observed that the proposed EV-SIFT with LM-
NN are achieved more over the conventional methods for various plastic surgeries,
which is summarized in Table 3. It is observed that for all the measures, the method
has attained better results.

7. Conclusions

This chapter gives the detailed description of the second research technique. The
feature descriptor EV-SIFT that is used for feature extraction is well explained.
Further, the LM-based NN classifier is defined in this chapter, and the performance
of both the EV-SIFT and LM-NN classifiers is shown in the Result section. The
better work of EV-SIFT is effectively demonstrated in this section, which shows

LM-NN

Measures Surgery Attained result

Accuracy Rhytidectomy 0.93

Sensitivity Mentoplasty 0.19

Specificity Rhytidectomy 0.97

Precision Skin peeling 0.03

FPR Rhytidectomy 0.03

FNR Mentoplasty 0.81

NPV Rhytidectomy 0.97

FDR Skin peeling 0.97

F1score Skin peeling 0.05

MCC Skin peeling 0.03

Table 2.
Proposed V-SIFT with LM-NN of different plastic surgery faces.

LM-NN

Accuracy Rhinoplasty 0.984

Sensitivity Brow lift 0.17

Specificity Rhinoplasty 0.97

Precision Skin peeling 0.04

FPR Rhinoplasty 0.03

FNR Malar augmentation 0.83

NPV Rhinoplasty 0.97

FDR Skin peeling 0.96

F1score Skin peeling 0.06

MCC Skin peeling 0.04

Table 3.
Proposed EV-SIFT with LM-NN of different plastic surgery faces.
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how the images are distinguished between them. The analysis of the LM-NN classi-
fier is also more satisfactory with better performance.
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